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Analysis of orbital decay time for the classical hydrogen atom interacting
with circularly polarized electromagnetic radiation

Daniel C. Cole and Yi Zou
Department of Manufacturing Engineering, 15 St. Mary’s Street, Boston University, Brookline, Massachusetts 02446, USA

~Received 9 May 2003; published 14 January 2004!

Here we show that a wide range of states of phases and amplitudes exist for a circularly polarized~CP! plane
wave to act on a classical hydrogen model to achieve infinite times of stability~i.e., no orbital decay due to
radiation reaction effects!. An analytic solution is first deduced to show this effect for circular orbits in the
nonrelativistic approximation. We then use this analytic result to help provide insight into detailed simulation
investigations of deviations from these idealistic conditions. By changing the phase of the CP wave, the time
td when orbital decay sets in can be made to vary enormously. The patterns of this behavior are examined here
and analyzed in physical terms for the underlying but rather unintuitive reasons for these nonlinear effects. We
speculate that most of these effects can be generalized to analogous elliptical orbital conditions with a specific
infinite set of CP waves present. The paper ends by briefly considering multiple CP plane waves acting on the
classical hydrogen atom in an initial circular orbital state, resulting in ‘‘jump-like’’ and ‘‘diffusion-like’’ orbital
motions for this highly nonlinear system. These simple examples reveal the possibility of very rich and
complex patterns that occur when a wide spectrum of radiation acts on this classical hydrogen system.

DOI: 10.1103/PhysRevE.69.016601 PACS number~s!: 03.50.De, 05.45.2a, 02.70.Ns, 03.65.2w
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I. INTRODUCTION

The hydrogen atom has received renewed attention in
past decade or so, due to studies involved with Rydb
analysis, chaos, and scarring@1–4#. Classical and semiclas
sical analyses have been found in the past to offer hel
insight and predictability on the behavior of Rydberg-li
atoms. However, in these previous interesting works invo
ing classical and semiclassical analyses of ionization beh
ior and chaotic and scarred orbits of Rydberg systems~see,
for example, Refs.@2,3,5–8#, and cited references therein!,
the radiation reaction term in the Lorentz-Dirac equation@9#
describing the behavior of classical charged point particle
rarely, if at all, considered. Although physicists certain
agree that this term is necessary in a consistent classical
trodynamic treatment of classical charged particles@9–12#,
still, this is the term that persuaded physicists in the ea
1900s that a completely classical treatment of the atom
not a viable explanation for atomic behavior, as it wou
necessarily result in a collapse of the electron’s orbit in
time of about 1.3310211 sec. This observation, and oth
apparently nonclassical effects~blackbody radiation, photo
electric effect, etc.!, spurred the development of Bohr
atomic model, followed by the more complete work b
Heisenberg, Schro¨dinger, Dirac, and others of quantum m
chanics.

Nevertheless, our recent work@13–15# has revealed a
number of interesting situations as a result of the very n
linear behavior of the Coulombic binding potential, as w
as the small but steady action of the radiation reaction da
ing force, and the presence of applied electromagnetic ra
tion acting on the classical atom. Our intention is to contin
this development, building upon previous work to inclu
the effects of multiple plane waves. We expect at the v
least to continue to uncover interesting and surprising res
of the nonlinear behavior of this classical system. Howev
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we also expect that the results may prove helpful in revea
better why the classical analysis can in some cases pro
excellent insight into the behavior of Rydberg atomic sy
tems. For example, the literature is full of such observatio
such as in the extensive paper of Ref.@2#, p. 291: ‘‘Where
the quantitative agreement between experimental data
classical calculations is good for threshold field amplitud
for the onset of ‘ionization,’ the classical theory gives ke
insight into the semiclassical dynamics. Conversely, wh
the quantitative agreement breaks down is a signature for
importance of quantal effects. Often this occurs where
nonclassical behavior is, nevertheless, still anchored in su
ways to the classical dynamics in and near nonlinear re
nances.’’ Pushing on such understanding should prove to
helpful in modeling, as simply as possible, the surprisin
complex behavior that has been reported for Rydberg-
systems. We are hopeful to be able to use such mode
technology application situations.

Finally, at the most, we are hopeful to uncover more
when, why, and possibly why not, the theory of stochas
electrodynamics~SED! holds for the simple classical hydro
gen atom. As reported in much more detail elsewhere@15–
18#, SED is an entirely classical theory of nature that co
siders the interaction of classical charged particles w
electromagnetic fields, using Maxwell’s classical elect
magnetic equations, while also considering that an equi
rium situation for particles and fields at temperatureT50
necessarily requires the presence of classical electromag
zero-point~ZP! radiation. This idea has revealed a number
surprisingly quantum mechanical-like properties to be p
dicted from this entirely classical theory. However, when
tacking realistic atomic systems in nature, rather than sim
approximate systems like the simple harmonic oscillator,
vere difficulties have been reported in the past@17,18#. We
have been suspicious that some of these difficulties may s
ply be due to the inherent difficulty of analyzing the sub
nonlinear effects of a Coulombic binding potential@19,20#;
©2004 The American Physical Society01-1
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the present study, along with other work to be presente
the near future, is intended to help address some of th
points.

Indeed, our work in Ref.@21# shows that a detailed simu
lation of the effects of classical electromagnetic radiat
acting on a classical electron in a classical hydrogen po
tial, results in a stochastic-like motion that yields a probab
ity distribution over time that appears extremely close to
ground state probability distribution for hydrogen. Clea
there are tantalizing physical aspects yet to be unders
here of the ramifications of this work. These particular sim
lations are extremely computationally intensive. Howev
for large orbits, as would typically occur in a Rydberg ato
the computations would become enormously smaller, ther
providing an efficient computational tool for addressing R
dberg atom behavior. Thus, in summary, we believe this
search direction should provide an excellent technology
lated simulation tool for studying much of Rydberg ato
dynamics, while also providing the means for understand
much deeper ramifications of SED and its possible basis
much of quantum mechanics.

Except for a preliminary result to be considered in t
concluding section of this paper involving many pla
waves, the present paper considers a single classical c
larly polarized~CP! plane wave interacting with the classic
hydrogen atom. This atomic system will be treated here
consisting of a particle with charge2e and rest massm,
orbiting an infinitely massive and oppositely charg
nucleus. In Ref.@15# we carried out a perturbation analysi
showing in more detail why some of the nonlinear behavi
occur as first discussed in Ref.@13#. In particular, for the
classical electron moving in a near circular orbit, with
applied CP plane wave normally directed at the plane of
orbit, then quasistability of the orbit can be achieved p
vided the amplitude of the electric field of the plane wa
exceeds a particular critical value. The result is a cons
spiralling in and out motion of the electron, with the spira
growing larger and larger in amplitude, until finally a critic
point is reached and then decay of the orbit occurs. As sh
in Ref. @14#, this same behavior also occurs for more gene
but more complicated, elliptical orbits, where now an infin
set of plane waves is required to achieve the same ef
where the plane waves are harmonics of the period of
orbit.

In Sec. II of the present paper, we begin by providi
more general conditions than considered in Ref.@13# for
achieving perfect stability for the interaction of a single C
wave with the classical hydrogen atom. This example w
provide clearer physical insight into why the effect of t
phase of the CP plane wave, in relation to the motion of
orbiting electron, is so extremely important in changing t
time to decaytd of the classical electron’s orbit. Section I
then turns to a detailed simulation analysis of a wide rang
conditions influencingtd . Many of these results seem phys
cally very unintuitive. Section IV then turns to explain an
analyze some of these subtleties, by making use of som
the perturbation work in Ref.@15#.

Finally, Sec. V ends with a few concluding remarks
where we anticipate this work is headed. Future papers
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intended to report on work already finished or in vario
stages of completion, including a full relativistic examin
tion, and the situation that is of great interest to us, nam
when a radiation spectrum is present that may possibly re
in a thermodynamic equilibrium state with the classic
atom. In anticipation of this work, in Sec. V we briefly ex
amine the interesting question of what happens when m
plane waves act on the orbiting electron. As should be e
dent from Refs.@13–15#, this simple classical hydroge
problem presents a rich range of interesting nonlinear p
nomena with just the simple consideration of a single el
tromagnetic plane wave acting. However, with multip
plane waves, the range of possibilities grows considera
wider, as illustrated in Sec. V. As shown there, jump-li
behaviors are fairly easy to create.

II. ANALYSIS OF INFINITE STABILITY CASE

As discussed in Ref.@13#, when a classical electron o
massm and charge2e, follows a circular orbit of radiusa
about an infinitely massive and oppositely charged po
nucleus, and when a CP plane wave is directed along
normal to the plane of the orbit, then by choosing the f
quency of the plane wave to be equal to the orbital f
quency, orvc[(e2/ma3)1/2, and by choosing the phase o
the velocity of the electron and the electric field to be align
with each other~i.e., make (2e)E to be in the same direc
tion as the velocityż), then the amplitudeA of the electric
field of the plane wave can be chosen to perfectly balance
radiation reaction. The condition found was

Ac[
2e3vc

3mc3a2
5~vct!

e

a2
, ~1!

wheret[2e2/3mc3.
However, we can generalize this very specific scena

and achieve similar conditions of perfect stability for th
case whenA.Ac . Figure 1 illustrates the basic idea. B
having the component of the force (2e)E from the plane
wave in thex2y plane, ofeAcos(a), to be equal and oppo
site to the radiation reaction, then the angular frequency
the orbiting particle can stay constant. Moreover, by allo
ing a slightly different angular frequency in the orbiting m
tion from what would occur if the particle was only under th
influence of the Coulombic binding potential, so that now w
allow vÞvc , then an orbit of constant radiusa can be main-
tained.

Being more specific, we can write the nonrelativistic~NR!
equations of motion in polar coordinates as

m~ r̈Àr u̇2!52
e2

r 2
12te2

ṙ

r 3
1eAsin~u2vt2a!, ~2!

and

m~r ü12ṙ u̇ !52
te2

r 2
u̇1eAcos~u2vt2a!, ~3!
1-2



th
xi-
s

e

d
e,

ld
.

y,

-

he

-

s

is

-

qs.

e

-

la

l
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where the radiation reaction has been attributed largely to
force from the Coulombic binding potential, and appro
mated as in Ref.@15#, but now written in polar coordinate
above as

Freac'
2e2

3c3

d

dt H 2e2z

uzu3m
J 5 r̂

2te2ṙ

r 3
2 û

te2u̇

r 2
. ~4!

In order for a perfect circular orbit to be maintained, w
would need to impose thatr 5a, ṙ 50, r̈ 50, u5vt, u̇

5v, ü50; then our NR approximation toFreac reduces to

Freac52û
te2v

a2
52û ~vt!

e2

a2
52û S v

vc
DeAc . ~5!

Thus, the radiation reaction only occurs in the tangential
rection for circular motion. It is clearly a very small forc
since t'6.3310224 sec, v'4.531016 sec21 for a
50.5 Å, so (vt)'2.831027, while e/a2'1.93107 stat-
volt is the magnitude of the Coulombic electrostatic fie
from the classical nucleus acting on the orbiting electron

Equations~2! and ~3! reduce to

mv2a5
e2

a2
1eAsin~a!, ~6!

052S v

vc
DeAc1eAcos~a!. ~7!

Hence we have two equations and two unknowns, namela
andv. Solving forv yields the quadratic equation

FIG. 1. Diagram att50 showing the initial orientation of the
velocity vectorv, the electric force from the plane wave (2e)E,
the Coulombic binding force2e2r /r 3, the negative of the centrip
etal acceleration times the massmv2r , and the radiation reaction
force @Eq. ~5!#, when the classical electron is beginning a circu
orbit of radius a. By carefully selectinga, for A.Ac , and by
choosing the frequencyv of the plane wave to match the orbita
motion, a perfect balance can be achieved.
01660
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v422v2vc
2F12

~tvc!
2

2 G1vc
4S 12

A2

Ac
2 ~vct!2D 50, ~8!

which can readily be solved to obtain

v25vc
2H 12

~tvc!
2

2
6~tvc!FA2

Ac
2

211
~tvc!

2

4 G 1/2J .

~9!

This solution is exact for our nonrelativistic case. To low
est order in (tvc), and whereA/Ac is not just a very small
fraction slightly larger than unity, then we can expand t
above in terms of the small (vct) parameter to obtain

v2'vc
2H 16~tvc!S A2

Ac
2

21D 1/2J , ~10!

where terms of orderO@(vtc)
2# have been dropped.

Turning to Eq.~7!, we obtain

a5cos21S Ac

A

v

vc
D . ~11!

This result yields the exact value ofa. We of course assume
A>Ac .

As for the 6 signs in Eqs.~9! and ~10!, one can show
upon substituting back into Eqs.~7! and~6! that one needs to
use the plus sign when 0<a,p/2, and to use the minus
sign when2p/2,a,0. It should be noted that whenp/2
<a<p, or 2p/2<a<2p, then the radiation reaction can
not be balanced by (2e)E @see Eq.~7! or refer to Fig. 1# and
infinite td is then not possible.

Thus, for each value ofA, when A.Ac , there are two
frequencies that we will callv1 andv2 , corresponding to
the 6 signs in Eq.~9!, and the two corresponding angle
from Eq. ~11! that we will call a1 and a2 , such that a
perfect circular orbit can be maintained indefinitely for th
idealistic situation. In Fig. 1, all vectors (2e)E that can
yield infinite stability lie in the top half semicircle (2p/2
,a,1p/2). From Eq. ~11!, a152a2 . In Fig. 1, a1

would be directed as shown, soa1.0, with (2e)E tilted to
the left of the velocityv. The corresponding angular fre
quency ofv1 would satisfyv1.vc , wherevc is the an-
gular frequency whena50 and A5Ac . Likewise, a2

would be directed in Fig. 1 such thata2,0, or, (2e)E is
tilted to the right of the velocityv, with the corresponding
angular frequency ofv2 being such thatv2,vc .

The differences betweenv2 , vc , andv1 are in general
quite small, since the dimensionless quantity of (vct) is
such a small number for most atomic radii of interest in E
~9! and ~10!. For a50.5 Å, (vct)52.831027, so for this
radius,v1 , v2 , andvc differ in the seventh decimal plac
for A510 statvolt, the fifth decimal place forA5100 stat-
volt, the fourth decimal place forA51000 statvolt, and the
third decimal place for A580 000 statvolt. Likewise,
whether one usedv1 , vc , or v2 in Eq. ~11! will have a
correspondingly small effect ona2 anda2 , with the most
significant factor again being thata152a2 .

r
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D. C. COLE AND Y. ZOU PHYSICAL REVIEW E69, 016601 ~2004!
As can be shown, whenA5Ac , then the1 sign in Eq.
~9! holds, and we obtainv5vc and a50, as expected
Moreover, since for reasonable values ofA.Ac such that
(tvc)(A/Ac)!1, thenv1'v2'vc , so our exact NR re-
sult of Eq. ~11! reduces toa6'cos21(Ac /A), with a15
2a2 .

What is interesting about these two solutions for a perf
circular orbit is that thev1 solutions, withp/2,a1<0,
form what we will call ‘‘stable solutions,’’ meaning that i
one makesa or v slightly lesser or greater than the pr
scribed values ofa1 and v1 , then one can still obtain a
very long time before decay occurs; hence,td , although no
longer infinite, will still be large. In contrast, thev2 solu-
tions, with 0,a2,2p/2, form what we will call ‘‘unstable
solutions,’’ meaning that if one makesa or v slightly lesser
or greater than the prescribed values ofa2 and v2 , then
near immediate decay in the orbit begins. This result occ
even though the precise values ofa2 and v2 provide an
orbit with an infinite value oftd . The contrast seems fasc
nating, and will be discussed more in the following secti
involving detailed simulation results.

III. SIMULATION STUDY OF Td

In Ref. @15#, simulation results were shown illustrating th
very large range oftd that can exist, simply by changinga,
while holdingA fixed. Figure 2 illustrates the typical type o
results found, this time forA5300 statvolt anda52p/4.
We will define td precisely to be the point indicated in Fig
2~b!, which seems to be a key characteristic of the onse
orbital decay, namely, where the radial oscillation only ris
to about the halfway point of previous oscillations, th
starts to undergo a steady, oscillatory decline.

Using this definition oftd , Fig. 3 shows our simulation
results after carrying out calculations as in Fig. 2 for a ran
of values ofa, and for a range of values ofA. These calcu-
lations were carried out for one frequency value of the
plied CP plane wave, namely,vc . More specifically, all tra-
jectories were started in a circular orbit witha50.5 Å, with
an applied CP plane wave with the indicated value ofA and
a as in Fig. 3, and with an angular frequencyv
5(e2/ma3)1/2. This is the proper frequency for a consta
circular orbit ~in the NR approximation! if either ~1! no ra-
diation reaction existed and no CP plane wave existed or~2!
if radiation reaction existed, butA5Ac anda50.

Four values ofa1 , from Eq. ~11!, corresponding to the
values ofA55.419, 6.0, 10, and 1000 statvolt are labeled
this diagram. As can be seen, they fall at the center of
peaks of thetd vs a curves. If the plane waves had th
precise values ofv5v1 from Eq. ~9!, thentd would indeed
be infinite ~we have also confirmed this point via speci
simulation testing!. However, the simulations in Fig. 3 wer
carried out with the very slightly different value ofv5vc in
the CP plane wave, so, the peak values oftd vs a for these
curves do not appear to be infinite, but, they are indeed v
large and sharply peaked, and rather difficult to find exac
by pure simulation methods.

Moreover, in correspondence with the earlier comme
made about the unstable peak atv2 anda2 , no sign of the
01660
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predicted infinitetd peak shows up in Fig. 3, sincev in the
plane wave expressions was not taken to bev2 , but rather
the slightly different value ofvc . We should mention tha
our simulation testing of the unstable peak atv2 and a2

does reveal its existence for each value ofA, but, one needs
to increase the precision of the numerical calculations
track the particle orbit out to larger time values; the high
the precision imposed, the farther out in time the simulat
predicts before decay begins. It certainly appears that thtd
vs a curves do peak atv2 ,a2 , for each value ofA, but the
shape of this peak appears as that of a neard-function.

FIG. 2. ~a! r vs t for the classical electron in the scheme starti
in the orbital condition of Fig. 1, withA5300 statvolt anda5
2p/4. The pattern shown here is fairly typical, namely, the amp
tude of the radial oscillations gradually increase, the period a
gradually increases@better seen in Fig. 2~b!#, until finally orbital
decay sets in.~b! A blown-up view is shown of ther vs t curve in
~a!, near the point where orbital decay sets in.td , as indicated, is
defined in this paper as the point where the radial oscillation o
rises to about the halfway point of previous oscillations, befo
beginning a steady, oscillatory decline. Up until the decay point,
period and amplitude of the oscillation gradually increases. T
peaks change shape due to the nonlinear behavior, until finally
transition occurs. After the transition, the oscillations beco
smaller and smaller.
1-4
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Clearly, the behavior oftd near thev2 ,a2 peaks is consid-
erably different from the regions near thev1 ,a1 peaks.

Figure 4 helps to clarify the points made about t
v2 ,a2 solutions. This figure contains our results forr vs t
based on numerically solving Eqs.~2! and ~3! for a50.5 Å
andA51000 statvolt. As proven in Sec. II, thev2 ,a2 result
should be exactlyr 50.5 Å for all t. However, as can be
seen, the numerical predictions do not yield this result v
easily. Here we followed the adaptive time-step Burlisc
Stoer algorithm, as described in Ref.@22#, which we have
found to be an extremely good algorithm to use when o
plane wave is present.~All of our single plane wave numeri
cal results reported here, and in Refs.@13–15#, used this
algorithm.! The labels on the curves of ‘‘exp(215),’’ etc.,
indicate the relative precision we imposed on each step
the algorithm. As can be seen, even when huge increas
numerical precision were imposed, from exp(215) to
exp(230), the simulation only yieldedr'0.5 Å up to
about 4310214 sec, which is about 280 orbits; after that, t
radius changed rapidly to about 0.492 Å, and then a ste
oscillatory radial decay began. In contrast, for the cor
sponding a1 ,v1 solution, even after 5310213 sec we
found that the radius only fluctuated in value in the seve
decimal place when only a numerical precision
exp(220) was imposed. Clearly, any ‘‘noise’’ present, su
as from numerical imprecision, then thea2 ,v2 result will
not be obtained, whereas thea1 ,v1 solution is far more
easily approximated.

Some other interesting characteristics can be noted f
Fig. 3. First, there are four peaks shown, corresponding

FIG. 3. Plot oftd vs a, for several conditions ofA55.419, 6.0,
10, and 1000 statvolt. The points indicated along the curves w
the ones actually calculated, using the method of Fig. 2~b!. The
dotted lines drawn were curve fits, put in to simply illustrate t
trends better here. As analyzed in Sec. II, each of the curves ha
near infinite peak fortd . The peaks were drawn in here knowin
their proper location from the analysis in Sec. II, but they were a
verified by using these calculated peak positions in simulation r
to verify that td does appear to be infinite at these locations.
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A55.419, 6.0, 10, and 1000 statvolt. For any fixed value
td , the widths of these peaks become increasingly broa
when the value ofA larger becomes. For example, fortd
55.0310211 sec, the width of theA5Ac peak@i.e., the one
indicated at 5.419 statvolt, from Eq.~1!# is zero, so this peak
has the character of ad function. In turn, the angular widths
of the A55.419, 6.0, 10, and 1000 statvolt curves attd
55.0310211 sec in Fig. 3 become increasingly wider wit
increasingA, being approximately 0, 0.07p, 0.16p, and
0.30p, respectively.

Second, thetd vs a curves for increasing values ofA
become increasingly more alike. For example, although
shown, we report here that theA580 000 statvolt curve
looks nearly identical to the eye to theA51000 statvolt
curve; only by zooming in somewhat would one detec
difference. Indeed, from Eqs.~11! and~9! one can prove tha
a1→1p/2 asA→`. Evidently, the shape of thetd vs a
curve forv5vc , as in Fig. 3, also goes to a limiting shap
asA increases.

Third, it is interesting to note that for large values ofA the
places oftd'0 are neara52p/2. For smaller values ofA,
such as forA56 statvolt in Fig. 3, a region of values ofa
exist wheretd.0; however, outside this region, one can s
that td'0, meaning that immediate decay sets in at the s
of the simulation. In Fig. 3, the region of nonzerotd values
for A56 statvolt extents roughly froma520.14p to a
50.33p. It is interesting to note that the results from sim
lation of points wheretd curves go to zero on the left side o
each peak, appear close in value to the position of the
stable infinitetd peaks fora2 , v2 that can be calculated
analytically.

re
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o
s

FIG. 4. Plot ofr vs t with one CP plane wave present, attemp
ing to numerically simulate one of thea2 ,v2 situations. The ini-
tial radius was 0.5 Å. The conditions imposed on the CP pla
wave wereA51000 statvolt, along with the values ofa2 andv2

as calculated from Eqs.~11! and ~9!. The adaptive time-step
Burlisch-Stoer algorithm from Ref.@22# was used to computer vs t
for the different indicated relative precision conditions. As can
seen, even when a relative precision of exp(230) was imposed, the
algorithm still only predicted that r'0.5 Å up to about
4310214 sec, whereas the analytic solution predicts thatr 50.5 Å
for all time.
1-5
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FIG. 5. ~a! A schematic figure is shown here to help better illustrate the effect ofa on bothtd as well as the amplitude of the spirallin
motion, for the situation whenA@Ac . Each pair of mirror points, such as A and A8, B and B8, have nearly the same value oftd for A
@Ac . Figures 5~b!–5~d! contain plots ofr vs t, for a50.5 Å. Each plot contains twor vs t curves, one fora52p/4, and one for the
‘‘mirror case’’ of a523p/4. ~b! A51000 statvolt;~c! A5300 statvolt;~d! A5100 statvolt. As can be seen, asA decreases, the behavio
between thea52p/4 and a523p/4 curves becomes increasingly different, in agreement with Fig. 3. ForA5100 statvolt, thea5
23p/4 curve is not even stable. Also apparent is the decrease in amplitude of the spiraling motion, and the decrease intd asA decreases.
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For A@Ac , as seen in Fig. 3, a very symmetrical patte
occurs about the horizontal axis in Fig. 1, with the long
decay time ata'p/2, and the shortest decay time occurri
at a'2p/2. Figure 5~a! shows a way of organizing th
effects ofa on td for this situation ofA@Ac , where each
pair of initial anglesa, such as would be given by A and A8,
B and B8, etc., in Fig. 5~a!, have nearly the same value oftd
~for A51000 statvolt!, as well as nearly the same radial o
cillatory amplitude. More specifically, forA@Ac , a curve of
r vs t, as in Fig. 2, has an initial oscillatory amplitude that
nearly zero fora'p/2; this is also the point at whichtd is
the largest. Similarly, fora'2p/2, the initial oscillatory
amplitude is at its largest value, with orbital decay setting
almost immediately.

Figures 5~b!–~d! each compare the same ‘‘mirror’’ angle
of a52p/4 anda523p/4 in Fig. 5~a!, and show how the
r vs t curves are nearly identical looking forA@Ac @i.e., Fig.
5~b! with A51000 statvolt#, but become progressively mor
01660
t

n

different asA is decreased in Figs. 5~c! and 5~d!, in corre-
spondence with what we should expect from Fig. 3.

IV. ANALYTIC ANALYSIS OF td

We now turn to a more detailed analysis on the time
decay,td . In Ref. @15#, we showed that by expressingr (t)
5a1d(t) and the polar angleu(t)5vt1f(t), whereud/au
is treated as being small compared to unity, and likewise
uḟ/vu, then simplified and more easily analyzable differe
tial equations in terms ofd(t) andf(t) can be obtained than
those of Eqs.~2! and ~3!. Several levels of approximation
were discussed in Ref.@15#, with what was called the ‘‘P2’’
level being the simplest approximation found that still pr
vided a fairly good level of accuracy in most cases. In p
ticular, case P2 predicted the key features of the oscillat
radial motion, namely, the increase in oscillatory amplitu
1-6
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with time, and the rapid change to orbital decay. The P2
of equations were

d2f

dt2
1

3eA

am
S 11

2ḟ

3v
D cos~f2a!23~vt!v227~vt!vḟ

50, ~12!

combined withd(t)/a'2(2/3v)ḟ(t), and the initial condi-
tions off50, ḟ50, andd50 at t50. These two equation
and the initial conditions will enable us to make a simplifi
analysis of the transition point behavior at decay.

FIG. 6. Plots off5u2vt are shown here for the case whe
A51000 statvolt,a50.5 Å, anda52p/4. ~a! The main curve to
observe here is ‘‘Case E,’’ wheref(t) vs t is shown for the ‘‘exact
case,’’ solving Eqs.~2! and ~3!. However, cases P1, P2, and O
which are different perturbation approximations discussed in R
@15#, are also superimposed here to show how well they comp
~b! Blown-up view of the transition pointD in ~a!. f(td) is seen to
agree reasonably well here with prediction.
01660
et

Figure 6~a! showsf(t) vs t near the orbital transition
region of decay whenA51000 statvolt anda52p/4. At
each peak, of courseḟ50, andd2f/dt2,0. As can roughly
be seen, as the transition point to decay is approached,
peak becomes wider and wider, which means that the cu
ture becomes increasingly smaller, orud2f/dt2u tends to
zero.@This property of the peaks of thef vs t curve gradu-
ally becoming wider and wider, the closer to the transiti
point, was first pointed out in Ref.@15#; see Fig. 4~c! in Ref.
@15#.# Thus, ud2f/dt2u decreases in magnitude from poin
A→B→C, with d2f/dt2,0. At point D in Fig. 6~a!, the
transition point, the curve roughly goes through an inflect
point, with ḟ'0 and d2f/dt2'0. This condition can be
used as an approximate condition for calculatingtd .

From Eq. ~12!, with d2f/dt2'0 and ḟ'0, then
cos(f2a)'v3tam/eA, or

f~ t5td![f tran'a1cos21S v3tam

eA D . ~13!

For A51000 statvolt,a50.5 Å, and a52p/4, then Eq.
~13! predicts thatf'0.78 at pointD in Fig. 6~a!, which
agrees well with numerical calculations@see Fig. 6~b!#.

Further insight can be gained if we defineD(t) to be the
angle at timet between the velocity vectorv(t) of the elec-
tron and the force vector (2e)E(t). For the geometrical
situation chosen here~see Fig. 1!, where the counterclock
wise angular direction is taken to be positive, the parti
starts atx̂a, andv(t50) is along theŷ direction, thenv(t) is
at an angleu(t)1(p/2) with respect tox̂, while (2e)E at
time t is at an angle with respect tox̂ of a1(p/2)1vt.
Hence

D~ t !5S u~ t !1
p

2 D2S a1
p

2
1vt D5f~ t !2a. ~14!

The initial value ofD at t50 is 2a, sincef50 at t
50. The angleD(t) will initially vary between two points in
Fig. 7~a!. In the case ofA@Ac , if a is initially at point K in
Fig. 5~a!, thenD(t) will initially oscillate roughly ~not quite,
because the problem is not exactly symmetrical to either s
of a51p/2) between K8 and K, with its center being ap
proximately at the point off50, a51p/2, or Dmid5
2p/2. However, the amplitude of the range ofD will gradu-
ally increase, as will, accordingly, the amplitude ofd(t), as
observed in Fig. 2~a!. Decay then sets in whenD(t) reaches
the value of, from Eqs.~14! and ~13!,

D~ t5td![D tran5cos21S v3tam

eA D . ~15!

Figure 7~a! illustrates the above, while Figs. 7~b! and 7~c!
zoom in to show different aspects of theD(t) vs t curves.

As noted in Ref.@15#, in the P2 approximation, the term

ḟF 2

3v
cos~f2a!27v2tG

f.
e.
1-7
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FIG. 7. Plots ofD(t)5@f(t)2a# vs t, for
A51000 statvolt, for several different values o
a. In ~a!, the ‘‘mirror’’ angles of a523p/4,
2p/4, as well asa50,p, as well asa53p/4,
p/4, all have nearly identical values oftd , which
can be identified in~a! by the near vertical lines
arising at the decay points in these curves@i.e.,
D(t) rapidly increases when orbital decay b
gins#. Note thatD(td)5cos21(v3tam/eA), from
Eq. ~15!, agrees well with prediction.~b! zooms
into the early time region of~a! to show the dif-
ferences between theD(t) vs t curves fora5
23p/4 and2p/4, as well asa5p and 0. ~c!
zooms in on the last region of theD(t) vs t curve
for a5p/4. Each of theseD(t) curves behave
fairly similarly. The D(t) vs t curve for a5p/2
can also be seen in~c!, although its amplitude is
still very small. As discussed in this paper, if w
were to repeat this examination for smaller valu
of A, one would see increasing differences intd

for these mirror angles, since, as seen in Fig.
the td vs a curves become centered around d
ferent values ofa1 other thanp/2, asA/Ac be-
comes smaller.
of

l
er

tin-

in
in Eq. ~12! are the origin for the increasing amplitude
oscillation, the increase in periodicity@one can discern the
latter feature in Fig. 7~c!#, and the rapid transition to orbita
decay. If it was possible to force these terms to equal z
then case P2 would reduce to the approximate caseO ana-
01660
o,

lyzed in Ref.@15#, which predicts the initial oscillations very
well, but never changes the oscillation shape and just con
ues on forever without orbital decay.

This insight offers another way to investigate situations
Fig. 3 where near infinitetd occur. Forcingḟ@2/3vcos(f
1-8
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2a)27v2t# to be zero cannot be accomplished with o
fixed value ofa if f is changing with time. However, it ca
be accomplished iff is made to be constant, by forcin
d2fdt250. The above term will then equal zero and t
radial oscillations, via the P2 approximation ofd(t)/a'

2(2/3v)ḟ(t), will then not change;r will then remain fixed
at r 5a.

Since in the situations examined here,f50 at t50, we
can find the condition to make Eq.~12! result in f being
constant for all time by substituting in zero forf, ḟ, and
d2f/dt2. Equation~12! then reduces to

3eA

am
cos~2a!23~vt!v250, ~16!

or, from Eq.~1! and usingv5vc , since that was the basis o
case P2 in Ref.@15#, then

a5cos21S Ac

A D . ~17!

This result agrees nicely with our earlier exact result of E
~11!, since, as analyzed earlier from Eq.~10!, v'vc . More-
over, this analysis provides us another insight for points
Fig. 3 that lie near, but not right ata5a1 , namely, that
whenḟ is small, which translates in the P2 approximation
d(t)/a'2(2/3v)f(t) being small, or the radial oscillation
ud/au!1, then we can expect a long timetd before orbital
decay sets in.

V. CONCLUDING REMARKS

The present paper began by noting that there exists a
larger range of conditions of infinite stability for a CP pla
wave acting on a NR classical hydrogen atom than the sin
case ofa50 andA5Ac that was noted in Ref.@13#. Spe-
cifically, for each value ofA.Ac , there are two values ofa
such that a circular orbit will continue indefinitely in th
highly idealized scenario described in the present pape
this classical scenario represented physical reality, then
one of these values, thev1 , a1 solution, would be readily
observable, since any small deviation from thev2 , a2 so-
lution appears to lead to near immediate orbital decay.

We should also clarify further the meaning of the sta
solution of thev1 , a1 result, since any noise or other slig
perturbation that enters the system, as of course would
pen in a real physical situation, alters this otherwise perfe
aligned situation and appears to eventually lead to de
Nevertheless, the size oftd will still in general be quite large
for small deviations from the idealized solution ofv1 , a1 .
Figure 3 helps to understand this point, since the simulati
carried out in Fig. 3 did not usev1 as the frequency of the
CP waves, but rathervc , which is slightly different from
v1 . We note that the widths and locations of the peaks otd
vs a in Fig. 3 are quite interesting. AsA approachesAc , the
width of the peak oftd vs a becomes infinitesimally narrow

Although we have not pursued the following idea in a
sort of detail yet, it seems quite reasonable to us that mos
01660
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the results analyzed here for circular orbits can be gene
ized to the more complicated situation of elliptical orbit
just as occurred in Refs.@13,14#. Reference@14# deduced the
plane wave spectrum that would be required to overcome
radiation reaction effect to maintain an elliptical orbit, the
turned to find the unexpected nonlinear behaviors that oc
as the amplitudes of this plane wave spectrum were sca
Likewise, we expect to find equally interesting results
phases are systematically altered. In turn, these relati
simple changes~e.g., scaling of amplitudes and systema
changes of phases! of electromagnetic radiation acting on th
classical hydrogen model are but small subsets of the
nitely rich range of radiation conditions that could occur in
normal physical environment, in part from what an expe
menter might ingeniously impose, as well as what natura
exists due to thermal and, more generally, nonequilibri
radiation conditions. Many recent experiments have alre
been carried out to examine such behaviors for actual R
berg systems, such as in Refs.@8,23#.

Finally, we wish to end this paper by briefly mentionin
other interesting nonlinear phenomena of this classical s
tem. First, in Fig. 8~a!, two CP plane waves were chosen
influence the orbital motion; their angular frequencies w
selected to be slightly different, but close to the initial orbi
angular frequency of the classical electron. As can be s
jump-like motion was produced. It should be noted that a
proximately 10 000 orbits~the orbital period is about 1.4
310216 sec forr 50.5 Å) occur for this simple scenario be
fore the onset of orbital decay. During this time, four ve
clear and relatively rapid jump-like transitions occur. Addin
more plane waves with similar changes in frequency c
readily create an increase in jump-like behaviors, with lar
jumps becoming more likely the larger the amplitude of t
CP plane wave. Figure 8~b! illustrates this point of increasing
the number of CP plane waves and its effect on quasista
ity. The quasistability region, up to the point of orbit
decay, increased from about 1.4310212 sec to about
5.0310212 sec between Figs. 8~a! and 8~b!, while the num-
ber of small jumps increased from four to about 25, and
number of orbits increased from approximately 10 000
36 000. Figure 8~b! is particularly interesting, in that it pro
vides a conceptual way to see how stability can be roug
maintained, yet a region of radial dimensions can be samp
in a diffusion-like pattern.

Figure 9 illustrates ‘‘resonance-like’’ properties of plan
waves acting on orbital motion. Our earlier work in Re
@13,14# analyzed related aspects of this phenomena for
cular and elliptical orbits, respectively. One curve in Fig. 9~a!
represents the case where an electron starts in a circular
of radius 0.525 Å, with no plane waves acting (A50), so
that steady orbital decay occurs. The second curve in
9~a! represents a similar situation, but now where a CP pl
wave is constantly acting, withA5100 statvolt,a50, and
an angular frequency corresponding to an electron in a
cular orbit of 0.5 Å. As can be seen, as the electron’s o
decays from 0.525 Å to 0.5 Å, the effect of the CP pla
wave on the orbital motion becomes increasingly more p
nounced, resulting in a jump-like behavior nearr 50.5 Å,
followed by a continued fluctuating decay in orbit, but wi
1-9
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fluctuations becoming increasingly smaller as the electro
radius steadily decreases below 0.5 Å. Interestingly, the
radial curves forA50 andA5100 statvolt are quite paralle
to each other, aside from the fluctuating and jump-like
havior of theA5100 statvolt curve.

Figure 9~b! shows three curves pertaining to three diffe
ent situations, each one where the electron has b
‘‘dropped’’ in a circular motion from an upper radius valu
then allowed to decay to a lower radius while in the prese

FIG. 8. ~a! Plot of r vs t for the case where the initial radius
0.5 Å, and there are two CP plane waves present, both wita
50. One CP plane wave hasA5100 statvolt, with an angular fre
quency corresponding to an orbital circular motion of radius 0.5
while the other hasA5500 statvolt, with an angular frequenc
corresponding to an orbital circular motion of radius 0.505 Å. T
two horizontal lines indicate these radii. As can be seen, jump-
motion occurs between the radii corresponding to these two ang
frequencies.~b! Plot of r vs t, as in~a!, but now six CP plane wave
are present, all witha50. The circular orbital radii correspondin
to their angular frequencies are indicated. These radii and the
plitudes of the plane waves are: 0.485 Å and 500 statvolt; 0.49
and 500 statvolt; 0.495 Å and 500 statvolt; 0.500 Å and 100 s
volt; 0.505 Å and 500 statvolt; 0.510 Å and 500 statvolt.
01660
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of a single CP plane wave, withA5100 statvolt anda50;
in one case the angular frequency of the CP plane w
corresponds to a circular orbit of radius 0.50 Å as in F
9~a!, while the other situations have the CP plane wave f
quency corresponding to circular orbits of radius 0.49 Å a
0.48 Å, respectively. They axis of Fig. 9~b! represents the

,

e
lar

m-
Å
t-

FIG. 9. ~a! Plot of r vs t for two situations, both where the
electron starts atr 50.525 Å, but one where no CP plane wave
present (A50), while the other case has a CP plane wave pres
with A5100 statvolt,a50, and an angular frequency correspon
ing to an electron in a circular orbit of radius 0.5 Å.~b! The maxi-
mum radius minus the minimum radius for each fluctuation in thr
vs t curve in Fig. 9~a!, vs r, are plotted here for three situations.
each case the electron starts out in a circular orbit, with a CP p
wave acting, withA5100 statvolt anda50; the three curves are
due to the presence of a single CP plane waves of angular frequ
corresponding to a circular orbit of radius 0.48 Å, 0.49 Å, a
0.50 Å, respectively. As can be seen, these response curve
sharply peaked. Changing the amplitude of the applied CP p
wave changes the magnitude of this response, although the s
stays fairly similar forA not too large.
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magnitude of the fluctuations of the radial motion@i.e., each
peak minus each succeeding minimum in curves like thA
5100 statvolt trajectory in Fig. 9~a!#. The intent of this fig-
ure is to attempt to characterize the resonance-like effec
plane waves acting on the electron’s motion. As can be s
the response in Fig. 9~b! is sharply peaked. We note that th
response is a very nonlinear function, depending on sev
factors, including the radius and the amplitude of the
plane wave. We intend to report on these effects in m
detail in future work.

We have found such resonance-, jump-like, and diffusi
like behaviors as seen in Figs. 8 and 9 to be fairly easy
produce, as well as a range of other interesting nonlin
phenomena, such as ‘‘catching’’ the electron, ‘‘kicking i
@4,23,24#, etc. All of this work we expect to lead to great
understanding and insight into both practical technolog
possibilities as well as very basic and fundamental phys
ideas. Clearly, there are surprising and subtle nonlinear
fects that are difficult to anticipate, even for such simp
cases as the ones examined here involving simply a si
CP plane wave acting on an electron in a near circular or

Moreover, we have carried out numerous other simulat
experiments attempting to go well beyond these simpler s
ations, by investigating the possibility of simulating the e
fect on the classical electron’s motion due to the hydrog
Coulombic binding force plus classical electromagnetic ze
point radiation, as well as due to other radiation fields
interest. In work to be reported elsewhere@21#, we describe
our simulation results to date for the classical hydrogen a
in the presence of classical electromagnetic ZP radiat
Most notably, this work has yielded a probability dens
distribution for the classical electron in close agreement w
the quantum mechanical ground state of hydrogen fr
Schrödinger’s wave equation. Figure 10~a! shows a typical
trajectory of a classical electron based on this simulat
work, from which probability density distributions were ca
culated in Ref.@21#. The number of plane waves in the sim
lation of Fig. 10~a! was enormously larger than our earli
simpler examples in Fig. 8, namely, this simulation involv
'2.23106 plane waves. The distribution of amplitudes a
phases for these plane waves was chosen to represent a
tion of the classical electromagnetic ZP radiation spectru
As can be seen in Fig. 10~a!, the classical electron main
tained a quasistability behavior, in that it’s orbit did not co
lapse into the nucleus nor ionize to infinity; however, i
quasistability occurred in a stochastic manner, with it’s
dius gradually increasing and decreasing due to the ra
tion’s effect on its motion.

Figure 10~b! shows more recent simulation results th
differ from those of Ref.@21# in that a ‘‘window’’ algorithm
approximation described in Ref.@21# is not imposed. The
simulations in Fig. 10~b! only go out to about one-hundredt
the time in Ref.@21#, yet the computational time for Fig
10~b! was about 50% larger than the already lengthy 55 C
~central processing unit! days reported in Ref.@21# on a Pen-
tium 4, 1.8 GHz, processor~actual time 5 CPU days on 1
processors!, due to the difference of the ‘‘no-window’’ versu
‘‘window’’ algorithm. In Fig. 10~b!, an ensemble of nine
classical electrons were started at 0.53 Å and tracked ov
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FIG. 10. ~a! Plot of r vs t for a classical electron starting in
circular orbit of radius 0.53 Å, with'2.23106 plane wave acting
during the simulation. The amplitudes and phases were chose
the beginning of the simulation and then held fixed throughout
remainder of the simulation. The values of these amplitudes
phases were chosen to represent one stochastic realization of a
tion of the classical electromagnetic ZP radiation spectrum. Re
ence@21# discusses the specifics in more detail.~b! Nine classical
electrons were tracked in time, each starting at 0.53 Å in a circ
orbit, but then subsequently not constrained. A different realiza
of the classical electromagnetic ZP radiation spectrum was assu
for each simulation, although all had 771,692 plane waves act
ranging in angular frequency from 5.031017 sec21 to 4.6
31011 sec21. The top three curves show the times up to whi
point the percentage of time was spent at each radius by the
semble of nine electrons, as each evolved in trajectories like th
in Fig. 10~a!. The bottom curve was calculated from the grou
state of hydrogen via Schro¨dinger’s equation:P(r )54pr 2uC(x)u2

54r 2/aB
3exp(22r/aB), where aB5\2/me2. Carrying out these

lengthy simulations farther in time, we expect the histogra
curves computed by simulation to converge closely toP(r )
54r 2/aB

3exp(22r/aB), as they did in Ref.@21#.
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time of 2.87310213 sec, 4.48310213 sec, 8.20310213 sec
~about 2000, 3000, and 5000 revolutions, respectively! cor-
responding to each of the three curves in Fig. 10~b!. As can
be seen, the ensemble average is marching nicely toward
expected ground state distribution calculated from Schr¨d-
inger’s equation, which we expect to find once enough or
have been tracked over to correspond with the longer run
time in Ref.@21#, where indeed this ground state distributio
was obtained. We expect to report in future work on the f
results of this simulation experiment as well as considera
more extensive experiments presently in progress.

Undoubtedly, such results will come as a surprise to m
physicists, as only classical electrodynamics is involved
these simulations. We note that the work discussed in
present paper, as well as in Refs.@13–15#, was critical in
terms of developing the ideas and methods for carrying
such investigations to compare classical dynamical effe
with quantum mechanical predictions. The work of t
present paper, which identifies the much wider range of
bility conditions for the classical hydrogen atom under fai
simple applied radiation conditions, may well serve as
. R
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very beginnings for exploring statistical mechanical-li
ideas for stability conditions that result in the ground st
probability distribution found in Ref.@21#. These results can
not help but reawaken the idea that the main basis of S
theory may in fact be correct@16–18#. Clearly, though, far
more work needs to be done to examine all the other asp
of quantum mechanical phenomena for atomic systems,
fore this conclusion can be made; we are presently pursu
such investigations. Whatever the outcome, it should be q
clear that the range of classical physical behavior is
tremely rich, as already revealed here by the very sim
consideration of a classical charged particle in a near circ
orbit about a classical nucleus, while acted upon by a sin
CP electromagnetic plane wave.
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