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Non-specular reflection of walking droplets
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Since their discovery by Yves Couder and Emmanuel Fort, droplets walking on a
vibrating liquid bath have attracted considerable attention because they unexpectedly
exhibit certain features reminiscent of quantum particles. While the behaviour of
walking droplets in unbounded geometries has to a large extent been rationalized
theoretically, no such rationale exists for their behaviour in the presence of boundaries,
as arises in a number of key quantum analogue systems. We here present the results
of a combined experimental and theoretical study of the interaction of walking
droplets with a submerged planar barrier. Droplets exhibit non-specular reflection,
with a small range of reflection angles that is only weakly dependent on the system
parameters, including the angle of incidence. The observed behaviour is captured
by simulations based on a theoretical model that treats the boundaries as regions of
reduced wave speed, and rationalized in terms of momentum considerations.
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1. Introduction

Ten years ago, Yves Couder and Emmanuel Fort discovered that a millimetric
drop placed on a vibrating fluid bath may interact with its own wave field in such a
way as to walk steadily across the surface (Couder et al. 2005; Protière, Boudaoud
& Couder 2006). These walking droplets, henceforth ‘walkers’, are composed of
both droplet and extended wave, and exhibit several features previously thought to
be exclusive to the microscopic, quantum realm (see reviews by Bush 2015a,b).
Integrated experimental and theoretical work has rationalized the manner in which
chaotic pilot-wave dynamics may give rise to quantum-like statistical behaviour in
unbounded geometries, for example in orbital dynamics (Fort et al. 2010; Harris &
Bush 2014; Labousse et al. 2014, 2016; Oza et al. 2014; Perrard et al. 2014a,b).
The interaction of walkers with boundaries, as arises in a number of key quantum
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analogue systems (Couder & Fort 2006; Eddi et al. 2009; Harris et al. 2013; Gilet
2014, 2016), remains relatively poorly understood.

In their experimental investigation of walkers tunnelling across submerged
barriers, Eddi et al. (2009) noted the predominance of a single reflection angle of
approximately 60◦ (measured with respect to the normal) when the walker bounced
off the walls of a square cavity. Indeed, this reflection behaviour was exploited in the
development of their experimental arrangement. Couder & Fort (2006) showed that
walkers exhibit single-particle diffraction and interference when they pass through
single- or double-slit geometries. Recently, Andersen et al. (2015) and Batelaan et al.
(2016) revisited these experiments and found results at odds with those of Couder
& Fort (2006). Harris (2015) examined the diffraction of walkers through a slit,
and found the behaviour to be dominated by wall effects. Specifically, there was a
preferred diffraction angle of approximately 60◦, comparable to the angle of reflection
of a walker from a planar boundary.

A prerequisite for the theoretical rationale of the behaviour in the diffraction
and interference experiments would thus seem to be the understanding of the
interaction of walkers with relatively simple boundary geometries. We here examine
experimentally and theoretically the interaction of walking droplets with a planar
submerged barrier. Specifically, in § 2, we characterize the reflection laws of walking
droplets experimentally, then in § 3 capture the observed behaviour with simulations
based on a recently developed theoretical model (Faria 2016). The rationale for the
non-specular reflection is provided in § 4 on the basis of existing reduced theoretical
models of the walker dynamics (Bush, Oza & Molácek 2014; Labousse & Perrard
2014).

2. Experiments

The fluid bath is composed of silicone oil with viscosity ν = 20.9 cSt, density
ρ = 950 kg m−3 and surface tension σ = 20.6 mN m−1. A schematic of the set-up is
presented in figure 1. The bath is circular with diameter 15.8 cm, depth h0 = 6.09±
0.03 mm and is surrounded by a shallow border of width 12.7 mm and depth 1.3 mm
that acts as a wave damper, thus minimizing the interaction of the walker with the
outer boundary. A stainless steel barrier (visible on the right of figure 1b) is bolted to
an aluminium base plate and serves as the reflecting planar boundary. On the barrier,
the fluid depth is reduced to h1= 0.42± 0.03 mm, which is too shallow to support a
walking drop. This depth h1 was chosen to correspond most closely to that used by
Harris (2015) for the single-slit diffraction experiments. The barrier is 30 mm wide so
that the droplets cannot tunnel across it (Eddi et al. 2009) and waves do not propagate
beyond it.

The bath is driven at the frequency f0 = 80 Hz by an electromagnetic shaker with
acceleration Γ (t)=γ cos(ωt), where ω=2πf0. The drive shaft is guided by a linear air
bearing that ensures a spatially uniform vertical vibration to within 0.1 %. The forcing
is controlled by a closed-loop feedback that ensures a constant acceleration amplitude
to within ±0.002 g (Harris & Bush 2015), and monitored by two accelerometers
placed symmetrically with respect to the centre of the bath. For γ > γF ' 4.2 g, the
Faraday instability arises on the bath, resulting in standing gravity–capillary waves of
wavelength λF = 4.75 mm and frequency f0/2 (Faraday 1831). We examine droplets
walking below this threshold, so that the dimensionless acceleration, henceforth
referred to as the ‘forcing amplitude’, γ /γF < 1. The experimental uncertainty in
γ /γF is less than 0.2 % and due primarily to the small variation of the Faraday
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FIGURE 1. (a) Experimental set-up (not to scale). In the vicinity of the reflecting barrier,
the fluid depth is reduced from h0= 6.09± 0.03 mm to h1= 0.42± 0.03 mm. (b) Typical
trajectory (in red) of a walking droplet reflecting off the planar boundary. The droplet is
launched from a submerged V-shaped launcher (in black) towards the reflecting barrier
(in grey). The local angle of incidence θi and reflection θr at the two black points are
indicated. (c) Parameter regimes of bouncing and walking drops indicating the dependence
of the bouncing state (m, n) on the dimensionless acceleration γ /g and the vibration
number Vi = ω/

√
σ/ρR3, where R is the drop radius (Molacek & Bush 2013b). In the

(m, n)k mode, the drop bounces n times in m driving periods. (2, 1)1 and (2, 1)2 denote
resonant walkers with a different mean mechanical energy. The white segments indicate
the parameter regimes explored in our study. White and blue circles correspond to the
droplets used in figure 3(c), while the yellow circle corresponds to that used for the
visualization of the wave field in figure 6.

threshold during the course of the experiments, as arises due to the dependence of
the fluid viscosity on temperature. The forcing amplitude uniquely defines the memory
parameter Me = Td/[TF(1− γ /γF)], where Td is the wave decay time in the absence
of vibration and TF = 2/f0 is the period of the Faraday waves (Eddi et al. 2011;
Molacek & Bush 2013b). Me gives an estimation of the number of past bounces that
contribute to the build-up of the instantaneous guiding wave field. Throughout this
paper we will refer alternatively to the forcing amplitude and the memory.

Droplets of the same silicone oil as the bath are generated via the droplet-on-
demand generator developed by Harris, Liu & Bush (2015), which reduces uncertainty
in the drop diameter D to ±0.01 mm. Droplets are released onto the vibrating bath
along a slide painted with a thin layer of silicone oil. The parameter regime of the
drops used in this work is highlighted in figure 1(c). We explored the behaviour
of walking drops of three different sizes in the resonant (2, 1)2 mode, in the (4, 2)
mode and in the chaotic regime arising at high memory for relatively small drops
(Molacek & Bush 2013b; Wind-Willassen et al. 2013). The container is sealed with a
transparent acrylic lid to isolate the droplet from ambient air currents. Walkers were
directed towards the barrier with a V-shaped launcher (see figures 1(b) and 2), above
which the fluid depth was reduced to 0.6 mm. At the exit of the launcher, droplets
follow a straight path until they start interacting with the reflecting barrier. After the
reflection event, they usually follow the outer wall until returning to the launcher,
which allowed for repeated measurements in the same experimental conditions. The
initial angle of incidence was controlled by shifting the position of the launcher.

The walker motion was recorded with a CCD camera at 10 frames per second and
tracked with an in-house particle-tracking algorithm. Angles were measured locally
along the trajectories by considering the tangent line at the point of measurement and
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1 cm

FIGURE 2. Four snapshots of a walking droplet with its wave field as it is reflected from
a submerged barrier (in white). (a) t= 1.2 s, (b) t= 4.4 s, (c) t= 7.1 s, (d) t= 9.4 s.
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FIGURE 3. Non-specular reflection of a walking droplet of diameter D = 0.78 mm. At
γ /γF = 0.900, its free speed is v0 = 11.45 ± 0.10 mm s−1. (a) Trajectory colour varies
from blue to red as the initial incidence angle Θi decreases. The launcher is removed
from the image for the sake of clarity. (b) Local measurements of the angle of incidence
θi and reflection θr as a function of the distance x from the barrier. (c) The final reflection
angle Θr as a function of the initial incidence angle Θi for γ /γF= 0.900 (full circles) and
γ /γF = 0.850 (open circles). These walkers are identified respectively by the blue and
white circles in figure 1(c). Experiments are compared to the results from the theoretical
model (red and black solid lines, respectively) and the specular reflection law Θr = Θi
(dashed line).

the first four neighbours. The angle between this line and the normal to the barrier
was defined to be the local angle of incidence θi or reflection θr (figure 1b) along,
respectively, the incoming and outgoing portions of the trajectory. In the far field, θi

and θr asymptote to the initial angle of incidence Θi and the final angle of reflection
Θr, respectively. Θi is defined as the average over the first 10 values of θi at the exit
of the launcher, and Θr similarly by the average over the last 10 values of θr.

First, we characterize the dependence of the final reflection angle Θr on the initial
incident angle Θi at relatively low memory. We consider a droplet of diameter
D = 0.78 mm at two accelerations, γ /γF = 0.850 and γ /γF = 0.900, where it
is a resonant (2, 1)2 walker with respective speeds v0 = 10.6 ± 0.1 mm s−1 and
v0 = 11.45 ± 0.10 mm s−1. For each Θi, we repositioned the launcher so that the
walker impinges close to the centre of the barrier. We then resealed the container, and
recorded at least two trajectories. These trajectories were indistinguishable within the
errors of our experimental set-up. At these low memories, the trajectory is uniquely
determined by the initial incident angle Θi.
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FIGURE 4. Dependence on memory, γ /γF, of the reflection of a walker of diameter
D = 0.78 mm for a fixed initial angle of incidence Θi = 37.3 ± 0.5◦. The path through
parameter space is indicated by the uppermost white line segment in figure 1(c). Colour
changes from blue to red as γ /γF increases. (a) Three experimental trajectories (solid
lines) compared to computed trajectories (dashed lines). (b) Local measurement of the
incidence angle θi and the reflection angle θr as a function of the distance from the barrier
x. (c) Final reflection angle Θr as a function of the drop free speed v0. The error on the
latter is 1v0 = 0.05 mm s−1.

In figure 3(a) we report one trajectory per Θi. The reflection is clearly non-specular:
Θr 6=Θi. Moreover, we observe that a wide range of Θi converges to a narrow band of
Θr in the vicinity of 70◦. This convergence is evident in figure 3(b), where the local
angle is reported for each trajectory as a function of the normal distance from the
barrier x. At the exit of the launcher, the walker proceeds in a rectilinear fashion. As
it approaches the barrier, the local angle of incidence θi generally increases. After the
walker reverses direction, θr changes continuously before approaching its final value
Θr in the far field, where the walker proceeds again in a rectilinear fashion. The
reflection process occurs over a time interval of several seconds, during the course
of which the walker interacts with the planar barrier through its wave field. We note
that along both the incident and reflected trajectories, the walker curves towards the
barrier, except during its relatively abrupt reversal of direction, as arises at a distance
from the barrier that depends on Θi but is in the range 0.6–2.8λF. The final reflection
angle Θr is plotted as a function of the initial incidence angle Θi in figure 3(c), where
the deviation from specular reflection is again apparent. For γ /γF = 0.900, the wide
range of initial angles of incidence Θi ∈ [14◦, 76◦] results in a relatively narrow band
of final reflection angles Θr ∈ [64◦, 82◦]. For γ /γF = 0.850, the wide range of initial
angles of incidence Θi ∈ [14◦, 71◦] results in an even narrower band of final reflection
angles Θr ∈ [69◦, 81◦].

We also investigated the influence of memory on the reflection of droplets of
diameter D= 0.78 and 0.75 mm with a fixed Θi. In figure 4(a) we present trajectories
of the drop of diameter D = 0.78 mm. Both incident and reflected trajectories vary
with memory. In the approach phase, the low-memory walker senses the barrier at
a distance x ≈ 10 mm from the barrier. The high-memory walker senses the barrier
earlier owing to its relatively extended wave field. These features are highlighted
in figure 4(b), where the local angle is plotted for each trajectory as a function
of the distance from the barrier x. We note that the local minimum in the angle
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FIGURE 5. Dependence on memory γ /γF of the reflection of a walker of diameter
D = 0.75 mm for a fixed initial angle of incidence Θi = 34.9 ± 0.6◦ (indicated by the
middle white line segment in figure 1c). Comparison of experimental (solid line) and
theoretical (dashed line) trajectories at (a) two low memories and (b) one very high
memory, where an anomalous trajectory is observed in the experiments but not in the
model. (c) Local measurement of the angle of incidence θi and the reflected angle θr as a
function of the distance x from the barrier at different memories. The anomalous trajectory
presented in (b) is highlighted in green.

of incidence θi in the vicinity of the barrier decreases as the memory increases. In
figure 4(c), the dependence of Θr on the drop free speed v is reported for the different
memories examined. At the highest memories considered, we were at the limit of
our experimental configuration: at the edge of the domain, the walker trajectories
were still slightly curved. We note here that Θr remains constant for γ /γF from
0.894 to 0.981. In this memory range, the speed is nearly constant, indicating that
Θr is more sensitive to the drop free speed than to memory. The overall spread of
the reflected trajectories in this set of experiments is in the range Θr ∈ [66◦, 76◦],
with higher speeds corresponding to lower reflection angles. We conclude that Θr

decreases monotonically with the drop’s free speed.
In figure 5(a,b), we present trajectories in the same experimental conditions

for a smaller droplet, with diameter D = 0.75 mm, whose speed at γ /γF = 0.901
is v0 = 9.15 ± 0.10 mm s−1. The behaviour is very similar to that arising for
D = 0.78 mm except at high γ /γF, where the reflection angle may decrease
dramatically (at γ /γF = 0.990) or even take on negative values (at γ /γF = 0.995).
In the latter case, the droplet executes a loop whose diameter is approximately one
Faraday wavelength, before exiting the loop and wobbling towards rectilinear motion
(figure 5b). The loop is presumably due to a transient self-confinement of the walker
in its own wave field, as has been discussed elsewhere (Labousse 2014; Oza et al.
2014; Bush 2015b). In figure 5(c), oscillations at high memory are clearly evident.
While this slower walker asymptotes to Θr more slowly than its faster counterpart,
the band of final reflection angles is clearly narrower. However, it is difficult here
to assess reliably the dependence of Θr on memory and drop speed as trajectories
are still curved at the limit of the experimental set-up. Equivalent experiments with
an even smaller drop (D = 0.71 mm, lowermost white horizontal line in figure 1(c),
for which v0 = 6.8 ± 0.1 mm s−1 at γ /γF = 0.900) show that reflection angles are
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FIGURE 6. Experimental (a–c) and theoretical (d–f ) wave fields as the walker reflects
from a planar barrier. Drop diameter D = 0.76 mm and free speed v0 = 11.2 mm s−1,
height above the barrier h1 = 0.3 mm and in the deep region h0 = 10 mm, forcing
amplitude γ /γF = 0.979 (yellow circle in figure 1c). (g) Speed variation in the vicinity
of the barrier of a drop with D = 0.78 mm at γ /γF = 0.903 with h1 = 0.42 ± 0.03 mm
(blue circle in figure 1c). Surface Schlieren images (a–c) are taken with the bath at its
maximal vertical displacement (courtesy of P.-T. Brun and A. Damiano).

confined to an even narrower band and reversed reflection occurs at a lower memory,
specifically for γ /γF = 0.981. Above this forcing amplitude, for a given Θi, different
reversed reflection angles can be obtained, suggesting chaotic reflection dynamics.
We note that this apparently chaotic dynamics may result from the chaotic vertical
dynamics arising for such a drop at high memory: the rightmost edge of the relevant
lower white segment in figure 1(c) lies within a chaotic bouncing regime.

We also examined the reflection of the larger droplet (D = 0.78 mm) at γ /γF =
0.950 and γ /γF = 0.990. At such high memories, however, it was again impossible
to measure the final angle of reflection Θr because the drop trajectories were still
curved at the limits of the experimental domain. For γ /γF = 0.990 and Θi 6 30◦, Θr

decreases dramatically, and at small Θi the drop loops around its own wave field in
the vicinity of the barrier and executes reversed reflection. Finally, we investigated the
reflection behaviour of a slow drop with diameter D= 0.71 mm at γ /γF = 0.900 and
γ /γF = 0.850. Here again, the trajectories are still slightly curved at the limit of the
experimental set-up, so it is not possible to measure Θr. However, we could ascertain
that the non-specularity is enhanced: larger values of Θr are obtained and lie in a
relatively narrow range.

We also investigated the influence of the fluid depth h1 above the barrier by
exploring the behaviour at h1= 0.04± 0.03 mm and h1= 0.81± 0.03 mm. Reflection
maintains the feature of non-specularity with Θr ≈ 70◦. A slight decrease of Θr with
the drop free speed was apparent, as was the case when h1 = 0.42 mm.

3. Theoretical modelling

Recently, a reduced model that captures many features observed in experiments has
been developed by Faria (2016). Its key feature is that it incorporates the dependence
of wave speed on fluid depth in a simple way, and so enables the treatment of
walker–boundary interactions. This model builds upon that of Milewski et al. (2015)
by making the simplifying assumption that the waves are monochromatic; therefore,
only waves with Faraday frequency need be considered.
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For completeness, we recall the governing equations of Milewski et al. (2015)
which, when extended to a bath of finite depth, are given by:

1φ = 0, for − h(x)6 z 6 0, (3.1)
∇φ · n= 0, for z=−h(x), (3.2)

φt =−g(t)η+ 2ν∗∇2
⊥φ +

σ

ρ
∇2
⊥η−

1
ρ

PD(x− xp(t), t), for z= 0, (3.3)

ηt = φz + 2ν∗∇2
⊥η, for z= 0, (3.4)

where φ and η denote the velocity potential and the free-surface displacement,
respectively. g(t) = g0(1 + γ /g0 cos ωt) is the gravitational acceleration in the bath’s
frame of reference, PD denotes the pressure exerted by the drop, xp denotes the
drop’s horizontal position, h(x) denotes the bottom topography, ν∗ is the effective
viscosity and n is the unit vector normal to the bottom surface. ∇⊥ = (∂x, ∂y)

denotes the horizontal gradient. The key modification made by Faria (2016) is
replacing φz in (3.4) by −∇⊥ · (h̄∇⊥φ), where h̄ is an effective depth chosen to
model correctly waves with the Faraday frequency. Over regions of constant depth,
F [φz(x, 0, t)] = k tanh (kh)F [φ(x, 0, t)], where F denotes the Fourier transform
in (x, y). Consequently, in order for the approximation of Faria (2016) to correctly
model the wavenumber kF over a depth h, the effective depth h̄ must be

h̄= tanh kFh
kF

. (3.5)

In the reflection experiments, we have

h=
{

h0 for x< 0,
h1 for x> 0.

(3.6)

The effective depth is then given by

h̄=
{

tanh(kF0h0)/kF0 for x< 0,
tanh(kF1h1)/kF1 for x> 0,

(3.7)

where kF0 and kF1 denote the Faraday wavenumber in the deep and shallow regions,
respectively. The phase speed of surface waves in the two regions of the bath of depth
h0 and h1 is then recovered.

The horizontal motion of the walker is governed by Molacek & Bush (2013b)

m
d2xp

dt2
+
(

c4

√
ρR
σ

F(t)+ 6πRµair

)
dxp

dt
=−F(t)∇η|x=xp, (3.8)

where F(t) denotes the reaction force exerted on the drop by the fluid, R is the
drop radius, m is the drop mass, µair is the viscosity of air, and c4 the tangential
coefficient of restitution, which was measured and reported in Molacek & Bush
(2013b). Assuming a resonant walker in the (2, 1)2 mode (see figure 1c), the drop
impacting the surface periodically at ti = nTF, and that the contact time is short
relative to the Faraday period, it can be shown (Faria 2016) that the reaction force
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is F(t) = mg
∑∞

n=0 δ(t/TF + n). Finally, the penetration depth of the drop (Milewski
et al. 2015) is assumed to be infinitesimally small relative to the Faraday wavelength,
so that we may write

PD = F(t)
λ2

F
δ

(
x− xp

λF

)
. (3.9)

The final model is then given by

φt =−g(t)η+ σ
ρ
∇2
⊥η+ 2ν∗∇2

⊥φ −
1
ρ

PD(x− xp(t), t), (3.10)

ηt =−∇⊥ · (h̄∇⊥φ)+ 2ν∗∇2
⊥η, (3.11)

with PD given by (3.9), the local depth computed from (3.5), and the drop motion
governed by (3.8).

We perform numerical simulations with the parameters used in our experiments.
As we do not model the vertical dynamics, the phase of impact ϕ is determined by
requiring that the drop speed in free space correspond to that observed in experiments
(Oza, Rosales & Bush 2013). We choose the coefficient of restitution c4 = 0.17, as
suggested by Molacek & Bush (2013a) for silicone oil of viscosity 20 cSt and forcing
frequency 80 Hz. Finally, following Milewski et al. (2015) and Blanchette (2016) we
use an effective viscosity ν∗ = 0.8025ν in order to match the value of the Faraday
threshold γF observed in experiments.

As in our experiments, the simulated walker–boundary interaction has three stages,
as depicted in figure 6(d–f ). Far from the wall, the walker moves as if in free space.
As it approaches the wall, the droplet is attracted by the wall and its trajectory
deviated accordingly. The perturbed wave field then diverts its path, causing it to turn
around. The drop is then attracted to the wall again as it moves away from it, but
eventually converges to a constant angle Θr. The simulated wave field is compared in
figure 6 to the experimental wave field obtained by surface reconstruction (Damiano
et al. 2016).

Quantitative comparison between the experimental and theoretical ‘reflection laws’
shows excellent agreement for γ /γF = 0.900 (figure 3c). In the simulations, we
varied the incoming angle from 4◦ to 80◦. The theoretically predicted reflection is
also non-specular with Θr ∈ [61◦, 84◦] and the observed dependence of Θr on Θi is
successfully recovered. The upward shift in Θr for γ /γF = 0.850 is also recovered,
but the predicted Θr is slightly larger than that observed. This small difference might
presumably be attributed to uncertainties in the drop diameter and bouncing phase,
that are used as inputs for the numerical simulations.

Comparing observed and simulated trajectories for the fast drop (D = 0.78 mm)
shows a good qualitative agreement at different memories (figure 4a). In particular, the
reflected trajectories are well captured and tend to the same final angle of reflection
Θr. The main difference between the two is in the incident phase, where the attraction
of the drop to the barrier is less pronounced in the simulations. For the smaller drop
with D= 0.75 mm, the comparison of trajectories also shows a good agreement at low
memory (figure 5a). However, differences arise at high memory, where the theoretical
model fails to capture the observed complex trajectories, including the loop that leads
to reversed reflection (figure 5b). The observed looping and reversed reflection only
arise in the simulations for an even smaller drop or smaller angle of incidence. This
difference may be due to the model assumption of constant bouncing phase, which
is known to break down for small drops at high memory (see figure 1c) and is also
questionable in the vicinity of the barrier.
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4. Discussion and conclusion

The reflection of walking droplets from a planar barrier is non-specular: the
reflection angle Θr differs from the incidence angle Θi and is typically in the range
60◦ <Θr < 80◦. The reflection behaviour is weakly dependent on system parameters
such as the forcing amplitude γ /γF, the liquid depth h1 above the barrier, the drop
diameter D and speed v. The non-specular reflection has been faithfully captured by a
reduced theoretical model that treats the boundaries as zones of reduced wave speed.
Despite the relative simplicity of the model, its predictions are in good agreement
with the experimental results. Trajectories are reliably reproduced except at extremely
high memory, where reversed reflection events arise in the model only for relatively
small drops and low Θi. This difference may well result from shifts in bouncing
phase experienced by the walkers close to the barrier, that are not taken into account
by the model.

Non-specular reflection indicates that the walker momentum in the ŷ-direction,
parallel to the wall, is not conserved. In our system, figure 3(c) indicates that this
y-momentum component is always increased by the walker–wall interaction. This
increase may be rationalized in terms of the reduced models of walker dynamics
developed by Bush et al. (2014) and Labousse & Perrard (2014), both of which
demonstrate that the walker behaves like a Rayleigh oscillator. Specifically, the wave
force acts to restore the walker to its free walking speed, v0, acting as a drag if the
drop speed v > v0, and a propulsive force if v < v0. The trajectory equation developed
by Bush et al. (2014) takes the form

d
dt

p=D(v)v + F, (4.1)

where p = γBmv is the walker momentum, γB(v) is the hydrodynamic boost factor
associated with the effective added mass of the walker’s wave field, F is an external
applied force and D(v) is the speed-dependent restoring wave force factor with
the key feature that D(v) > 0 if v < v0 and D(v) < 0 if v > v0. Assuming that
the barrier imparts a force only in the perpendicular x̂ direction, the change in
walker’s y-momentum over the course of the reflection 1py =

∫∞
−∞ D(v)vy dt. As is

evident in figure 6(g), the walker–wall interaction acts to slow the drop virtually
everywhere; consequently, D(v) > 0 along the bulk of the trajectory, and 1py is
positive definite. The walker is thus seen to acquire y-momentum by virtue of the
wave force propelling it forward along its slowed path. This perspective will be
broadened and made quantitative in an upcoming characterization of an effective
‘Snell’s law’ for walkers experiencing an arbitrary step change in fluid depth.
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