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Grain boundary pinning and glassy dynamics in stripe phases
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We study numerically and analytically the coarsening of stripe phases in two spatial dimensions, and show
that transient configurations do not achieve long ranged orientational order but rather evolve into glassy
configurations with very slow dynamics. In the absence of thermal fluctuations, defects such as grain bound-
aries become pinned in an effective periodic potential that is induced by the underlying periodicity of the stripe
pattern itself. Pinning arises without quenched disorder from the nonadiabatic coupling between the slowly
varying envelope of the order parameter around a defect, and its fast variation over the stripe wavelength. The
characteristic size of ordered domains asymptotes to a finite %Iﬂaoe’l’zexpda|/ﬁ), wheree<1 is the
dimensionless distance away from threshalglthe stripe wavelength, arada constant of order unity. Random
fluctuations allow defect motion to resume until a new characteristic scale is reached, function of the intensity
of the fluctuations. We finally discuss the relationship between defect pinning and the coarsening laws obtained
in the intermediate time regime.
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I. INTRODUCTION case, with the extent of the defect core as well.
Far enough from the bifurcation threshold of the modu-
The motion of topological defects in two dimensional lated phase, the separation between slow and fast scales no
smectic phases is studied at a finite distance from thresholdbnger holds, and corrections to the amplitude equations ap-
We focus on the Swift-Hohenberg model of RayleighBel  pear because of the coupling between both scales. These cor-
convection and related amplitude equations to address thections are generically referred to as nonadiabatic effects.
role that nonadiabatic effects play in domain coarsening of @ne manifestation of nonadiabaticity is that a defect that
modulated phase, defect pinning, and the appearance @fould be expected to move at constant velocity from an
glassy behavior. amplitude equation analysis may instead remain immobile or
Topological defects are often the longest lived modes of ginned[21-23. We argue below that nonadiabatic effects
nonequilibrium system, with their motion determining the and defect pinning have important consequences for domain
longest relaxation times of the structure. Phenomenologicatoarsening of modulated phases in two dimensions, and are
models of defect motion that are based on a mesoscopic deesponsible for the formation of glassy configurations.
scription have been known for some tirflg2]. Such a de- Our results complement recent research on glassy proper-
scription, valid for distances much larger than the defecties of stripe phases. It has been suggested that systems in
core, typically involves time-dependent Ginzburg-Landauwhich long ranged order is frustrated by repulsive interac-
equations or their generalizations. A few cases have beetions (the latter often leading to the formation of stripe
studied extensively, including domain coarseningd(N) phases or other patterns in equilibriumay in fact exhibit
models[3,4], in nematics[5—-8], and in smectic phases as the properties of structural glasses. An example are the
effectively encountered in models of Rayleighred con-  glassy states, recently, observed in doped semiconductors in
vection or lamellar phases of block copolymégs-15]. In  a stripe phas¢24]. Coarse grained models with competing
the case of modulated phases, the motion of a single defeftiteractions of the type used hefand also used to study
has been widely studied within the well-known amplitude block copolymer melts in lamellar phagdsave been rein-
equation formalism. This method describes the spatiotemparoduced to describe the formation of glasses in supercooled
ral evolution of the envelope of a base periodic or modulatediquids [25]. Additional equilibrium studies of the same mod-
structure [16—-20. The amplitude equation description is els in three dimensions based on replica calculatj@é$ or
valid only close to bifurcation points where the spatial scaleMonte Carlo simulationg27] have been used to argue for the
of variation of the amplitudes is large or “slow” compared existence of an equilibrium glass transition. Structural
with the “fast” period of the base pattern and, in the presentglasses form spontaneously at low temperature without the
presence of any quenched disorder, and their properties re-
main, in general, poorly understood. It is noteworthy that
*Present address: Instituto désién, Universidad Nacional Au- coarse grained models exhibiting glassy behavior in the ab-
tonoma de Meico, Apartado Postal 20-364, 01000 Meo D.F.,  sence of disorder are rare, whereas examples of discrete sys-
Mexico. tems are knowrie.g., Ising models with next-nearest-neigh-
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bor interaction$28,29). We present here vo-dimensional  systems that order in uniform phases of broken symmetry
study that indicates a dynamical route to the formation 0f32,33. However, the determination afhas been problem-
glassy configurations in stripe phases. atic for stripe phases. Its value appears to depend on the
We first analyze the motion of a particular type of defect,quench deptlithe value ofe), whether or not fluctuations are
namely, a grain boundary separating two domains of differincluded in the governing equations, on the thermal history
ently oriented stripes. Earlier asymptotic work near onseff the system, and on the particular linear scale analyzed.
(i.e., in the limite— 0, wheree is the dimensionless distance ~ Recent work in the limitt—0 showed that coarsening is
away from thresholdis extended to the region of small but self-similar and thaz=3 [15]. The valuez=3 in that limit
finite e. In Sec. Il, grain boundaries are shown to move in arcan be justified by a dimensional analysis of the law of grain
effective periodic potential of wavelengity/2 (where), is ~ boundary motion. We focus here on the case of fiitén
the periodicity of the stripe modulatiprand of magnitude practicee=0.1 for the Swift-Hohenberg modelnd report a
that increases very quickly with. Grain boundaries asymp- slowing down of phase ordering dynamics with increasing
totically pin as the driving force for grain boundary motion in agreement with the literature. We attribute this behavior to
decreases. It is argued that for any finiean infinite size  partial pinning of defects that becomes increasingly impor-
system will not achieve macroscopic long range order dytant at long times as the driving force for coarsening de-
namically following a quench. Rather, the characteristic size&reases. At even longer times, coarsening stops altogether
of a domain will not exceed typical vallR, that is propor- and the system reaches a glassy state as the linear scale of the
tional to\, e~ “%exp(al/\e), wherea is a constant of order Structure reaches the critical valég(e) computed in Sec.
unity. II. When random fluctuations are incorporated in the model,
In Sec. IIl, we incorporate the effect of random fluctua-We show that, sufficiently close to onset, the valuez oé-
tions and derive the corresponding amplitude equations valifnains independent of the intensity of the fluctuations, thus
for fluctuations of small amplitude. The asymptotic motion Verifying the universality implied in the self-similarity hy-
of a grain boundary can be recast as an escape prob|em mtheSiS in that region. At Iarg&’r, we find that fluctuations
which the effective activation barrier is seen to be propor-2ccelerate ordering kinetics, also in agreement with the lit-
tional to the grain boundary perimeter. erature, and that, as expected, defect motion is allowed be-
Our approach must be considered only qualitative in nayond the scale given bR, . At even later times the system
ture because of the scope of the description employedrders very slowly, possibly logarithmically in time.
Ginzburg-Landau equations, and more generally amplitude
or order parameter equatiofsf which the Swift-Hohenberg [l. NONADIABATIC CORRECTIONS AND GRAIN
model described below is but one examplare only BOUNDARY PINNING
asymptotic, large length scale approximations to the physical

system they model in the immediate vicinity of a bifurcation | We consider the Swift-Hohenberg model of Rayleigh-

point. Therefore, any short scale phenomena involved in th (tangrd r(]:onve(_:l%or[34] as a p:rototylpt)lcal mod?I gft? :nOdl;]'
description of nonadiabatic corrections clearly falls beyon ated phase. The numerical results presented below have

their range of validity, at least in a systematically quantifiable een obtained from a direct numerical solution of the model.

way. It is nevertheless not unreasonable to expect that non;--hse ggglztlcarne]slt_;:tsdeon thet_other h daﬂd’ follow from tr;e dc'?r-b
diabatic effects of the sort encountered in order parameterlse ponding amplitude equation, and nence are expected to be
f somewhat wider generality. The model equation studied

equations will also occur in the physical systems that the .
model. Furthermore, our results also provide insights into ere1s
many existing numerical studies of these order parameter
: Ay 1

models, as described below. — = e — (KE+V2)2y— 3, (1)

In Sec. IV, we address the consequences of pinning on the ot kd
domain coarsening that occurs in the intermediate time re-
gime following the quench. This subject has been the focusvhere ¢ is a dimensionless order parameter related to the
of several numerical studigd0—15 and, more recently, of vertical fluid velocity at the midplane of a Rayleigh+Bed
experimental studies in block copolymer thin filf80] and  convection cell, e is the reduced Rayleigh numbenR (
in electroconvection in nemati¢81]. The results of Secs. Il —R.)/R.<1 (R, is the critical Rayleigh number for insta-
and Il provide a possible interpretation of conflicting resultsbility ), andke=27/\ is the roll wave numbefin Appendix
in the literature. Previous studies of this probl¢i®—15 A we outline the connection between this model and other
addressed the existence of self-similarity during domaircoarse-grained models with long range repulsive interactions
coarsening and attempted to quantify the time dependence £85)).
the linear scale of the coarsening structure. The statistical For 0<e<1, the leading order approximation to the sta-
self-similarity hypothesis asserts that after a possible trantionary solution of Eq(1) is a sinusoidal function of wave
sient, consecutive configurations of the coarsening structureumberk,. We focus in this section on a configuration that
are geometrically similar in a statistical sense. As a conseeontains an isolated grain boundary separating two such sta-
qguence, any linear scale of the structyesg., the average tionary solutions with mutually perpendicular wave vectors
size of a domain or grain of like oriented stripésexpected  (Fig. 1). The reason for studying this perpendicular orienta-
to grow as a power law of timg(t)~t¥?, with z a charac- tion is the expectation that a 90° grain boundary is that of
teristic exponent. Self-similarity is a well-known feature in lowest energy, and hence the prevalent boundary angle in an
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these amplitudes and the phases of the stripes. This coupling
becomes significant at a finite value ef and hence when
there is a large but finite separation between the scales

T2r/ko {Xag.Yag} and{x,y}. We follow an approach similar to
that used in Ref[23] to study the motion of a planar front

N between a hexagonal and a uniform phase, or between a

B q hexagonal and a stripe phase. The first step is a multiscale

analysis, and is standafd6]. Equation(1) is expanded in
power series ok, as well as the solutiogr= €2, ;,+ eify
+ €¥ysgp+ - - -. The leading order solutioa'?y,,, is given
by Eg. (2). At order €2, the solvability conditions for the
existence of a nontrivial solution fag;,, yield the relations
YhatA andB must satisfy,

FIG. 1. Schematic grain boundary configuration separating twi
domains of stripesA and B of the same periodicity |Ko| = |k
|=ko). The stripes of domaii are weakly curved by a transverse
modulation of wave numbeg<<k,. X, represents the magnitude J’XHO

of the phase modulation. «

_ , y+)\0 _ , s ’
Ao dx Jy No Y [L(1) — Yile o =0,
o 4
extended system that evolves spontaneously from an initially
disordered configuratiofsee, for example, Figs(8, 3(b)]. N N
It is known that a planar grain boundary separating two re- JX 00 -1 ,Jy Oy 14\ 3 7a-ikoy' —

. ) ! ) Ao Tdx No dy'[L - e '¥o¥' =0,
gions of uniformk, is stationary19,20. However, we found x 0 y o AY'TL(Y1) ~ ¥
in Ref.[36] that a slightly perturbed boundary undergoes a (5)
net translation with a speed that is a function of the curvature
of the rolls ahead of it. We address in this section the exten- ith the linear operatoL.= 1—f7T—k64(f9>2< +(9$ +20,9y
sion of the asymptotic results given in that reference to smal o - A B
but finite e, and show how corrections obtained lead to 2% dx,)%. In the limit e—0 the functionsA andB remain

boundary pinning. constant over one spatial periag, and therefore, the only
Near threshold, a 90° grain boundary configuration is arnonvanishing contribL_Jtion to the_ integrals come from the
approximate solution of E¢1) of the form terms proportional t@'*o*’ (resp.e’*®') within brackets in

) , Eq. (4) [resp. Eq.(5)]. This standard set of coupled
Y%y, 1) =3[A(Xa,Ya, T)E X +B(Xg,Yg, T)E"Y+cc],  Ginzburg-Landau equations followd6,19. It is known,

) however, that additional nonperturbative contributions aris-
mg from the term:,bl,2 appear in Eqs(4) and (5). We focus
next on these contribution and their effect on the relaxation
of a slightly perturbed grain boundary.

Xa= €Y%, Ya=ey: Xg=el, Yp=e'y:; T=et. Integrals of the typef: “°dx’ e™X'A"BP in Egs. (4)
(3 and(5) (wherem, n, andp are integerswill not integrate to
zero if the thickness of the grain boundary profiles along the
(The coordinatex is directed along the normal to the refer- x direction is finite.(Contributions from the direction trans-
ence planar boundajy. verse to the grain boundarj'/y Mgy’ eMkey' APBP, will be

We recall first some known results for a planar and Staneglected They are typ|cally of the order B?aiA and,

tlonary' grain bOP”d’?‘W in the limi¢—0, a case that was hence, always smaller than the leading analytical terms of
extensively studied in Ref§19,20. The stationary ampli-

tudes{A,,Bo} are a function only ok. Ay, the amplitude of ~the amplitude equationsTerms proportional t@'mko).( will

the rolls parallel to the interface, vanishes as myp(\,)  contribute to Eq(4), and terms proportional to elimkox’
whenx— —c, and saturates to @3)"%anhiy/e/\o) when +|k0y] to Eq. (5). If we only retain the Iowestaorder term
Xx— + 0. The behavior of the amplitude of the rolls perpen- €y as given by Eq(2), we find that onlyA® (m=3)
dicular to the interface is slightly differentBg(x)  Contributes to Eq4), while 3A%B (m=2), as well as 3°B

— (4€l3)?xexpiyel £&5) whenx— —o and there exists a (m=—2, with A the complex conjugate ok), to Eq. (5).
location x* such thatBy(x>x*)=0 to a good approxima- Reintroducing the original unscaled variables, the general-
tion. Hence, the grain boundary region has a thickness prdzed amplitude equations read

portional to/+/e. It is important to note that at smadlthe
location of the grain boundary decouples from the phase of

where slow variables are denoted by capital letters and are
defined a§19,20

OA  SFg, L1 [xho

the stripes of domai\. Thus, the configuration obtained is %~ dx’
invariant under any translation of the grain boundary by a at A 4AN3)x
distancex, (the phase of the stripes remaining unchanged o
We next derive two coupled equations for the amplitudes % fy Ody’ AS(X/'y/’t)eizkox’, (6)
A andB that take into account the possible coupling between y
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9B SFg 3 [xTho ,fyﬂo
at 5B 4n2)x

dy D(o- [ ax(aA)+ (3807, (3
y

X[AZBeiZKOX’+KZBe*i2kOX’], (7) 3 [
) p(e)= max[ 7] dx A(X) 9, Ag(X)cog 2KoXx + 6)
where Fq,=[drFy, is the standard Lyapunov functional 4 o
corresponding to the 90° grain boundary. Its variational de-

L . 3 (=
rivatives satisfy{19,20) +35 dX[2A¢B3dxAg+ A3BodxBo]
— 4 L)% 3, L, 3 .
—5ng/5A— 6A+k_§ (9X—2—ko¢9y A—Z|A| A—§|B| A, X cog 2KoX+ 0) | . (14)

®)

2 3 3 Equation(12) without the oscillatory term was derived in
(9)2() B— —|B|?B— =|A|?B. Ref. [36] in the limit e—0. The coefficientD(€), with di-
4 2 mensions of an inverse length, represents a friction term that
(9 depends on the static grain boundary profite ,B,}, while

. . . the term 2 in the numerator is proportional to
The last terms in the right-hand sides of E¢S) and (7) Lyl T E_Koo ! _F _u_oc /L ! hp F;,__ I th
depend on both fast and slow spatial scales, and they embo Y[ Fgo(x= ,y). .gb().(_. ,y)] » WHETE Jogp 1S INE
thepso-called nonadiabatic coup ling between the tvzo An _P?ee energy density implicitly defined by Eq) and (9).
. piing 0. AN&he humerator can be understood as the leading contribution
lyzing the effects of these two terms on the relaxation of a.

perturbed grain boundary is the subject of the remainder obn € and ) _from an external force acting on Fhe grain
this section oundary. This force results from the difference in the free

We now introduce a small perturbation to the planarenergy densitysq, between curved stripes on one side, and

boundary as shown schematically in Fig. 1. The phase of thgtraught stripes on the other side of the boundary. Note the

stripes of domairA is distorted by a uniform perturbation of Unusual dependence xf,, on a even power of the curvature
wave numberg<k, (and of amplitudedx,<\,) in the di-  thus indicating that the motion of the grain boundary is such
rection transverse to the stripes. As shown in [R26], ap- that curved parallel rolls of higher energy are always re-

- 4
~OFgy/B=eB .,
0

[
(9y—2—k0

proximate solutions to Eq$6) and (7) are given by placed by straight perpendicular rolls. _
The last term in the right-hand side of E@L2) is the
A=Ag[x—Xgp(t) ]exgikodxocogqy)], (100  dominant contribution arising from the nonadiabatic terms of
Egs.(6) and (7). The dimensionlessgjuantity p(e) plays the
B=Bo[X—Xgn(1)], (11)  role of the amplitude of a periodic potential of periag/2

within which the grain boundary moves. The major contri-
where x4,(t) represents the time-dependent position of thebution top(e) comes from the integral that contains the term
grain boundary(averaged ovey). As already discussed in 4,B, in Eq. (14) since the profileBy(x) has a steeper varia-
that reference, perturbations to the phas@®aire of higher tion thanAy(x) [19]. Given that both amplitudes, andB,
order ine. In order to derive a law of motion faxy, it is  are approximately of the form/ef(\ex/\o), it is easy to
simpler to neglect the linear relaxation of the perturbed rollsshow from Eq.(14) that
and hence, assume théit, is constant. The amplitudéx,
relaxes exponentially with time but the relaxation time of the
perturbation is proportional tq~* and usually much longer
than the characteristic time associated with grain boundary _ _ _
motion, )\Olkgb- Furthermore, as was shown in RE86), where|a| is a constant of order unity, corresponding to the

explicitly considering stripe relaxation does not change theploIe of the enviloEes closest tolth_e rﬁal axis glthedcpmplex
law of motion forxgy, in any quantitative way. plane. Hencep behaves nonanalytically at smai and in-

Multiply Eq. (6) [resp. Eq(7)] by J;A (respectivelys;B), gﬁtis‘\e/\fereeXtiggqoerlt)édqlﬁ]Ckgeggg Z%U?o“:ag\r?;lyd%n;:’llzzofal
add the results and integrate the real part over the SYStefnts between conductive and éonvective states, or between
area. By using Eq$10) and(11) and integrating by parts the different convective states '
nonadiabatic terms, we obtain the following law of motion j

for the grain boundary,

p(6)~62e7‘“‘/“‘?, (15)

Equation (12) shows that for any finitee>0 a planar
grain boundary £=0) can have only two stationary posi-
tions per period of the stripe pattexg. This effect had been
¢ 2 p(e) 08 2koXap + ) (12  ©observed numerically and reported in R6], with similar

3k3D(e€) D(e) 0%gb ™ T findings also given in Ref20]. Equation(12) also implies
that there exists a critical curvatukg below which the grain
wherex= 6x,0? is proportional to the mean curvature of the boundary will remain immobile. This critical curvature is
stripes of domaimA, ¢ is a constant phase, and given by,

ng
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(a)

= =
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=
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(b)

FIG. 2. Glassy configurations obtained by numerical solution of FIG. 3. (a) Near stationary configuration obtained after a quench
the Swift-Hohenberg model with random initial conditions. Dimen- at e=0.4 and in the absence of fluctuatidhs 0 (the time shown is
sionless times shown af@) t=10000 and(b) t=20000. Heree t=2.3x10°, and the system size includes 512ode$. (b) New

=0.5 and the system has Z56rid nodes. structure obtained after taking the configuration showfajras an
initial condition and further integrating the model equations with
1 3p(e) |2 F=0.00 318 for a period of fatime units. At this time, any bound-
Kg=g =Kol — ) (16 ary motion is very slow.
g

whereRy is the associated radius of curvature that divergegondition for ¢ is a white and Gaussian random field with

nonanalytically near onsg¢see Fig. §)] zero average and varian¢g?) = e. Typical long time con-
figurations that are stationary for all practical purposes are

R e V2ex ﬂ 17 shown in Figs. 2a) and 2b). These figures _show _the fi_el/zl
g =0 2\e/’ in gray scale. Many topological defects including disloca-

tions, +1/2 disclinations, and several 90° grain boundaries

These results have been verified by direct numerical soluean be identified. Figure 2 correspondsee 0.5 and two
tion of the Swift-Hohenberg model with reasonably smalldifferent timest=10* andt=2x 10, showing that the order
values of e. The numerical algorithm used has been de-parameter does not change beydrdl0*. Figure 3a) cor-
scribed in Refs[15,3€. Briefly, Eq. (1) is discretized on a responds toe=0.4, and the configuration shown remains
square grid of mesh siz&x=1 with 512 nodes (256 for  practically constant beyonid= 2.3x 10°.
€=0.5), and the wavelength is set d=8Ax. A semi- To further quantify these observations we have computed
implicit spectral method is used to iterate in time. The initialthe probability distribution function of stripe curvatures

046119-5



DENIS BOYER AND JORGE VIMLS PHYSICAL REVIEW E 65 046119

8 T T T T T T T T T 10000 T T T T T T
- 1000 £ E
] Rg/Ao 100} .
4 10 £ 4
1 1 1 1 1 1 L
7 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
(@)
4 14
12 - B
7 10 B
P(0,00) st i
] 42(Rg/)\0) 6 b
4 . -
1 2t 1
0 1 1 1 1 1
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FIG. 4. Probability distribution function of stripe curvatures, L . L .
P(x,t), after a quench at=0.5 (dotted lines and e=0.4 (solid FIG. 5. Characteristic asymptotic grain size following a quench

lines), averaged over 10 and 6 independent runs, respectively. FGtS @ function ofe. (2) Estimate given by Eq(16). (b) Numerical
€=0.5 the figure shows the curves obtained at tiheg0*, 5  value of P(k=0t=c) (symbolg compared also with Eq(16)
x10%, and 16, and fore=0.4 at timest=6x10%, 1.2x 1¢°, and multiplied by one fitted scale factgsolid line).

2.3x10°.

defected configuration of stripes does not macroscopically
order following a quench to a finite value ef Asymptotic

long time configurations appear to exhibit a labyrinthic and
partially disordered structure with many immobile defects
that do not anneal away. These disordered configurations re-

ing method described in RdfL5]. Figure 4 shows our results Iserlrgtile those of adst([[ucturlalt.glasls at zgrot t?mp;i??\;ure that
for e=0.4 ande=0.5. In both cases the distribution con- 2cK '0Ng range ordeftransiational or orientational Iney
h become spontaneously trapped in metastable configurations

verges at long times towards a limiting curve of finite width, hat are very different from the configuration of lowest free
thus indicating that asymptotic configurations contain man Y 9 . L
energy (all stripes parallel to each other, or a “crystalline

curved stripes and are disordered at large or “glassy” scales;

This behavior is to be contrasted with that of a coarsenin aN : t all arain boundaries i | i " 90°
system i whictP (i) would approach & function at ., s.rie< Vo vever. we expect that grain boundaries with a
k=0. We takeP(k=0t—x) as a measure of the linear : ’ P 9

; S . different orientation would be pinned less efficieniiye.,
scale of the structure or typical domain size and compare |tgI . ! i
value with the pinning radiu®, given in Eq.(16). Figure would have a higher value ¢&] in Eq. (15]. The reason is

5(b) shows the numerical results together wRp multiplied ghoit t?g!;séit'?%i? p;r:ja;hrgg;loerels i?ﬁ;{;h:g;?:g%gi:;?e
by a (fitted) scale factor approximately equal to 4. The pin- ox egc]:teld 0 l;Je we;’ker ' ! !
ning radiusRy increases extremely quickly with decreasing P :

€, in agreement with the numerical calculations for the rang% Ox]veafrgdaltlg Z)nneemlt?c?tr:h:gizlafbg(t)itcrfaﬁgdngﬁ21 d{?;?:)z;(i)cf tse Tma! will
of €, we can study(computational constraints on system b ’

. : o . contain higher-order analytic corrections that we have not
sizes have prevented us from investigating the region

<0.30). We have checked that the glassy configurations é;[alculated.

long times do not result from numerical pinning; the results

are not modified when the grid spacing is halvedA® I1l. MOTION AT FINITE TEMPERATURE
=\o/16.

Aolthough other types of defectée.qg., dislocations and Given the results of Sec. Il, it is natural to study the effect
+1/2 disclinations may also become pinned, and thus con-0f random fluctuations added to E(f). Small amplitude
tribute to the overall stability of glassy configurations, thefluctuations will allow activated motion of grain boundaries,
predominance of grain boundaries over other defects seen®d in general, unpinning. We consider in this section the
to be a generic feature of the Swift-Hohenberg mdaele  Stochastic Swift-Hohenberg model
Figs. Qa), 2(b), 3(a), 3(b), and Ref[15]]. Furthermore it is

P(k,t). The stripe curvature is defined &s|V - n|, wheren
is the unit normal to the lines of constapt The curvaturec
is a slowly varying quantity away from defect cores, and
only these regions are used to compBiec,t) by the filter-

likely that a similar dependence between the speed of the o 1 R
defect ande will hold for the motion of other topological it — (K5+ V22— g3+ (1 1), (18)
defects(except for dislocation climb Hence, we argue that a Ko
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where is a Gaussian and white random noise of zero mean g SFgqp 3 [**+ho
and variance —=——=-— dx’
at 6B 4n3)x
r)p(r t))y=2F8(r—r")s(t—t’). 19 y ot o
<7]( )77( )> ( ) ( ) ( ) < jy Odyr[AZBeIZKOX +AZBe*I2k0X ]+ NG .-
The noise intensity- is proportional to thgdimensionless (22)

temperature according to the fluctuation-dissipation theorem.
In what follows, F and e are considered as independent pa- We can now estimate the escape rate of a grain boundary
rameters, although they might be related in some particulagver the potential barrier of E¢12). In order to do so, we
physical systems. The stochastic Swift-Hohenberg model haseed to estimate the projection of the noise intensity in Egs.
been used to study hydrodynamic fluctuations near onset @21) and(22) on the coordinateg(t) implicitly defined by
Rayleigh-Baard convectior{37], and thermal fluctuations Eqs.(10) and(11). A rough estimate that is sufficient for our
of molecular origin in lamellar phases of diblock copolymerspurposes can be obtained by using Ed$) and(11) as the
[38]. trial solution of Egs.(21) and (22). Focusing onxy;, alone

The stationary states of E(L8) in two spatial dimensions ignores possible boundary broadening because of fluctua-
have been studied in Reffl1,39. Above a critical noise tions, or roughening. Both phenomena will be important for
intensity F. (that depends or), the system is disordered grain boundary motion above the pinning point, but their
(lacks both translational and orientational long ranged order contribution is probably less important in the immediate vi-
Below F a stripe phase with long ranged orientational ordercinity of the pinning transition. By substituting Eq4.0) and
but no translational order was found. OnlyFat=0 the sys-  (11) into Egs.(21) and(22), we find
tem was seen to exhibit both translational and orientational
long ranged order. In what follows we focus on defect dy- : € , ble) ~
namics in the range @F <F., so that the local stripe pat- Xab= 22 )K - D(E)COS(Zkngb+ $)+n, (23
tern is not very distorted. oD(e

We first derive the stochastic amplitude equations for a . ~ _ . . o
90° grain boundary. Following Grahaf#0], we approxi- with 7 a (rea) random white Gaussian noise satisfying,
mate the effect of the noise on the amplitudes by projecting it

along the two slow modes of the deterministic equation and (m=0, (m(t)n(t"))=2F"5(t-t"),
neglecting any contribution arising from couplings and reso- L
nances between noise and fast variapfds42. We start by F'=F/[2D(€)Rgpl, (24)

writing the random function as, whereRy;, is the grain boundary perimeter. As expected, the

R o o intensity of the fluctuations on the global coordinatg is
(X, 1) =2[ €% Pa(Xa, YA, T) + €KV 9a(Xg,Yg, T)+c.C], proportional to 1Ry,. Equation(23) is a straightforward
(20) generalization of Eq(12), and is formally analogous to the
equation that describes the one-dimensional motion of a

where the slow variableX(Y) , s are given by Eq(3), and Brownian particle in a periodic potential of amplitude
’ 2p(e)/[2D(€)ko].

7;A and?}B are two independent complex random processes

that satisfy the relations Equations(23) and (24) can be recast as
: koFo , (koFo) 1
7 7 p P P Xgb=| 5= | Rgk”— | 5= | €0 2KoXyp+
<77A>:<77B>:01 <77i>:<7]A7]B>=<7]A7]§>=0, gb ( 2D g9 2D Rg K 2ko gb )
1 E 1/2
(mama)=(mems)=2F 8(x—x") 8(t—t"). +E(R_gb) 3 (25

It is implicit in the decomposition that is small enough so The random termé is such that(¢)=0 and (£(t)£(t"))
that well-defined stripes exist locally. On the other halrd, =248(t—t'). We have also used E@16) to eliminatep(e)
has to be large enough so that and 7 are not negligible  from Ed.(23), and we have defined

in the solvability conditions at orde¢®? [43]. Given both

assumptions, Eq$6) and(7) straightforwardly generalize to F— 2e (26)
3R,
%: — 5Fjb — i Xﬂodxl Consider the situation where grain boundaries are pinned at
ot A 4n3)x F=0. Sincex<kg, the first term of the right-hand side of
Eqg. (25 is not dominant and the potential barrier that a
% fy”"dy,As(X,,y,'t)eiZkox'Jr;’A, (21) pinned defect of siz&;, has to overcome is of the order of
y Fo/Ry. The stochastic problem is now an escape problem
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over this potential barrier given the intensity of the noiseterm in the right-hand side of E§12) dominates. As coars-
term in Eq.(25). The Kramers rate of escape is given by  ening proceeds, the characteristic curvature decreases until it
reaches the critical valuey given by Eq.(16). At that point
Fo Rgp the typical velocity of a grain boundary vanishes, although
r~ex;{ T F R_g) @7 the system is still disordered. Therefore, one would expect
that coarsening would stop whé(t) is of the order ofR; .
Therefore, a noise intensity This is precisely the result shown in Figbb with only one
adjustable parametga scale factor relatingy given by Eq.
(16) to I(t) determined numerically from the distribution of
stripe curvaturels
When random fluctuations are consideféd>0 in Egs.
is required to unpin a grain boundary of lendRy, . (18) and (19)], some of the grain boundaries in a frozen
configuration are expected to resume motion. We argue that
the structure will continue coarsening until the average do-
main size reaches a new characteristic $jzeR, that can
be estimated as follows. We write a general phenomenologi-
We use here the results of Secs. Il and Il to provide acal evolution equation for the domain silfg) directly from
possible interpretation of conflicting results concerning do-Eg. (25):
main coarsening of stripe phases. We recently studied this

F _
=%~ Rypko tele Il (28)

F:R b
9 Rg

IV. SLOW COARSENING DYNAMICS: DEPENDENCE
ON TEMPERATURE AND QUENCH DEPTH

issue by numerically solving theoiselessSwift-Hohenberg ~ dl (koFo|Ry [KoFo| 1 1 [F\12
equation[Eq. (1)] in the limit e—0 [15]. Our numerical gt~ |\ 2D |2 | 2D R—gcos{2k0|+¢)+ DT &
results suggested that the characteristic scale of the structure (29)

(or the typical size of ordered domajrincreases as-?, with

z=3. That value of the exponent was interpreted to followwhere we have assumed that, prior to pinning, the various

from the dominant motion of grain boundaries through alength scales remain approximately proportional to each

background of curved stripes. In disordered configurationsother. Recall from Eq(27) thatF =F is required to unpin a

the curvature of stripes is set by a distribution of largelyconfiguration obtained in the absence of noise, for which

immobile + 1/2 disclinations. According to Eq12), the mo- Ry~ (t)~Ry. According to Eq.(29), coarsening proceeds

tion of grain boundaries is driven by stripe curvature, andf F>F, until a new characteristic pinning size is reached

acts to reduce the overall curvature by replacing regions ofiiven byFglg/(FRg)=1 or

curved stripes by straight ones of a different orientation. It B

also reduces the disclination density whenever their core re- F glal/ve

gion is swept by a moving grain boundary. In the linait |F=R9E0~k0F &2 (30

<1 we computed several measures of the linear scale, in-

cluding moments oP(«,t), moments of the structure factor After reaching the scalk:, domains are expected to coarsen

of the order parameter, and the average distance betweg@ry slowly by thermal activation. When a grain boundary

defects. They were all found to become proportional to eaclyvercomes one pinning barrier, the linear extent of the cor-

other, and to grow as a power law of time with an exponentesponding domain typically increases by an amount of order

1/3. No/2. Hencedl/dt~\qr, wherer is given by Eq.(27) with
Grain bOUndary motion as described in Sec. Il was used thb rep|aced by| Hence, domains are expected to grow

provide an interpretation for the valae=3. Since+ 1/2 dis-  |ogarithmically in time according to

clinations generate roughly axisymmetric patterns of stripes

around them, the characteristic stripe curvature in any given [(t)~FIn(t/F) for I>Ig. (31

configuration is proportional to the inverse characteristic dis- ) ) ) )

tance between disclinations. Under the self-similarity hy- A numerical solution of Eq(18) yields results qualita-

pothesis, the distance between disclinations is proportional thvely consistent with those presented above. Figuf@ 3

the grain sizd (t), hencex~ 1/(t). If grain boundaries are Shows a configuration of the order parameter figldbtained

the class of defect, the motion of which controls asymptotidor F=0 ande=0.4 starting from random initial conditions.

coarsening, then the coarsening exponent can be inferred By?€ configuration shown corresponds to very late times

dimensional analysis of E412). In the limit e—0, the os- =_2.3>< 10° at whi_ch point all defects are practically immo-
cillatory term in the right-hand side of E¢12) can be ne- bile, and domain growth has stopped. We then Bet
glected and we simply havel/dtcl =2 or I(t)~t¥3 in ~ =0.00318, and the integration is continued. The order pa-
agreement with the numerical solution of Ed). rameter configuratioh=10° time units later is shown in Fig.

Equation(12) shows that this result changes qualitatively3(b)- The average dpmain size has in_creased substa_ntially.
further from onset. As increases the pinning potential en- Many grain boundaries have a 90° orientatisuch as in
ergy barrierp(e) increases extremely fast, and important Fig- 3@], and roughening is limited or nonexistent. We have
corrections to scaling are to be expected. For firitand ~ determined the average domain sizéom tt‘e probability
short times many defects are present, therefore, the charadistribution function of the quantity= >+ (V ¢)2/k3. Fig-
teristic curvature of the stripes is very large, and the firsture 6 shows the probability distribution function correspond-
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5 — T T T T T T T increasingF has the opposite effect. For sufficiently small
45 L % 4 we find z=3 independent of the value & The two bottom
nl i curves correspond to systems that are close enough to onset,
and hence eitheRy or I is very large compared with the
3.5 - 7 linear size of the system. We show our results és+0.04
3L i (averaged over 40 independent ruasd fore=0.15 (aver-
(F)(C t) 05| | aged over 15 independent ryn§he solid line closest to
p ’ ) these two curves has a slope-ofl/3. The downward devia-
2r 7 tion from linearity at long times a¢=0.04 is a typical mani-
15 4 festation of finite size effectéhis long time behavior and its
b | dependence on the system size was studied in detail in Ref.
[15)]).
0.5 : 7 With increasinge and/or decreasing, pinning becomes
! TR — — more pronounced as evidenced the lower effective slopes of

0 02040608 1 1214 16 18 2  the three upper curves in Fig.(Be results are averages over
six independent runs, each curve corresponding to the same
C/Coo value e=0.4). The top curve corresponds to a system with-
FIG. 6. Probability distribution function of defined by Eq.  °Ut fluctuations for whictpq was computed with the method
(B1) with ¢ the solution of Eq(18) for F=0.00 636 ande=0.4. desgrlbed in Ref.15]. The dgnsny starts (_jecaymg roughly as
The dotted line corresponds to a single plane wave with superim@’ INVErse power law, with an effective exponent much
posed fluctuations, while the solid line correspond to disorderedmaller than—1/3 (the top solid line has a slope ef1/5),
configurations obtained from random initial conditiofat timest ~ and after a crossover saturates at long times indicating pin-
=5x10% 10%, and 10, respectively. ning. When small amplitude noise is addémirve below
denoted by diamondlsthe initial behavior is similar to that

ing to a perfectly ordered configuration, as well as to par°f F=0, and the decay rate also slows down considerably at
tially disordered configurations. The inverse linear scale 1/ Iong times{where we would predict logarithmic growth, i.e.,
proportional to the defect densify, is extracted from the P4~ 1/In(t)]. The curve below, denoted by plus signs, corre-
difference between these curves, as detailed in Appendix BPonds to a noise intensity three times larger than the previ-
As shown in Fig. 7 domain growth is very slow, possibly Ous case. Its initial decay is slightly fastér can be fitted
logarithmic, although a precise check of this behavior iswith an effective exponent 2/;;=—0.23 as shown with the
problematic. solid line in the figur¢ and the upwards deviations at long

Figure 8 displays the evolution of the defect dengijyt) times are less pronounced. This behavior is in qualitative
as a function of time, starting from random initial configura- agreement with the the expectation that defects overcome
tions. For reference we also show the c&se0. Increasing pinning barriers more readily at higher noise intensities and
the value ofe leads to smaller effective exponents, whereasinning is postponed to longer times whenl. However,

1.8 T T

L7 B

F =2x0.00318
1.6 |

15|

FIG. 7. Characteristic domain size as a func-
7 tion of time ate=0.4 andF#0 as indicated in
the figure. The initial condition at time=0 is a
glassy configuration obtained from a previous run
with F=0.

13

12

11

F =0.00318

1 1 1
10000 100000
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€=04,F=0 (&)
e=04, F=0.01¥* gog

e=04, F=0.03* (+) 1

Iy e=0.15, F = 0.0465/4(0) |
I\ €=10.04, F = 0.05¢%* (x)

FIG. 8. Defect density in arbitrary units as a
function of time for several values of and F.
The straight solid lines are guides to the eye with
slopes, from bottom to top,—0.33, —0.33,
—0.23, and—0.20.

pa(t)

100 1000 10000 100000

the effective initial decay is slower thanm ®, which we instead very similar to that of domain growth in random
interpret as a crossover effect resulting from nonadiabaticityfields in dimension larger than twi@4,45. There, domain

In summary, our results for largeare in agreement with walls separating magnetized domains are pinned by fixed
earlier numerical results performed et 0.25, showing that impurities and evolve by thermal activation to other more
coarsening laws are very slow and depend on the presence fefvorable configurations. The phenomenological pinning en-
thermal fluctuations. We argue here that a coarsening exp@rgy of a domain of siz& grows asY R?, were# depends on
nent can be properly determined only in the smalimit,  the problem considered, yielding an escape rate given by
where the phase ordering klngtlgs is self-similar. Our results_ exp(— YR?/ksT) equation that is formally analogous to Eq.
support that the exponeat=3 is independent oF for suf- (57 with 9=1. Two crucial differences are that our system
ficiently small e, when pinning effects are negligibleR{ s glassy even in two dimensions, and that defects do not
much larger than the linear size of the system need any disorder to become pinned.

The consequences of defect pinning on the intermediate
time regime corresponding to domain coarsening have also

We have shown that the Swift-Hohenberg model ofPeen investigated. A universal coarsening exponent can be
Rayleigh-Bmard convection exhibits glassy properties indetermined close to threshold only, where we obt&in3.
spatially extended systems. In the absence of fluctuation§;0arsening stops when the linear size of the system is larger
and following a parameter quench across threshold, randothan the characteristic domain size for pinning. In this situa-
initial configurations do not evolve into completely orderedtion, an intermediate crossover regime is anticipated with
states, a single plane-wave or crystalline state. Instead, thdgwer effective coarsening exponents, as is observed in nu-
reach disordered metastable configurations in which topomerical solutions of the model. Crossover effects induced by
logical defects, mainly grain boundaries and disclinationspinning can be reduced by either increasing the intensity of
fail to annihilate and remain with finite density. It appearsthe fluctuations or approaching threshold.
that the formation of these glassy configurations in a We note that some of our conclusions as well as our in-
quenched disorder-free system can be accounted for by thHerpretation of the numerical results are based on the analysis
finite separation between “fast” length scales of the structureof a particular type of defect, namely, a grain boundary sepa-
(associated with stripe periodicjtyand “slow” scales(asso- rating two domains with differently oriented stripes. We
ciated with the extent of defect envelopeSince at a finite think it is likely that similar nonadiabatic corrections to de-
distance from threshold the ratio between these two scales fect motion will appear for dislocation glide or disclination
finite, nonadiabatic effects lead systematically to defect pinmotion, leading to similar nonperturbative correctiong ito
ning in an infinite system. Fluctuations allow unpinning andthe speed of the defect.
a certain amount of “crystallization,” albeit through an as- We believe more generally that pinning through nonadia-
ymptotically slow activated motion of grain boundaries andbatic effects is likely to be a feature of a wide variety of
other defects. pattern forming systems, and is not limited to the particular

The present framework is far too simple to be used in thenodel treated here. Block copolymer melts, for instance,
prediction of a glass transition temperature, if such a transiprovide an interesting case in which the results obtained
tion exists. In some respects, the situation just described isould have practical implicatiorisee Appendix A for a sum-

V. CONCLUSIONS
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mary of the relevant equations and their relationship with thevhere., is the boundary condition at infinity. In most stud-
model studied hejeWe also mention here that results quali- ies, it is customary to sef..= (), the spatial average af
tatively similar to ours have been reported for a model withover the sample. We introduce the amplitulleof slightly
competing interaction&lescribing ferromagnetic filmsthat ~ modulated waves through,

is, defined by the equations of Appendix A with a different
form of the Green'’s functiois [46]. There, frozen polycrys-
talline configurations of stripe patterns were observed for
deep quenches as well, whereas the system could reach an
ordered state for shallow quenches. This same model wa& multiscale analysis of EqA3) in the limit e<1 was con-
also able to predict the formation of a frozen phase comducted by Shiwg51]. SettingM =1/k3, the resulting equa-
posed of polydisperse droplets with a near-hexagonal ation for the amplitude is

rangemenf47], as previously observed in experiments on a
Langmuir monolayef48]. However, the pinning mechanism

H(r 1) =L[A(r, t)eko*+c.c]. (A4)

2
involved in this last case is probably different than the one &;AZEA-F iz Ay~ _55) A— §|A|2A, (A5)
discussed in the present paper since the patterns are no ot ko 2ko 4

longer locally periodic. Nevertheless, we would expect that
our main conclusions can be readily extended to other sy
tems with periodic structures such as hexagonal patter
[47,49.

Swhich is identical to the amplitude equation of the Swift-

nﬁohenberg model. Note that the only effect of the conserva-

tion law on the local part of the free enerfhe Laplacian

operator in front of the square bracket in E&3)] is a
ACKNOWLEDGMENT renormalization of the mobilitM. The quantitiese and k,

This research has been supported by the U.S. Departmeﬂ?ﬁne‘j above play the same role as the same coefficients in

of Energy, Contract No. DE-FG05-95ER14566. the Swift-Hohenberg modél.e., the dimensionless distance
’ to threshold and the dominant wave number of the structure,

APPENDIX A: MEAN-FIELD MODEL OF A SYMMETRIC respectively.

BLOCK COPOLYMER MELT
APPENDIX B: CALCULATION OF THE DEFECT

We briefly recall in this appendix known results about the DENSITY IN THE PRESENCE OF FLUCTUATIONS

relationship between the mean-field description of a block
copolymer melt, and the amplitude equation for Swift- Computation of the domain size from the probability dis-

Hohenberg moddlEq. (1)] at first order ine. The dynamics  tribution of stripe curvature is delicate in the presence of
of microphase separation of block copolymers is often modnoise. We have used a different method than that used for

eled by a time-dependent Ginzburg-Landau equation for & _ 5 \we introduce an effective squared amplitlgajé,t) by
conserved order paramef{e&5,50,

(1) oo 9F " {=2+(V)?Ikg. (B1)
ot rt)
op(r.y For a perfectly ordered system consisting of a plane-wave
where solution of the Swift-Hohenberg equation afd=0, the
probability distribution function ol is a § function at.,
o u K . =4¢/3. WhenF >0 the probability distribution function af
FZJ dr( - El//2+ Zl//4+ §(V )? even for a plane wave!")(¢) is broader because of “pho-
non” excitations. The functiop(" is plotted in Fig. 6(with
B s s, o - s, 2 dotted line$, and is then used as a reference curve for a fixed
+§f Jdrdr P(r,OGrr)g(r’,t).  (A2)  E In a partially disordered configuration, the presence of
defects and curved stripes further broadens the probability
G is the Green's function of the Laplacian operator distribution function top(F)(¢,t) (solid lines of Fig. 6. The
V2G(r,r')=—8(r—r') andM a constant mobility or On- difference between the two curves is related to the degree or
sager coefficient. The scalar order parametes the local ~ disorder beyond small fluctuations away from a perfectly
monomer concentration difference between the two chemicardered o ructure. We define the defect density paft)
species. Following Ref51] we setr=2+e,u=1K=1k3, =Maxp. (9.8-max{p®(£0),4}. Since grain boundaries
and szé. Two independent parameteks and (smal) e &€ Seen to be the major cqntnbunon to defec't dgnsny, one
remain. EquatiorfAl) reduces to can introduce a characteristic length sgajé , which is fur-
ther identified with the characteristic size, or domain size
In Fig. 7,1 has been normalized so tht=0)=R, (at the

%% =V —(2+e€)y+ ¢ izvzw _ k§(¢— ), beginning of thg he{:\ting proce)swhere Ryq i§ computed
at kg from the probability distribution function of stripe curvatures
(A3) atF=0.
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