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Domain coarsening of stripe patterns close to onset
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~Received 31 July 2001; published 25 October 2001!

We study domain coarsening of two-dimensional stripe patterns by numerically solving the Swift-
Hohenberg model of Rayleigh-Be´nard convection. Near the bifurcation threshold, the evolution of disordered
configurations is dominated by grain-boundary motion through a background of largely immobile curved
stripes. A numerical study of the distribution of local stripe curvatures, of the structure factor of the order
parameter, and a finite size scaling analysis of the grain-boundary perimeter, suggest that the linear scale of the
structure grows as a power law of timet1/z, with z53. We interpret theoretically the exponentz53 from the
law of grain-boundary motion.
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Equilibrium layered phases~characterized by a uniform

wave vectorkW0Þ0) are often found in systems with compe
ing short and long ranged interactions@1#. Related structures
commonly referred to as stripe patterns, also appear in
tems driven outside of thermodynamic equilibrium~e.g.,
Rayleigh-Bénard convection or parametric surface wav
near onset@2#!. After changing rapidly a control paramete
across a transition or bifurcation point, a uniform state
comes unstable and configurations with locally orde
stripes appear. Given the underlying translational and r
tional invariances of the system, spontaneous evolution le
to a macroscopic sample comprising a large number
grains or domains, each relatively uniform, but orient
along an arbitrary direction, as well as to a large density
defects such as grain boundaries, disclinations and disl
tions. Understanding how this structure orders with time, a
how the motion of interacting defects contributes to t
coarsening rate is the main focus of this paper.

Numerical studies of model equations intwo spatial di-
mensions@3–7#, as well as recent experiments involving th
films of block copolymers@8#, support the idea that the tim
evolution of layered phases after a quench is statistic
self-similar ~the statistical self-similarity hypothesis asse
that after a possible transient, consecutive configuration
the coarsening structure are geometrically similar in a sta
tical sense!. As a consequence, any linear scale of the str
ture ~e.g., the average size of a domain or grain! is expected
to grow as a power law of timeR(t);t1/z.

Coarsening of layered phases is not yet well understo
On symmetry grounds, layered phases can be classifie
smectics@9,4#. Hence, by analogy with coarsening studies
nematics@10# and O~N!-vector models with a nonconserve
order parameter@11#, one would argue that self-simila
coarsening is to be expected withz52. Although, the possi-
bility of a long-time crossover toz52 has in fact been con
sidered@4#, numerical evidence has consistently pointed
values ofz in the rangez5425 @4–7#. More importantly,
the self-similarity hypothesis itself has been questioned
different linear scales yield different values ofz @6,7#. Fur-
thermore, and in contrast with related research on well
derstood systems that order atk050 @12,13#, the value ofz
appears to be modified by the presence of thermal noise
1063-651X/2001/64~5!/050101~4!/$20.00 64 0501
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We present here a numerical investigation of dom
coarsening for the Swift-Hohenberg model of Rayleig
Bénard convection@14#, and provide the study of the regim
close to onset (e→0, wheree is the reduced control param
eter!. The analysis of several characteristic length sca
show that they are asymptotically proportional to each oth
while coarsening proceeds in a self-similar manner. We a
find that z.3, independent of thermal noise. We interpr
this value ofz from the law of grain-boundary motion give
in @15#. Further from onset (e.0.25), we recover the result
of previous studies, which we interpret as arising from no
diabatic effects that lead to defect pinning. This fact accou
for both the slower growth seen previously, and its dep
dence on fluctuations.

The Swift-Hohenberg model of convection in dimensio
less units is@14#

]c

]t
5ec2

j0
2

4k0
2 ~k0

21¹2!2c2c3, ~1!

wherec is an order parameter related to the vertical flu
velocity at the mid plane of a Rayleigh-Be´nard convection
cell, e is the reduced Rayleigh number,k0 is the roll wave
number, andj0 is a constant that depends on the bound
conditions at the top and bottom plates. For our purposes
set j052/k0. The same model has been used to anal
coarsening of lamellar phases in a diblock copolymer@7#,
and is otherwise believed to be a generic model of the kin
ics of stripe formation. There,c is the concentration differ-
ence between the two monomers@16,17#. For 0,e!1, the
stationary solution of Eq.~1! is well approximated by a sinu
soidal function of wave numberk0. The transient evolution
and domain coarsening is investigated by numerically in
grating Eq.~1! from random initial conditions. All calcula-
tions are performed very close to onset (e50.04). Details of
the numerical algorithm can be found in Ref.@15#.

Figure 1 shows a typical transient configuration. The co
figuration contains a large amount of grain boundaries t
separate domains of different orientation, as well as point
defects~such as11/2 disclinations and dislocations!.

We first present our numerical results for several m
sures of the linear scale of the structure, including the dis
©2001 The American Physical Society01-1
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DENIS BOYER AND JORGE VIÑALS PHYSICAL REVIEW E 64 050101~R!
bution of stripe curvatures, the order-parameter structure
tor, and the grain boundary perimeter. We define
dimensionless stripe curvaturek[l0u¹•nW u, wherel0 is the
wavelength 2p/k0 and nW denotes the unitary vector norm
to the lines of constantc. Following initial transients,k is a
slowly varying field. We compute the probability distributio
function of stripe curvaturesP(k,t) by considering only the
subset of points where stripe orientation can be properly
fined, i.e., the points that are not in the immediate vicinity
any grain-boundary nor other defects. Far enough from
defect,c(rW)5A(rW)cos„kW (rW)•rW1f…, with A a slowly varying
amplitude. By definingz(rW)5c21(¹W c)2/k0

2, one hasz(rW)
.A2. Note that for stationary parallel stripes of wave nu
ber k0 , z(rW)5z054e/3 @2#. We now define defect free re
gions as those that satisfyr m,z/z0,r M , with r m50.95,
r M51.05 ~filter a) or r m50.97, r M51.10 ~filter b). We
have numerically verified that the values ofz corresponding
to a set of moderately curved stripes along their transve
direction remain completely within the intervals defined
both filters a and b. By contrast, most values ofz in the
vicinity of a grain boundary are lower than 0.90.

We use a square grid with 102431024 nodes for the nu
merical solution, with 16 grid nodes per wavelength.
check for self-similarity, we first consider the scaling form
the probability distribution functionP(k,t)5t1/zp(kt1/z).
We plot it in Fig. 2 for different times (e50.04), using
filter a. The best collapse of all the curves is obtain
for 1/z50.34. Second, we compute the momen
mn(t)5*0

kc(t)dk knP(k,t), with kc(t) defined as

*0
kc(t)dk P(k,t)5gkc(t)P(0,t), and g an arbitrary con-

stant, 0,g,1. We find that„mn /m0(t)…21/n}t1/z, with the
value of z independent ofn and g, thus lending additiona
support to the self-similarity hypothesis. Figure 3 shows
results for a few values ofn and two values ofg. The best fit

FIG. 1. Order parameterc shown in gray scale at timet
55000. Equation~1! is discretized on a square grid of mesh si
Dx51 with 5122 nodes. The wavelength isl052p/k058Dx, the
reduced Rayleigh numbere50.04. The initial condition haŝc&
50 and^c2&50.04.
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to the curves yields 1/z.0.32 with filter a, and 1/z.0.34
with filter b ~not shown!.

We next present a finite-size scaling analysis to indep
dently determine the value ofz @18#. Let Nd be the number of
grid points for whichz.r M or z,r m . The probability of a
point belonging to a defect ispd5NdDx2/L2, with L the
system’s linear extent. We define a dimensionless de
~i.e., grain boundary! perimeter asL* 5h2pd , where h
5L/l0 is the system aspect ratio. For short times, finite-s
effects are expected to be negligible, andpd;t21/z. We now
introduce a finite-size scaling ansatz, valid for any timet,

L* ~h,t !5h g~ t/hz!, ~2!

with g(x);x21/z for x!1. At fixed e50.04, we have nu-
merically computedL* (t) with the help of filtera for dif-
ferent sizes:h532, 42.66, and 64~i.e., L/l05256/8, 256/6,

FIG. 2. Rescaled probability distribution function of~dimen-
sionless! curvaturesP(k,t), averaged over 35 independent initi
conditions for dimensionless times ranging fromt5960 to 1.6
3104.

FIG. 3. Moments ofP(k,t), of order 1/2,1,2,3, from top to
bottom. The straight lines have a slope of 0.32. Time units
dimensionless.
1-2
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and 512/8;Dx51 in all cases!. We have averaged the resul
over 500, 300, and 100 independent initial conditions,
spectively. Figure 4 shows the results for the universal cu
g(x) in the region of largex. With the valuez53, the curves
L* /h as a function oft/hz do not depend onh. In addition,
the smallx behavior ofg for h564 is x20.31 ~not shown!.

We have also analyzed the Fourier transform of the tw
point correlation function of the order parameter,S(k,t)
5^c̃kWc̃2kW&. Such study is standard@4–6# and will be re-
ported elsewhere. Ifuk2k0u!k0 andk0L(t)@1, S(k,t) sat-
isfies the scaling formS(k,t)}L(t) f @(k22k0

2)L(t)l0#. The
rescaled spectraS(k,t)/t1/z versus (k22k0

2)t1/z show best
data collapse with 1/z50.32, for times ranging from 2800 t
56 000. Analysis of the moments ofS(k,t) leads toL(t)
;t1/z with 1/z.0.31.

Finally, we have verified that the value of the exponenz
calculated from either the grain-boundary perimeter or
structure factor is not modified by the introduction of rando
fluctuations into Eq.~1!.

We next discuss a possible growth mechanism that le
to an exponentz53 at smalle. Coarsening exponents can b
often inferred from the law of motion of the class of defec
that control coarsening@19#. In our case a typical transien
configuration ~Fig. 1! contains a large number of grai
boundaries, as well as other defects such as11/2 disclina-
tions. Grain boundaries move over large distances, whe
disclinations remain largely immobile. In addition, strip
are curved due to the topological constraint introduced by
disclinations ~contrast this with other coarsening mech
nisms discussed in@3,7# that focus on the relaxation o
curved stripes!. We believe that the transient evolution
dominated by grain-boundary motion that also acts to reli
stripe curvature through disclination annihilation~after the
passage of a grain boundary!. In Ref. @15# we studied the
motion of a grain boundary separating two semi-infinite d
mains of mutually perpendicular stripes, straight on one s
curved on the other. At the lowest order ine, the stripes

FIG. 4. Finite-size scaling analysis of the total grain-bound
length, with systems of aspect ratioh532, 42.66, and 64.
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parallel to the boundary are distorted, whereas those tha
perpendicular to it remain straight. The energy of the c
figuration decreases by a net displacement of the g
boundary, the effect of which is to replace curved stripes
straight ones of lower energy. Therefore the size of the
main with curved stripes decreases. We showed that if
curvature of the stripes ahead of the boundary isk, the
boundary advances at an average speed,

vgb;e21/2k2. ~3!

It was shown in@15# that Eq.~3! is in quantitative agreemen
with a direct numerical solution of Eq.~1! with an initial
condition that involves a 90° grain boundary. As seen in F
1, disclinations produce roughly axisymmetric patterns, w
a characteristic stripe curvature that is inversely proportio
to the distance among them. If this distance between dis
nations is proportional to the characteristic linear scaleR(t),
then dimensional analysis of Eq.~3! suggestsR(t);t1/3.

These considerations are modified further from onset,
region that was the focus of all earlier studies of this probl
@3,5,6#. At higher e, the coarsening rate was seen to
lower, and different linear scales of the structure were
longer proportional to each other. We have reanalyzed
case e50.25, and obtain effective exponents that are
agreement with those previously reported@3,5,6#: 1/z.0.21
from an analysis of the moments ofS(k,t), 1/z.0.26 from
the grain boundary perimeter, while the moments of the d
tribution of curvatures yield 1/z.0.32.

We suggest that the results at largere are affected by
nonadiabatic effects that lead to deviations from scaling. T
law of grain-boundary motion, Eq.~3!, is valid only to first
order ine. At moderate values ofe, however, the separatio
of length scales assumed in the derivation of Eq.~3! breaks
down~the grain boundary thickness is of orderl0 /Ae), lead-
ing to nonadiabatic effects. Within the amplitude equat
formalism, and following the approach of Ref.@20#, we have
obtained the leading-order nonadiabatic corrections, and
that the position of the grain boundary and the phase of
stripes located ahead of it no longer decouple. Equation~3!
generalizes to

vgb5
e

3k0
2D~e!

k22
p~e!

D~e!
cos~2k0xgb1f!, ~4!

wherexgb is the average location of the grain boundary,f is
a constant phase, and

D~e!5E
2`

`

dx@~]xA0!21~]xB0!2#, ~5!

p~e!5maxuH 3

4E2`

`

dx A0
3~x!]xA0~x!cos~2k0x1u!

1
3

2E2`

`

dx@2A0B0
2]xA01A0

2B0]xB0#

3cos~2k0x1u!J . ~6!

y
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The functionsA0(x) andB0(x) are the amplitudes of the tw
sets of rolls separating a planar boundary@21#, the coefficient
D(e) represents a friction term, andp(e) the amplitude of a
periodic pinning potential. The contribution from nonadi
batic effects is typically of the order of

p~e!;e2e2uau/Ae, ~7!

whereuau is a constant of order unity. Hence,p is very small
close enough to onset, but increases extremely fast with
creasinge. From Eq.~4! we see that at any finitee.0, there
exists a critical curvaturekg below whichvgb50. Remark-
ably, pinning becomes noticeable even ate50.1, a value at
which grain boundaries were seen to advance only by
integer multiples of the stripe wavelength@15#. Therefore we
expect that grain boundaries in a transient configuration
become pinned over time, leading eventually to froz
. E

-

05010
n-

lf

ll
,

‘‘glassy’’ configurations, as already observed numerically
@6#. We believe that this pinning is the reason behind
lower apparent exponents found in previous studies ae
50.25 @3,6,7#, as well as for the related result that rando
fluctuations added to Eq.~1! consistently lead to large
coarsening rates.

In summary, we have presented results for several in
pendent measures of the linear scale of stripe patterns o
ing very near onset, and obtained a coarsening exponent
is very close toz53. This value can be explained throug
dimensional analysis of the velocity of a single grain boun
ary advancing into a background of curved stripes in
limit e→0. This mechanism also predicts increasing corr
tions to scaling further from onset due to defect pinning.

This research has been supported by the U.S. Departm
of Energy, Contract No. DE-FG05-95ER14566.
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