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Domain coarsening of stripe patterns close to onset
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We study domain coarsening of two-dimensional stripe patterns by numerically solving the Swift-
Hohenberg model of Rayleigh-Bard convection. Near the bifurcation threshold, the evolution of disordered
configurations is dominated by grain-boundary motion through a background of largely immobile curved
stripes. A numerical study of the distribution of local stripe curvatures, of the structure factor of the order
parameter, and a finite size scaling analysis of the grain-boundary perimeter, suggest that the linear scale of the
structure grows as a power law of timi#¥, with z=3. We interpret theoretically the exponent 3 from the
law of grain-boundary motion.
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Equilibrium layered phase&haracterized by a uniform We present here a numerical investigation of domain
wave vectoik,# 0) are often found in systems with compet- coarsening for the Swift-Hohenberg model of Rayleigh-
ing short and long ranged interactidfig. Related structures, Benard convectiori14], and provide the study of the regime
commonly referred to as stripe patterns, also appear in sy§l0Se to onset{—0, wheree is the reduced control param-
tems driven outside of thermodynamic equilibriufe.g., etep. The analysis of seve_ral character_lstlc length scales
Rayleigh-B@ard convection or parametric surface wavesShOW that they are asymptotically proportional to each other,

near onsef2]). After changing rapidly a control parameter g:élihcg‘)tazrfe;'r;g d%rogr?de(ejr?tIr(])fatﬁglrfr:;r“riizs?awgri.n\g? ?‘Iasto
across a transition or bifurcation point, a uniform state be- > P ' P

comes unstable and configurations with locall orderec}his value ofzfrom the law of grain-boundary motion given
. : 9 . cally in [15]. Further from onsetd=0.25), we recover the results
stripes appear. Given the underlying translational and rot

onal i . f1h \ution | Of previous studies, which we interpret as arising from nona-
tionaf invariances of the system, spontaneous evolution 1eadgi atic effects that lead to defect pinning. This fact accounts
to a macroscopic sample comprising a large number o

¢ ] ) ) ) or both the slower growth seen previously, and its depen-
grains or domains, each relatively uniform, but orientedyence on fluctuations.

along an arbitrary direction, as well as to a large density of Tne Swift-Hohenberg model of convection in dimension-
defects such as grain boundaries, disclinations and dislocgess units ig14]
tions. Understanding how this structure orders with time, and
how the motion of interacting defects contributes to the o £
coarsening rate is the main focus of this paper. — =€ =0
Numerical studies of model equations tiwo spatial di- at 4k§
mensiong3-7], as well as recent experiments involving thin
films of block copolymer$8], support the idea that the time where ¢ is an order parameter related to the vertical fluid
evolution of layered phases after a quench is statisticallyelocity at the mid plane of a Rayleigh-Bard convection
self-similar (the statistical self-similarity hypothesis assertscell, € is the reduced Rayleigh numbéy is the roll wave
that after a possible transient, consecutive configurations afumber, and¢, is a constant that depends on the boundary
the coarsening structure are geometrically similar in a statissonditions at the top and bottom plates. For our purposes, we
tical sensg As a consequence, any linear scale of the strucset £,=2/k,. The same model has been used to analyze
ture (e.g., the average size of a domain or grasnexpected coarsening of lamellar phases in a diblock copolyi&y
to grow as a power law of timg(t) ~t'~. and is otherwise believed to be a generic model of the kinet-
Coarsening of layered phases is not yet well understoodcs of stripe formation. Thera) is the concentration differ-
On symmetry grounds, layered phases can be classified afce between the two monomeds,17. For 0<e<1, the
smecticq9,4]. Hence, by analogy with coarsening studies ofstationary solution of Eq1) is well approximated by a sinu-
nematicg 10] and GN)-vector models with a honconserved soidal function of wave numbek,. The transient evolution
order parametef11], one would argue that self-similar and domain coarsening is investigated by numerically inte-
coarsening is to be expected witk 2. Although, the possi- grating Eqg.(1) from random initial conditions. All calcula-
bility of a long-time crossover ta=2 has in fact been con- tions are performed very close to onsetH0.04). Details of
sidered[4], numerical evidence has consistently pointed athe numerical algorithm can be found in REE5].
values ofz in the rangez=4-5 [4-7]. More importantly, Figure 1 shows a typical transient configuration. The con-
the self-similarity hypothesis itself has been questioned afiguration contains a large amount of grain boundaries that
different linear scales yield different values of6,7]. Fur-  separate domains of different orientation, as well as pointlike
thermore, and in contrast with related research on well uneefects(such as+ 1/2 disclinations and dislocations
derstood systems that orderlqt=0 [12,13, the value ofz We first present our numerical results for several mea-
appears to be modified by the presence of thermal noise. sures of the linear scale of the structure, including the distri-

(K3+V2)2y— 4P, (1)
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FIG. 1. Order parametery shown in gray scale at time
=5000. Equation1) is discretized on a square grid of mesh size
Ax=1 with 512 nodes. The wavelength },=27/k,=8AX, the
reduced Rayleigh number=0.04. The initial condition hagy)
=0 and({y?)=0.04.
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FIG. 2. Rescaled probability distribution function @imen-
sionles$ curvaturesP(«,t), averaged over 35 independent initial
conditions for dimensionless times ranging frans960 to 1.6

x 10%,

to the curves yields 2/~0.32 with filter a, and 12=0.34

bution of stripe curvatures, the order-parameter structure facVith filter b (not shown.

tor, and the grain boundary perimeter. We define the

dimensionless stripe curvatuke=\o|V - n|, where\, is the

wavelength 2r/k, andn denotes the unitary vector normal
to the lines of constany. Following initial transientsi is a
slowly varying field. We compute the probability distribution
function of stripe curvatureB(«,t) by considering only the

We next present a finite-size scaling analysis to indepen-
dently determine the value af 18]. Let N4 be the number of
grid points for which{>r, or {<r . The probability of a
point belonging to a defect ipq=NyAx?/L?, with L the
system’s linear extent. We define a dimensionless defect
(i.e., grain boundarny perimeter asL* = 7%py, where 7
=L/\q is the system aspect ratio. For short times, finite-size

subset of points where stripe orientation can be properly destfects are expected to be negligible, and-t 2. We now

fined, i.e., the points that are not in the immediate vicinity of

introduce a finite-size scaling ansatz, valid for any time

any grain-boundary nor other defects. Far enough from a

defect,iy(r) =A(r)cosK(r) - r + ¢), with A a slowly varying
amplitude. By definingZ(r)= 2+ (V ¢)?/k3, one has{(r)
=AZ?. Note that for stationary parallel stripes of wave num-
berkg, {(r)={o=4€/3[2]. We now define defect free re-
gions as those that satisfy,<{/{y<<ry, with r,,=0.95,
rm=1.05 (filter a) or r,,=0.97, r\,=1.10 (filter b). We
have numerically verified that the values dtorresponding
to a set of moderately curved stripes along their transvers
direction remain completely within the intervals defined by
both filtersa and b. By contrast, most values af in the
vicinity of a grain boundary are lower than 0.90.

We use a square grid with 1024.024 nodes for the nu-
merical solution, with 16 grid nodes per wavelength. To
check for self-similarity, we first consider the scaling form of
the probability distribution functionP(x,t)=t"?p(«t'?).
We plot it in Fig. 2 for different times £=0.04), using
filter a. The best collapse of all the curves is obtained
for 1/z=0.34. Second, we compute the moments

mn(t)ngc(t)dK k"P(k,t), with k. (t) defined as
Joit)dx P(k,t)=yk(t)P(0t), and y an arbitrary con-
stant, 0<y<1. We find that(m, /mg(t))” Mt'? with the

value ofz independent ofh and vy, thus lending additional

L*(n,t)=n 9(t/7%), (2

with g(x)~x"2 for x<1. At fixed e=0.04, we have nu-
merically computedC* (t) with the help of filtera for dif-
ferent sizesy=32, 42.66, and 64i.e.,L/\,=256/8, 256/6,

€
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FIG. 3. Moments ofP(«,t), of order 1/2,1,2,3, from top to

support to the self-similarity hypothesis. Figure 3 shows theyottom. The straight lines have a slope of 0.32. Time units are

results for a few values af and two values ofy. The best fit
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parallel to the boundary are distorted, whereas those that are
perpendicular to it remain straight. The energy of the con-
figuration decreases by a net displacement of the grain
boundary, the effect of which is to replace curved stripes by
straight ones of lower energy. Therefore the size of the do-
main with curved stripes decreases. We showed that if the
curvature of the stripes ahead of the boundarykjsthe
boundary advances at an average speed,

L ol

Ugb"’é_l/sz. (3)

It was shown if 15] that Eq.(3) is in quantitative agreement
with a direct numerical solution of Eq1) with an initial
condition that involves a 90° grain boundary. As seen in Fig.
1, disclinations produce roughly axisymmetric patterns, with
R E N R Y R R a characteristic stripe curvature that is inversely proportional
0.0001 0.001 0.01 0.1 1 10 100 to the distance among them. If this distance between discli-
t /77Z nations is proportional to the characteristic linear sé¥lg,
then dimensional analysis of E(B) suggestdR(t)~t*°.
FIG. 4. Finite-size scaling analysis of the total grain-boundary These considerations are modlf!ed further from. onset, the
length, with systems of aspect ratip=32, 42.66, and 64. region that was the focus of all earlier studies of this problem
[3,5,6]. At higher €, the coarsening rate was seen to be
and 512/8Ax=1 in all cases We have averaged the results lower, and different linear scales of the structure were no
over 500, 300, and 100 independent initial conditions, relonger proportional to each other. We have reanalyzed the
spectively. Figure 4 shows the results for the universal curvéase e=0.25, and obtain effective exponents that are in
g(x) in the region of largex. With the valuez=3, the curves ~agreement with those previously repor{&5,6|: 1/z=0.21
L£* /7 as a function ot/ »* do not depend om. In addition, ~ from an analysis of the moments 8(k,t), 1/z=0.26 from

the smallx behavior ofg for =64 isx~%3! (not shown. the grain boundary perimeter, while the moments of the dis-
We have also analyzed the Fourier transform of the twodtribution of curvatures yield ~0.32.
point correlation function of the order paramet&(k,t) We suggest that the results at largerare affected by

=<l~ﬁ£l~ﬁf|2>- Such study is standar#—6] and will be re- nonadiabgtic effects that Ie_ad to devie}tions.from scaling. The
ported elsewhere. [k—ko| <k, andkoL (1)>1, S(k,t) sat- law of_gram-boundary motion, Ed3), is valid only to flrs_t
isfies the scaling forns(k, t) <L (t) f[ (k2— k) L(t)Ao]. The order ine. At moderate values of, however, the separation
rescaled spectrzS(k,t)/tl’Z Versus kz— kg)tl’z show best of length scal_es assumed |r_1 the de_rlvat|on of B).breaks
data collapse with ¥/~ 0.32, for times ranging from 2800 to down the grain boundary thickness is of ordey/ \'e), lead-

. ing to nonadiabatic effects. Within the amplitude equation
iﬁg?gvnﬁrﬁfg;f the moments @i(k,t) leads toL (1) formalism, and following the approach of R€20], we have

Finally, we have verified that the value of the exporent obtained the leading-order nonadiabatic corrections, and find

calculated from either the grain-boundary perimeter or thé[hat the position of the grain boundary and the phase of the

structure factor is not modified by the introduction of randomStrlloes I_ocated ahead of it no longer decouple. Equation
fluctuations into Eq(1). generalizes to

We next discuss a possible growth mechanism that leads
to an exponent=3 at smalle. Coarsening exponents can be Vab= € K2— ple)
often inferred from the law of motion of the class of defects g 3k3D(€) D(e)
that control coarseninfl9]. In our case a typical transient
configuration (Fig. 1) contains a large number of grain wherexgy, is the average location of the grain boundagyis
boundaries, as well as other defects such+d¢2 disclina- a constant phase, and
tions. Grain boundaries move over large distances, whereas
disclinations remain largely immobile. In addition, stripes _ " 2 2
are curved due to the topological constraint introduced by the b(e) Lwdx[(aXAo) *(9:Bo)7), ©
disclinations (contrast this with other coarsening mecha-
nisms discussed ih3,7] that focus on the relaxation of 3 (e
curved stripes We believe that the transient evolution is p(e)=max9[zf dx A(X) dxAq(X)COS 2koX + )
dominated by grain-boundary motion that also acts to relieve o
stripe curvature through disclination annihilati¢after the 3 (e
passage of a grain boundaryn Ref.[15] we studied the + §J
motion of a grain boundary separating two semi-infinite do-
mains of mutually perpendicular stripes, straight on one side,
curved on the other. At the lowest order &) the stripes X coq 2kox + )

coY 2KoXgpt @), (4)

dX[2AoB3d,Ag+ A3BodxBo]

— oo

. 6
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The functionsAy(x) andBy(x) are the amplitudes of the two “glassy” configurations, as already observed numerically in
sets of rolls separating a planar boundgy], the coefficient [6]. We believe that this pinning is the reason behind the
D(e) represents a friction term, ar{ €) the amplitude of a lower apparent exponents found in previous studies at

periodic pinning potential. The contribution from nonadia- =0.25[3,6,7], as well as for the related result that random

batic effects is typically of the order of fluctuations added to Eq(l) consistently lead to larger
2 lalive coarsening rates.
p(e)~e“e e, (7 In summary, we have presented results for several inde-

pendent measures of the linear scale of stripe patterns order-
ing very near onset, and obtained a coarsening exponent that

']s very close toz=3. This value can be explained through
dimensional analysis of the velocity of a single grain bound-

exists a critical curvature, below whichvg,=0. Remark- 5y aqvancing into a background of curved stripes in the
ably, pinning becomes noticeable evereat0.1, a value at |imit ¢ 0. This mechanism also predicts increasing correc-
which grain boundaries were seen to advance only by half

. . . ions to scaling further from onset due to defect pinning.
integer multiples of the stripe wavelendttb|. Therefore we

expect that grain boundaries in a transient configuration will This research has been supported by the U.S. Department
become pinned over time, leading eventually to frozenof Energy, Contract No. DE-FG05-95ER14566.

where|a| is a constant of order unity. Hengejs very small

creasinge. From Eq.(4) we see that at any finite>0, there
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