
VOLUME 89, NUMBER 5 P H Y S I C A L R E V I E W L E T T E R S 29 JULY 2002
Weakly Nonlinear Theory of Grain Boundary Motion in Patterns with Crystalline Symmetry

Denis Boyer
Instituto de Fı́sica, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 México D.F., México
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We study the motion of a grain boundary separating two otherwise stationary domains of hexagonal
symmetry. Starting from an order parameter equation, a multiple scale analysis leads to an analytical
equation of motion for the boundary that shares many properties with that of a crystalline solid. We find
that defect motion is generically opposed by a pinning force that arises from nonadiabatic corrections to
the standard amplitude equations. The magnitude of this force depends sharply on the misorientation
angle between adjacent domains: the most easily pinned grain boundaries are those with a low angle
(typically 4� � � � 8�) . Although pinning effects may be small, they can be orders of magnitude larger
than those present in smectic phases.
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tem (such as in Langmuir monolayers [7] or block copoly-
mer melts [8]) are often fairly disordered [9]. They consist
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The microstructure of a condensed phase and the dis-
tribution of topological defects largely determine its me-
chanical and thermodynamical response, as well as the
temporal evolution of its nonequilibrium configurations.
Continuum or hydrodynamic approaches to phases with
broken symmetry are now well understood [1,2], including
the long wavelength description of topological defects
[3,4]. Nevertheless, a quantitative theory of defect motion
through periodic structures (e.g., dislocation glide) remains
a difficult problem because it requires short scale phenom-
ena that lie beyond a hydrodynamic theory, and therefore
beyond the degree of universality that such a description
entails.

Bifurcations to periodic phases are also encountered in
a variety of physical, chemical, and biological systems
driven outside of thermodynamic equilibrium. The charac-
teristic length scales involved are much larger than atomic
dimensions, therefore making the observation and study of
defects substantially easier. Here amplitude or phase equa-
tions that focus on slow modulations of a base periodic
pattern play the role of the hydrodynamic description [5].
It has been noted, for example, that at leading order
hexagonal patterns are the dissipative analogs of a two-
dimensional isotropic solid [6]. We focus in this paper on
grain boundary motion in hexagonal patterns, and find
many qualitative and quantitative similarities with grain
boundary motion in crystalline solids. In contrast with the
latter case, our starting model allows a detailed analysis
of the breakdown of the long wavelength description of
defect motion through an explicit multiple scale analysis.
We are then able to derive analytically several results that
are known only qualitatively or empirically in crystalline
solids.

Hexagonal patterns formed in a spatially extended sys-
0031-9007=02=89(5)=055501(4)$20.00 
of randomly oriented grains separated by grain boundaries
(arrays of dislocations in the low angle case), and are
equivalent by symmetry to a polycrystalline solid. This
nonequilibrium microstructure usually evolves on a very
slow, fluctuation-dependent time scale due to pinning
forces to defect motion. Our focus here is on a coarse
grained model of a hexagonal pattern, and, in particular,
on the motion of a grain boundary separating two domains
with arbitrary misorientation. We extend to this case a
recent study of defect motion and pinning near a super-
critical bifurcation involving stripe patterns (or smectic
phases) [10]. We show that the coupling between the
slow variables of an envelope description of the defect
and the underlying (fast) periodicity of the base pattern
leads to an effective periodic potential, the close analog of
the Peierls barrier acting on defects in a crystalline solid
[11]. Furthermore, we find that the magnitude of the
potential barrier does not vanish as the subcritical bifurca-
tion point is approached, contrary to the case of smectic
phases [10]. Hence, not only are crystalline phases emerg-
ing from a subcritical bifurcation harder than smectics in
terms of the forces acting on topological defects but also an
envelope description that ignores the internal degrees of
freedom of defects does not appear to be valid even near
the bifurcation point. The self-generated pinning effects
discussed here are expected to be a general feature of
modulated phases, whereas they cannot appear in uniform
phases. They can explain, for example, many grain boun-
dary conformations that have been observed experimen-
tally and numerically in block copolymer melts [8].

We study here the Swift-Hohenberg model of Rayleigh-
Bénard convection with an additional quadratic term to
allow the formation of hexagonal patterns [5,6],
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The order parameter  � ~xx; t� is related to the vertical veloc-
ity at the midplane of the convective cell, � is the reduced
Rayleigh number, and g2 can be related to deviations from
Boussinesq behavior in the working fluid. The uniform
solution  � 0 becomes unstable for � > 0 to a periodic
pattern characterized by a layer spacing �0 � 2�=k0.
Hexagonal patterns are stable for �j�m�g2�j< �<
�M�g2�, and roll patterns for � > �M. In this paper, we
chose � 2 �0; �M� so that only hexagonal patterns are
stable.

An approximate stationary solution for a configuration
containing a planar grain boundary between two uniform
and symmetric domains of hexagons that have a relative
misorientation angle � (0 � � � �=3; see Fig. 1) can be
found by assuming that  0 �

P
6
n�1 Ane

i~kkn _~xx~xx � c:c:, where
An�x� are slowly varying envelopes, and x is the coordinate
normal to the boundary. As x! �1, A1;2;3 ! A0 � �g2 ��������������������
g22 � 15�

p
�=15 exponentially fast outside a boundary layer

of thickness � [An�x� � fn�x=��], whereas A4;5;6 ! 0. As
x! 1, A4;5;6 ! A0 and A1;2;3 ! 0. We chose j ~kknj � k0,
~kk1;4 � k0� cos���x̂x � sin���ŷy�, where � � �=6� �=2,
and the other vectors ~kkn are obtained from these by
rotations of �2�=3, as indicated in Fig. 1. In analogy
with crystalline solids, a small angle grain boundary is
well described as an array of penta-hepta defects (the
dislocation cores of a hexagonal pattern), separated on
average by a distance of the order �0=�. However, since
the projections of ~kk1;2;3 on the x axis are usually not
commensurate, the patterns observed along the boundary
are not periodic.

We next focus on grain boundary motion and extend our
earlier results for stripe patterns [10]. The amplitude equa-
tion formalism has already been used to study defect
dynamics in hexagonal patterns [12]. Amplitude equations
FIG. 1 (color online). Order parameter  in gray scale.
Only a portion of a square grid of 5122 points is shown
with spacing �x�

���
3

p
=2 and �0 � 8�x. Three locations

are shown in which a planar grain boundary is stationary.
The two hexagonal domains are defined by the sets
f ~kk1; ~kk2; ~kk3g and f~kk4; ~kk5; ~kk6g, respectively (represented by ar-
rows), with a misorientation angle � � �=9.
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are obtained from a standard multiscale analysis of Eq. (1).
For example, the equation for A1 follows from the solva-
bility conditionZ x�lx

x

dx0

lx
lim
ly!1

Z ly

0

dy0

ly
�L� 0� � g2 

2
0 �  3

0�e
�i ~kk1 _~xx~xx 0 � 0 ;

(2)

where L is a linear operator that follows from Eq. (1) [13]
and lx is a length of O��0� to be specified later. When both
� and g2 ! 0, the length scale of variation of the An’s (i.e.,
the grain boundary thickness �) is much larger than �0, and
only nonoscillatory terms contribute to the integral (2). The
solvability condition leads to the usual amplitude equations
that show that defects are either immobile or move with
constant velocity [6].

If, on the other hand, � and g2 are small but finite, then
the amplitudes are not strictly constant within a period lx.
Any oscillatory term in (2) of wave vector ~KK parallel to the
normal x axis does not integrate to zero, and the equation
for the slowly varying amplitudes cannot be decoupled
from the phase of the defect (yielding ‘‘nonadiabatic
corrections’’ [5,14–16]). Although these contributions are
small (nonanalytic in both � and g2), they may have
dramatic effects. In the case of Eq. (1), nonvanishing
terms can arise from the cubic nonlinearity and are propor-
tional to A2

1A4, �AA1
�AA2
4, A1A3A5, A1

�AA3
�AA5, A1A2A6, and

A1
�AA2

�AA6. An oscillatory term proportional to cos�Kx0� in
Eq. (2) contributes to order exp��jK�j� to the law of the
grain boundary of motion (see Eqs. (6) and (7) and below).
This contribution is simplest when both �� 1 and g2 � 1
so that �� �0, and a single mode with lowest K domi-
nates. In this limit, the slowest nonadiabatic corrections are
those proportional to A1A2A6 and A1

�AA2
�AA6, which have

K � j ~kk2 � ~kk6j � 2k0 sin��=2� (see Fig. 1). The solvability
condition (2) now reads

@A1

@t
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@F
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�
Z x0�lx
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dx
lx

6A1�A2A6e�2ik0x sin��=2� � c:c:� ; (3)

where lx � �0=�2 sin��=2��. The first two terms in Eq. (3)
represent the standard amplitude equation with the
Lyapunov functional
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with Dn � @=@xn the derivative along ~kkn. Equations
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similar to (3) can be derived for the remaining amplitudes
An (not shown). The last term in the right-hand side of
Eq. (3) is new and represents the dominant nonadiabatic
correction in the limits �� 1 and g2 � 1.

In order to derive an equation of motion for the grain
boundary from the equations for An, we first denote by
an�x��1 � n � 6� the leading order amplitudes of the sta-
tionary grain boundary, solutions of the one-dimensional
055501-3
coupled Ginzburg-Landau equations @F=@ �aan � 0. We
then look for solutions of the form An�x; t� � an�x�
xgb�t��, where xgb�t� is the now time-dependent position
of the grain boundary [10]. We find

D _xxgb � �phex sin�2k0xgb sin��=2�� ; (5)

where D �
R
1
�1 dx

P
6
n�1�@xan�

2 is a friction coefficient,
and
phex � max
%

Z 1

�1
dx cos�2k0 sin�2��x� %� f3�a2@x�a

2
2a6� � a6@x�a

2
6a2��

� 12�a1@x�a1a2a6� � a3@x�a3a2a6� � a4@x�a4a2a6� � a5@x�a5a2a6��g (6)
0 0.05 0.1 0.15 0.2 0.25
ε

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

p

g
2
 = 0.3

g
2
 = 0.4

g
2
 = 0.5

g
2
 = 0

pstripe

phex

FIG. 2 (color online). Values of the pinning force as given
by Eq. (6) as a function of � for various values of g2 (� �
�=9 in each case). The result corresponding to a stripe pattern
was given in Ref. [10], and is shown as a comparison.
is the (dimensionless) amplitude of a pinning force of
wavelength �0=�2 sin��=2��. This periodic force explicitly
arises from the coupling between the slowly varying wave
amplitudes and the periodicity of the base state in the
integral term of Eq. (3). Equations (5) and (6) show that
a planar grain boundary initially located at an arbitrary
position relaxes toward the nearest minimum of the peri-
odic pinning potential. The stationary and stable posi-
tions of the boundary are thus discrete, separated from
each other by a distance �xgb � �0=�2 sin��=2�� > �0.
The two wave vectors with the smallest projection on the
grain boundary normal ( ~kk2 and ~kk6; see Fig. 1) set the wave
vector ( ~kk2 � ~kk6) of the periodic pinning potential. The
usual amplitude equation formalism would instead predict
that phex � 0, and xgb is arbitrary and decoupled from the
phase of the pattern. Figure 1 shows three successive stable
locations of the grain boundary obtained by numerically
solving Eq. (1). The values of �xgb determined numeri-
cally agree very well with the analytic result.

We expect equations of the form of Eq. (5) to be generic
at a bifurcation, and not limited to hexagon-hexagon grain
boundaries. In particular, we anticipate that nonadiabatic
effects are important in block copolymer melts, and can
explain the conformations of planar interfaces observed in
these systems [8].

Remarkably, the present result for a pattern of hexagonal
symmetry is analogous to the Peierls force acting on
dislocations in crystalline solids [11]. Peierls calculated
the energy of a single dislocation by summing over the
interactions between atoms within two neighboring layers,
their displacements given by continuous elasticity as a first
approximation. The energy of the dislocation oscillates as a
function of its position so that it can glide only if a force of
finite amplitude acts on it (the Peierls’ force). Here we find
that a similar force acts on assemblies of dislocations
organized in arrays. As in the simpler geometry studied
by Peierls, the amplitude of the pinning force decays
exponentially with the spatial thickness of the defect �.
From Eq. (6), we find

phex � c�A4
0e

�2k0 sin��=2��a� ; (7)

with c� and a� dimensionless constants of order unity that
can a priori depend on the misorientation �. At this point,
we note an important distinction between defect motion in
hexagonal patterns that emerge at a subcritical bifurcation
and in stripe patterns that bifurcate supercritically. The
supercritical case was discussed in Ref. [10] for a 90�

boundary separating two domains of stripes given by
Eq. (1) with g2 � 0. The corresponding pinning force
acting on the boundary, pstripe, satisfies a relation similar
to Eq. (7), with �� 1=

���
�

p
. Hence pstripe � exp��1=

���
�

p
� !

0, as the control parameter �! 0. In the hexagonal phase,
however, ��� � 0� ’ 15�0=�8

���
6

p
�g2� is finite. Therefore

phex, although small, does not vanish when �! 0 [nor
when �! �j�m�g2�j] .

Figure 2 shows typical variations of the pinning force as
a function of � for different values of g2 �� � �=9� . The
curves are given by Eq. (6), where the amplitudes an have
been obtained by numerically integrating the system of
equations @F=@ �aan � 0. For a value of g2 as small as 0:3,
phex is many orders of magnitude larger than pstripe.
Therefore, nonadiabatic effects in hexagonal, ‘‘crystalline-
like," patterns are difficult to avoid. Defects need to over-
come much higher activation barriers, and will be much
055501-3
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FIG. 3 (color online). Angular dependence of the pinning
force for various values of g2 and � obtained analytically with
Eq. (6) and numerically for one of the parameter sets.
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less easily unpinned either upon the application of external
stresses or random noise [that would be represented by
additional terms in the right-hand side of Eq. (5)].

Finally we study the dependence of the pinning force
with grain boundary misorientation �. Figure 3 displays
phex��� for different values of the parameters g2 and �.

We find that the least mobile grain boundaries, i.e., those
for which the amplitude of the pinning force is maximal,
have a low angle �M (typically contained in the interval
�4�; 8��) . Both �M and the overall shape of phex��� depend
weakly on g2 and �. Figure 3 also shows the pinning force
vs � obtained from a direct numerical solution of Eq. (1)
with g2 � 0:3 and � � 0:05. Here phex is estimated by
fitting grain boundary relaxation trajectories to Eq. (5),
with the friction coefficient D assumed to be given by
the analytic result. The numerical results compare reason-
ably well with the theory, given the numerical difficulties
in tracking the relaxation of the grain boundary in a finite-
sized system. Although the maximum value is lower and
the curve flatter in the numerical case, the right order of
magnitude is obtained, as well as a similar range for �M.
The discrepancy can also be attributed in part to non-
adiabatic corrections of higher order to Eq. (6) that may
not be negligible at g2 � 0:3.

Our present analysis can qualitatively explain the prop-
erties of polycrystalline, partially ordered configurations
that are typically observed at long times in many pattern-
forming systems with this symmetry [7,9]. Although the
evolution defined by Eq. (1) is driven by the minimization
of a Lyapunov functional, we expect that grain boundaries
(and other topological defects) will become pinned at long
times as the driving force for microstructure coarsening
decreases. Therefore, the system will eventually reach
metastable, glassylike configurations that can order only
by slow activated processes [presumably logarithmic in
055501-4
time, as already observed in [9], with a random forcing
term added to Eq. (1)]. We additionally note that defects
observed in cold metals are essentially low angle grain
boundaries in the range 5� to 10� [17], a value that com-
pares very well with the values obtained by this theory.

In summary, we have analyzed the motion of grain
boundaries in hexagonal patterns from an order parameter
equation and extended the standard Ginzburg-Landau
equation for the slowly varying amplitude to incorporate
nonanalytic corrections. As in crystalline phases, defect
motion is opposed by short range forces with periodicity
and amplitude that strongly depend on the misorientation
angle between domains. Although small, these pinning
forces cannot be neglected asymptotically at long times
in a coarsening system, even near onset, and are orders of
magnitude higher than those produced in patterns of smec-
tic symmetry.
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