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Abstract
We discuss the distribution of various estimators for extracting the diffusion
constant of single Brownian trajectories obtained by fitting the squared
displacement of the trajectory. The analysis of the problem can be framed
in terms of quadratic functionals of Brownian motion that correspond to the
Euclidean path integral for simple Harmonic oscillators with time dependent
frequencies. Explicit analytical results are given for the distribution of the
diffusion constant estimator in a number of cases and our results are confirmed
by numerical simulations.

PACS numbers: 05.40.Jc, 87.16.dp, 31.15.xk, 03.65.Ge

1. Introduction

The tracking of single particles is a powerful tool to probe physical and biological processes
at the level of one macromolecule. In particular, the accumulation of experimental data in
recent years has allowed testing of models of diffusive transport in cells [1, 2]. Within aqueous
compartments, e.g. the cell cytoplasm, Brownian diffusion is the basic transport mechanism for
proteins [3]. Other studies, however, have reported subdiffusive behavior both in membranes
[1] and in the cytoplasm [4], although the microscopic origin of anomalous diffusion remains
unclear in this context. Crowded environments of the cell may cause slower diffusion than in
pure water or other solvents, although not necessarily subdiffusion [3].

Conflicting results have generated a debate on the methodology for determining diffusion
laws from single particle data, even for simple diffusion [5]. In experiments, trajectories of
high temporal and spatial resolution are often obtained at the expense of statistical sample
size. Trajectories may be few and short due to observation windows limited in space, a rapid
decay of fluorescent markers or particle denaturation [6]. These limitations complicate the
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determination of the nature of diffusion, i.e. a precise estimate of the diffusion constant or an
anomalous exponent.

In any case, time averaged quantities associated to a trajectory may be subjected to large
fluctuations among trajectories. In the continuous-time random walk model of subdiffusive
motion, time-averages of particle’s observables generally are random variables distinct from
their ensemble averages [7]. For instance, the square displacement (after a time lag t) time-
averaged along a given trajectory differs from the ensemble average [8]. By analyzing
time-average displacements of a particular realization, subdiffusive motion can actually look
normal, although with strongly differing diffusion constants from one trajectory to an other [9].
The Brownian case might be simpler, but not as straightforward as often thought. Ergodicity,
namely, the equivalence of time and ensemble-averages of the square displacement, only holds
in this case in the infinite sample size limit. In practice, standard fitting procedures applied to
finite (although long) trajectories of a same particle unavoidably lead to fluctuating estimates
of the diffusion constant. Indeed, variations by orders of magnitude have been observed in
experiments and simple random walk simulations [6]. To our knowledge, no analytical results
are available on the properties of these diffusion constant distributions.

In this article, we present analytical and numerical results on the distributions of the
diffusion constants estimated from single trajectories. We consider a standard fitting method
based on time-averaged square displacements as well as other similar procedures amenable to
analytical calculations. Generally we show that the problem consists of finding the distribution
of a quadratic functional of Brownian motion with a time dependent measure.

The first studies of the quadratic functionals of Brownian motion date back to a classic
paper of Cameron and Martin in 1945 [10] and the problem has received much interest in
the probability community ever since [11–15]. The formulation of path integrals for quantum
mechanics provided a powerful tool to analyze this set of problems using methods more
familiar to physicists [16, 17], here the problem appears as the computation of the partition
function of a quantum-harmonic oscillator with time dependent frequency. Various quadratic
functionals of Brownian motion have been intensely studied by physicists [18] using a variety
of methods. They arise in a plethora of physical contexts, for polymers in elongational flows
[19], a variety of problems related to Casimir/van der Waals interactions and general fluctuation
induced interactions [20–24], where, in harmonic oscillator language, both the frequency and
mass depend on time. Quadratic functionals of Brownian motion also arise in the theory
of electrolytes when one computes the one-loop or fluctuation corrections to the mean field
Poisson–Boltzmann theory [25–28]. Finally we mention that functionals of Brownian motion
also turn out to have applications in computer science [29].

In this paper we use the Feynman–Kac theorem to show that the generating function,
or Laplace transform, of the probability density function of the estimators for diffusion
coefficients can be expressed as a solution to an imaginary time Schrödinger equation. This
Schrödinger equation describes a particle in a quadratic potential, whose frequency is time
dependent. For the choices of time dependent frequency arising in the problem of estimated
diffusion constants the resulting Schrödinger equation can be solved exactly. The inversion
of the resulting Laplace transform to obtain the full distribution cannot be carried out exactly,
however we are able to analyze the behavior of the distribution in both the lower and upper
tails, thus giving a rather complete analytical description of its behavior.

In general we find that the main characteristics of the distribution of the estimated diffusion
coefficient depend little on the fitting procedure used and in all cases its most probable value
is much smaller than the correct (average) diffusion constant. The probability of measuring a
diffusion constant lower than average is actually larger than 1/2 (close to 2/3).
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2. Fits for the diffusion constant of a single trajectory

Consider a one-dimensional Brownian process Bt of variance
〈
B2

t

〉 = 2D0t ≡ a0t . Without
restricting generality, we set a0 = 1 and 0 � t � 1 in the following. If a particular trajectory
Bt is available but a0 not known a priori, an estimate a of this parameter can be obtained by
performing a fit to the diffusion law. Several fitting procedures have been discussed in the
context of molecule tracking within cells [5]. Below, we consider four of them.

One of the simplest methods consists in calculating a least squares estimate based on the
minimization of the sum

F =
∫ 1

0

[
B2

t − l(t)
]2

dt, (1)

where the diffusion law l(t) can be taken as linear,

l(t) = aLt, (2)

or affine,

l(t) = aAt + bA, (3)

typically. Given Bt, the minimization of (1) with respect to the constant(s) yields the least
squares estimate

aL = 3
∫ 1

0
tB2

t dt (FIT1), (4)

for the linear fit, and

aA = 6
∫ 1

0
(2t − 1)B2

t dt (FIT2) (5)

bA = −2
∫ 1

0
(3t − 2)B2

t dt (6)

for the affine one.
An other related method, often used in particle tracking experiments [6] and numerical

studies [5], consists in least-squares fitting the time-averaged square displacement, δ2
t . For a

finite trajectory, this quantity is defined as

δ2
t = 1

1 − t

∫ 1−t

0
(Bt+s − Bs)

2 ds. (7)

Due to the ergodicity of normal diffusion processes, at times short compared to 1 the above
average coincides with the ensemble average 〈B2

t 〉 [8], i.e., δ2
t � t as t → 0. However, due to

practical limitations, experimental trajectories often have a small number of positions and δ2
t

is analyzed for all (or a large fraction) of the available intervals t, like in [6]. Similarly, we do
not restrict here to t � 1 but fit over the whole time domain 0 � t � 1 instead. As shown by
the numerical example of figure 1 (right panel) for a random walk with N = 50 000 positions,
the expected small t behavior of δ2

t can be restricted to a very small interval compared to the
total duration of the walk. Substituting B2

t by δ2
t in equation (1) and adopting the linear fit,

the new estimate simply reads:

a
(δ)
L = 3

∫ 1

0
t δ2

t dt (FIT3). (8)
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Figure 1. Left panel: square position of a Brownian motion with a0 = 1 as a function of time
and the corresponding diffusion laws obtained with the fitting methods 1, 2 and 4. For this
example, aL = 0.318, aA = 0.397 and aMLE = 0.338, three values significantly smaller than
unity. Right panel: time-average displacement calculated for the same trajectory, where FIT3
gives a

(δ)
L = 0.274. Only at very short times δ2

t follows the ensemble average a0t . The trajectory
is a random walk of N = 50 000 steps, with positions xn =∑n

i=1 li where 1 � n � N and li = ±1.
In the notation of the text, n/N → t and x2

n/N → B2
t .

Yet another fitting method consists in maximizing the unconditional probability of
observing the whole trajectory Bt, assuming that it is drawn from a Brownian process with
mean-square displacement at . Namely, the maximum likelihood estimate (MLE), denoted as
aMLE, is the value of a that maximizes the likelihood of Bt, defined as:

L =
1∏

t=0

Pa(Bt , t) =
1∏

t=0

(2πat)−1/2 exp

(
− B2

t

2at

)
, (9)

where Pa(x, t) is the probability density of the Brownian process with constant a. By equating
∂ ln L/∂a to zero, one obtains

aMLE =
∫ 1

0
dt

B2
t

t
(FIT4). (10)

The estimates given by the four methods above are represented in an example, see figure 1.
The numerical values are comparable but can differ significantly from unity.

3. Numerical results

The numerical distributions of the random variables aL, aMLE, a
(δ)
L and aA are displayed in

figure 2.
The distributions are highly asymmetric and peaked near X = 0, far from the average

value 〈X〉 = 1. The most probable X is a small positive number in each case, see table 1.
Although estimates of X ∼ 10 can be sometimes observed, the median of the distribution
is lower than 〈X〉. Namely, the probability of measuring a diffusion constant lower that the
correct value is not 1/2, but close to 2/3 in all four cases. The probability of measuring a
negative aA is not zero in the affine method (as already noticed in [6]) but close to 0.175.
Table 1 summarizes the main properties of the distribution functions.

4



J. Phys. A: Math. Theor. 44 (2011) 335003 D Boyer and D S Dean

 0

 0.4

 0.8

 1.2

 1.6

-1  0  1  2  3  4  5  6

p
(
X
)

X

 0

 0.4

 0.8

 1.2

 1.6

 0 0.2 0.4 0.6 0.8 1
p
(
X
)

X

 0

 0.4

 0.8

 1.2

 1.6

-1  0  1  2

p
(
X
)

X

Figure 2. Left panel: distributions of the parameters X = aL (• symbol) and aMLE (� symbol).
Inset: zoom of the same plot, where the solid lines represent the analytical expressions (46) and
(48) valid for small X. Right panel: distributions of the parameters aL (• symbol) along with a

(δ)
L

(solid line) and aA (◦ symbol). Except for a
(δ)
L , these results are obtained by averaging over 2 105

random walks with N = 5 105 steps, see the caption of figure 1.

Table 1. Main properties of the diffusion constant distributions.

X aL a
(δ)

L aMLE aA

〈X〉 1 1 1 1
most probable X 0.11 0.16 0.25–0.3 0.01
median 0.54 0.56 0.66 0.42
lower 5% 0.086 0.12 0.17 −0.20
upper 5% 3.43 3.33 2.97 4.08
Prob[X < 〈X〉] 0.683 0.681 0.668 0.683

Importantly, aL and a
(δ)
L practically obey the same distribution (figure 2 (right panel)),

which is somewhat unexpected as δ2
t is a much smoother function than B2

t . Thanks to this
similitude, the analytical study of the simpler functional (4), exposed in the next section,
brings many insights on the behavior of a

(δ)
L . Distributions similar to ours for a

(δ)
L were

determined in [6], both numerically from random walk simulations and experimentally using
R-phycoerythrin proteins in mammalian cells.

4. Feynman–Kac formalism for the generating function

In general the estimated fit parameters discussed above (FIT1, 2 and 4) are quadratic functionals
of Brownian motion and take the form

X =
∫ 1

0
B2

s w(s) ds. (11)

When w(s) > 0 on [0, 1] the quadratic functional is positive and its generating function of X,
is defined by

G(σ) =
∫ ∞

0
p(x) exp(−σx) dx = E[exp(−σX)], (12)

5
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where p(x) is the probability density function of X. In order to compute G we consider the
following average of a quadratic functional of Brownian motion:

�(x, t) = E
x

[
exp

(
−σ

∫ 1

t

B2
s w(s) ds

)]
, (13)

where the expectation above is for a Brownian motion starting at x at time t. Clearly in this
notation we have G(σ) = �(0, 0). We now write a Feynman–Kac type formula for �(x, t)

by considering how the functional evolves in the the time interval (t, t + dt). During this
interval the Brownian motion moves from x to x +dBt , where dBt is an infinitesimal Brownian
increment such that 〈dBt 〉 = 0 and 〈dB2

t 〉 = dt . Taking into account this evolution we can
write to order dt

�(x, t) =
〈
E

x+dBt

[
exp

(
−σ

∫ 1

t+dt

B2
s w(s) ds

)]
(1 − dtσw(t)x2)

〉
(14)

where the brackets on the right hand side denote the average over dBt . The above may now
be written as

�(x, t) = 〈�(x + dBt, t + dt)(1 − dtσw(t)x2)〉. (15)

Expanding to second order in dBt and dt , taking the average over dBt and equating the terms
of O(1) and O(dt) we obtain

∂�

∂t
= −1

2

∂2�

∂x2
+ σw(t)x2�, (16)

which looks like a Schrödinger equation in a harmonic, time-dependent potential. The
boundary condition for this equation is given by �(x, 1) = 1 for all x.

It is easy to see that the solution of equation (16) is given by

�(x, t) = f (t) exp
(− 1

2g(t)x2) (17)

where
df

dt
= 1

2
fg (18)

dg

dt
= g2 − 2σw, (19)

with the boundary conditions g(1) = 0 and f (1) = 1. Now we can eliminate the nonlinearity
in the second equation by setting g = −dh/dt/h which gives

h
df

dt
+

1

2
f

dh

dt
= 0 (20)

d2h

dt2
− 2σwh = 0, (21)

with the boundary conditions h(1) = 1 and dh/dt (t = 1) = 0. In terms of these functions
the Laplace transform is now given by G(σ) = f (0) = 1/

√
h(0). We now make a change of

time variable writing
dτ

dt
=
√

2w(t)σ , (22)

assuming for the moment that w(t) is positive. In terms of this new temporal variable
equation (21) can now be written as

d2h

dτ 2
+

d2τ
dt2(
dτ
dt

)2 dh

dτ
− h = 0. (23)

6



J. Phys. A: Math. Theor. 44 (2011) 335003 D Boyer and D S Dean

In the class of problems we study in this paper (see equations (4), (5) and (10)) the form of w

is

w(t) = (At + C)α, (24)

with A and C two constants. From this we can choose τ to be

τ =
√

8σ

|A|(α + 2)
(At + C)

α+2
2 (25)

and equation (23) becomes

d2h

dτ 2
+

α

(α + 2)τ

dh

dτ
− h = 0. (26)

The general solution to this equation can be shown to be

h(τ) = τ
1

α+2
(
DK 1

α+2
(τ ) + EI 1

α+2
(τ )
)
, (27)

where Kν and Iν are modified Bessel functions [30]. The coefficients D and E are
determined from the boundary conditions h(τ1) = 1 and dh/dτ = 0 at τ1 = τ(1) =√

8σ(A + C)
α+2

2 /|A|(α + 2). Solving for D and E and using standard identities for Bessel
functions [30] we find that at τ0 = τ(0) = √

8σC
α+2

2 /|A|(α + 2)

h(τ0) = τ
1

α+2
0 τ

α+1
α+2

1

(
I− α+1

α+2
(τ1)K 1

α+2
(τ0) + K− α+1

α+2
(τ1)I 1

α+2
(τ0)
)
, (28)

and thus

G(σ) = [τ 1
α+2

0 τ
α+1
α+2

1

(
I− α+1

α+2
(τ1)K 1

α+2
(τ0) + K− α+1

α+2
(τ1)I 1

α+2
(τ0)
)]− 1

2 . (29)

5. Asymptotic analysis for the probability density function

The general result equation (29) simplifies in the case where τ0 = 0, i.e. when C = 0, which
is the case for FIT1 (linear) and FIT4 (MLE). In this case the probability density function of
the estimator of the diffusion coefficient p(x) has support on [0,∞). We start by analyzing
the behavior of p(x) at small x.

We proceed by using the small argument expansion of Kν for ν > 0:

Kν(z) ∼ 1
2
(ν)

(
1
2z
)−ν

(30)

to obtain the exact result

G(σ) =
⎡
⎣


(
1

α + 2

)(√
2σAα

α + 2

) α+1
α+2

I− α+1
α+2

(√
8σAα

α + 2

)⎤⎦
− 1

2

. (31)

The moments of X can then be extracted using the series expansion for modified Bessel
functions [30] which gives

G(σ) =

⎡
⎢⎣


(
1

α + 2

) ∞∑
k=0

1

k!

(
2σAα

(α+2)2

)k



(

1
α+2 + k

)
⎤
⎥⎦

− 1
2

. (32)

Without loss of generality we set A = 1 and find the first two moments of X to be given by

〈X〉 = 1

α + 2
(33)

7
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〈X2〉 = 3α + 7

(α + 2)2(α + 3)
(34)

and thus

〈X2〉c = 2

(α + 2)(α + 3)
. (35)

In FIT1 and FIT4, a single estimator for the diffusion constant has the form

Xα ≡ (α + 2)X = (α + 2)

∫ 1

0
tαB2

t dt, (36)

with α = 1 and −1, respectively, which gives

〈
X2

α

〉
c
= 2

(
1 − 1

α + 3

)
. (37)

From this we see that the MLE estimate of the diffusion coefficient has a variance
〈
X2

−1

〉 = 1
whereas the simple linear fit has a larger variance

〈
X2

1

〉 = 3/2. Of course these variances can
be computed directly and the above analysis serves as a check on our formalism to compute
the full probability density function.

An interesting comparison can be made with the estimator Xep which uses just the final
value of the mean squared displacement

Xep = B2
1 , (38)

here we find the variance〈
X2

ep

〉
c
= 2, (39)

which is clearly bigger than all the integral estimators above. Before embarking on inversion
of the generating function G(σ) to obtain the probability density function p(x), a simple check
of our results is to numerically compute G(σ) from our simulation data. In figure 3 are shown
the Laplace transforms G(σ) obtained from both equation (31) (or (32)) and the numerical
distributions p(x)—we see that the agreement is perfect.

The behavior of X at small values (when it is always positive) can be extracted by
examining the characteristic function, or equivalently the Laplace transform of the probability
density function p(x) of X. Using the large z asymptotic expansion

Iν(z) � 1√
2πz

exp(z) (40)

and setting A = 1, we find for large σ :

G(σ) � (4π)
1
4 
− 1

2

(
1

α + 2

)(
2σ

(α + 2)2

)− α
8(α+2)

exp

(
−

√
2σ

(α + 2)

)
. (41)

The behavior of p(x) at small x can now be extracted by noticing that the integral

I =
∫ ∞

0
exp(−σx) exp

(
−d

x

)
xc dx (42)

is dominated by its value at small x and thus can be evaluated by the saddle point method as

I �
√

π

σ
exp(−2

√
σd)

(
d

σ

) 2c+1
4

(43)

8
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Figure 3. Laplace transforms of the distributions of X = aL and aMLE (cases {A = 3, α = 1} and
{A = 1, α = −1}, respectively). The solid lines are given by equation (31); the points represent
the simulation results.

from which we deduce that for small x

p(x) � π− 1
4 
− 1

2

(
1

α + 2

)
(α + 2)

− α+4
2(α+2) x

− 5α+12
4(α+2) exp

(
− 1

2(α + 2)2x

)
. (44)

From this we obtain the probability density of X = Xα (equation (36)) at small x to be:

pα(x) � π− 1
4 
− 1

2

(
1

α + 2

)
(α + 2)

− α+4
4(α+2) x

− 5α+12
4(α+2) exp

(
− 1

2(α + 2)x

)
. (45)

The distribution exhibits an essential singularity at x = 0, as expected from the general
asymptotic result of Shi [15]. For the linear fit estimate (α = 1), equation (45) gives

p1(x) � c1 x− 17
12 exp

(
− 1

6x

)
(46)

with

c1 = 3− 5
12 π− 1

4 

(

1
3

)− 1
2 ≈ 0.29035 . . . , (47)

and for the MLE (α = −1)

p−1(x) � c−1 x− 7
4 exp

(
− 1

2x

)
(48)

with

c−1 = π− 1
4 ≈ 0.75112 . . . . (49)

The expressions above compare well with the simulation results at small x (figure 2 (left panel),
inset). The distributions (46) and (48) actually present a maximum at x∗ = 2/17 ≈ 0.118
and x∗ = 2/7 ≈ 0.286, respectively. Despite that the asymptotic results start to fail when
x becomes too large, these values are still in good agreement with the most probable values
of table 1. A more detailed comparison in the small x regime is displayed in figure 4, where
p(x)xβ obtained from the numerics is plotted as a function of 1/x, with β = 17/12 and

9
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7/4. The behaviors at large arguments are nearly indistinguishable from the exponential laws
predicted by equations (46) and (48).

In order to extract the behavior of the probability distribution for large x we need to
examine the singularities of the generating function G(σ) for σ < 0, in this regime

G(σ) =
[



(
1

α + 2

)(√
2|σ |Aα

α + 2

) α+1
α+2

J− α+1
α+2

(√
8|σ |Aα

α + 2

)]−1/2

, (50)

from the identity Jν(z) =∑∞
k=0(−1)k(z/2)2k+ν/[k!
(k + ν + 1)]. This Bessel function of the

first kind oscillates and has simple zeros, at these zeros G diverges. Let us denote u∗ as the
lowest positive zero of J− α+1

α+2
(u). When u ≡ √

8|σ |Aα/(α + 2) → u∗ from below,

[J− α+1
α+2

(u)]−1/2 �
√

2|σ ∗|
u∗|J ′

− α+1
α+2

(u∗)| (σ − σ ∗)−1/2 (51)

where σ → σ ∗ = −u∗2(α + 2)2/(8Aα) from above. We now note that∫ ∞

0
dx

exp(−ωx)√
x

exp(σx) =
√

π

ω − σ
(52)

for ω > σ . Comparing equations (51) and (52), one deduces from (50) the large x behavior:

p(x) � 2
(

u∗
2

)− α+1
2(α+2) |σ ∗| 1

2√
u∗


(
1

α+2

) |J ′
− α+1

α+2
(u∗)|

e−|σ ∗|x
√

2πx
. (53)

For the linear fit (α = 1, A = 3), one finds u∗ = 1.2430 . . . and

p1(x) ≈ 1.1675
e−0.5794x

√
2πx

, (54)

whereas for the MLE (α = −1, A = 1), u∗ = 2.4048 . . . and

p−1(x) ≈ 1.5212
e−0.7228x

√
2πx

. (55)

These asymptotic expressions are compared with the numerical results in figure 5 (left panel).
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Figure 5. Left panel: rescaled numerical distributions p(x)x1/2 for the linear (black dots) and
MLE (diamonds) fits. The solid lines are the exponential laws from equations (54) and (55). Right
panel: same quantity for the affine fit (FIT2). The solid lines are the asymptotic forms at large x
and large −x, see equations (59) and (60).

The interpretation of this result is rather straightforward; if we consider a Gaussian random
Y variable of mean zero and variance γ 2 then the probability distribution is

pY (x) = 1√
2πγ 2

exp

(
− x2

2γ 2

)
. (56)

Now defining Z = Y 2 we find that the the probability density function of Z is

pZ(x) =
exp
(− x

2γ 2

)
√

2πγ 2x
, (57)

which has the same functional form as equation (53). This means that for large values of x the
random variable X has the same distribution as a squared Gaussian random variable. This is
not surprising as the variable X can be viewed as an infinite sum of Gaussian random variables.
Note that the full probability density function for the end point estimator Xep is given by (as
γ 2 = 2)

pep(x) = exp(−0.25x)√
4πx

, (58)

and so the distribution of this simple estimator decays much more slowly that the two integral
estimators discussed above.

In the case of the affine fit, FIT2, both the estimators aA and bA, defined in equations (5)
and (6), can be negative as the respective functions w change sign. The probability density
function is thus two sided. When τ0 becomes imaginary in equation (28), this solution must
be modified by substituting I1/3(τ0) and I−1/3(τ0) by −J1/3(|τ0|) and J−1/3(|τ0|), respectively
[30]. In turn, when τ1 becomes imaginary, I2/3(τ1) and I−2/3(τ1) are replaced by J2/3(|τ1|)
and J−2/3(|τ1|), respectively. For large x > 0 the probability density function can be obtained
from the closest zero of h(σ) from zero in the negative direction, denoted by σ ∗

−, and the
analysis above goes through to give

p(x) ≈ A−
e−|σ ∗

−|x
√

2πx
, with |σ ∗

−| = 0.4596 . . . and A− = 0.9239 . . . , (59)
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in the case X = aA. For the variable X = bA, one finds |σ ∗
−| = 3.2229 . . . and A− = 1.4734 . . .

As X can become negative we also have zeros of h(σ) for positive values of σ ; now if the first
of these zeros from the origin is σ ∗

+ then the same analysis as above implies, for x < 0:

p(x) ≈ A+
eσ ∗

+ x

√
2π |x| , with σ ∗

+ = 4.2439 . . . and A+ = 0.8381 . . . , (60)

in the case X = aA. For X = bA, one obtains σ ∗
+ = 2.4485 . . . and A+ = 1.1886 . . . . These

asymptotic results are tested in figure 5 (right panel) on the two sided distribution arising for
both the coefficients aA and bA, showing very good agreement.

6. Conclusion

We have shown that a general class of statistical estimators that can be used to extract diffusion
constants from the squared displacement of single Brownian trajectories are in fact quadratic
functionals of Brownian motion. Numerically we have seen that such estimators have a
tendency to yield values which are typically lower than the correct average value. In addition
we have seen that the statistics of the estimated diffusion constants from these trajectories
resemble closely those obtained from fitting the time averaged mean squared displacement
δ2

t , defined in equation (7), despite the fact that the resulting trajectory appears much more
regular than an unaveraged Brownian squared displacement, as demonstrated in figure 1
(right panel). An interesting and outstanding problem would be to carry out our analysis for
estimators of type δ2

t . Such an extension is clearly desirable as it deals with a quantity more
commonly used in single particle tracking experiments. However, from a technical point of
view, the resulting path integrals, while being for quadratic functionals of Gaussian processes,
are highly non-local in time and it is probable that their evaluation will require the introduction
of new mathematical methods.

Our final analysis was only limited by the problem of carrying out a full Laplace inversion
of the generating function G(σ) to obtain the full probability density function. However we
point out that the generating function is actually easy to estimate from numerical data for the
purpose of comparison with our analytical results, as demonstrated in figure 3. In addition
the generating function can be inverted analytically in certain asymptotic regimes. When the
estimator is always positive, and consequently p(x) = 0 for x < 0, the behavior of p(x) for
small x can be extracted. We find that it has an essential singularity at x = 0 and a maximum
value, this estimate of the maximum value is in good agreement for the most likely value
of x coming from the full probability density function. For positive estimators the large x
behavior of p(x) turns out to be that of a squared Gaussian random variable, reflecting that
fact that the estimator itself is an infinite sum of Gaussian random variables. This remains
true when the estimator can have negative values, i.e. when w(t) can change sign. In this case
the probability density function for X is that of a Gaussian squared for large x as is that of −X

for large negative x.
Finally new methods are being introduced into single particle trajectory analysis to

estimate diffusion constants and exponents associated with anomalous diffusion, for instance
methods based on the mean maximal excursion [31], and it would be interesting to examine
the distributions associated with such estimators.
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