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Among Markovian processes, the hallmark of Lévy flights is superdiffusion, or faster-than-Brownian dynamics.
Here we show that Lévy laws, as well as Gaussian distributions, can also be the limit distributions of processes
with long-range memory that exhibit very slow diffusion, logarithmic in time. These processes are path dependent
and anomalous motion emerges from frequent relocations to already visited sites. We show how the central limit
theorem is modified in this context, keeping the usual distinction between analytic and nonanalytic characteristic
functions. A fluctuation-dissipation relation is also derived. Our results may have important applications in the
study of animal and human displacements.
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I. INTRODUCTION

Lévy flights (LFs) represent one of the most important
extensions of the central limit theorem (CLT), a cornerstone of
probability theory [1,2]. Lévy flights are sums of independent
and identically distributed random variables that admit non-
Gaussian limit laws due to their very large fluctuations. They
find physical applications in laser cooling [3], optics [4], and
chaotic transport [5]. Lévy flights are also paradigmatic of
superdiffusive processes, i.e., anomalous types of transport
where the characteristic diffusive length scale l(t) of an
individual particle grows with time as tα with α > 1/2, that
is, faster than in classical Brownian motion (BM) [6–9].

In recent years, LFs (as well as the related Lévy walks [10])
have become prominent for modeling diffusion in a variety
of complex systems. Power-law distributions of step lengths
with diverging variance, a key feature of Lévy processes, are
found to describe well the trajectories of immune cells in the
brain [11], the displacements of animals [12–15], and hunter-
gatherers [16,17] in their environments, and the travels of
modern humans within and between cities [18–21]. However,
the assumption of independence between steps does limit the
applicability of genuine Lévy processes for modeling real
systems, where non-Markovian effects and correlations can be
strong. Deeper analysis of empirical data actually reveals that
the diffusion of humans and animals (even those exhibiting
Lévy patterns) is in general subdiffusive at large times, i.e.,
with l(t) � t1/2 [21–25]. Furthermore, l(t) commonly grows
more slowly than a power law of time, namely, in a logarithmic
way [21,24,25]: This behavior is even in sharper contrast to
the superdiffusion of simple LFs.

Logarithmic diffusion can be generated in several ways,
for instance, by continuous-time random-walk models with
superheavy-tailed distributions of waiting times [26] or by
certain iterated maps [27,28]. In the context of animal and
human mobility, an important but little explored mechanism
that may lead to very slow subdiffusion is spatial memory:
Many living organisms actually keep revisiting familiar places
[22–25,29,30]. Here we seek to understand, with the help of
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a solvable model, how this type of memory can act as a self-
attracting force that drastically constrains diffusion towards
limited areas, giving rise to “home ranges,” and how this
property can still be compatible with power-law-distributed
step lengths.

The dynamics and limit distributions of constrained LFs are
not well understood, except mainly for processes subjected to
long waiting times or in external potentials [8,31]. Several
limit theorems also exist for specific problems of sums of
correlated random variables [32] and a few random walks
with infinite memory of their previous displacements have
exactly solvable first moments [33–35]. Yet very little is known
about LFs composed of nonindependent steps, in particular
processes with self-attraction. Self-attracting random walks
are path-dependent processes where a walker tends to return
to previously visited sites [36,37]. Numerical simulations and
scaling arguments clearly show that self-attracting walks can
exhibit subdiffusion [38–40]. These mathematically challeng-
ing processes cannot be readily analyzed with better known
frameworks for subdiffusive phenomena, such as fractional
Fokker-Planck equations [8] or scaled Brownian motions
[41,42]. They are more related to diffusion in quenched
disordered media [6], where some rigorous connections have
been made with the Sinai model [43].

In this study we heuristically modify the CLT for pro-
cesses that exhibit very slow diffusion and show that such
modification exactly describes a class of self-attracting LFs
and self-attracting random walks. Since the characteristic
functions have a structure similar to that in the ordinary CLT,
Gaussian and Lévy distributions emerge asymptotically in
space, although the dynamics is strongly subdiffusive. We also
derive a fluctuation-dissipation relation in the Gaussian case.

II. GENERAL FORMULATION

Let P (n,t) be the probability that the position Xt of a
particle at time t is n (where n and t are discrete), given
that the particle is located at the origin n = 0 at t = 0. We
consider discrete one-dimensional walks, keeping in mind that
discreteness is not relevant in the asymptotic limit. The results
can also be extended straightforwardly to higher dimensions.

2470-0045/2016/93(2)/022103(6) 022103-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.93.022103


DENIS BOYER AND INTI PINEDA PHYSICAL REVIEW E 93, 022103 (2016)

We recall that for a standard random walk composed of t

independent and identically distributed displacements �i with
distribution p(�), the characteristic function of Xt , defined as
P̃ (k,t) ≡ ∑∞

n=−∞ e−iknP (n,t) = 〈e−ikXt 〉, takes the form [9]

P̃ (k,t) = p̃(k)t = eln[p̃(k)]t , (1)

where p̃(k) is the characteristic function of �. Since p̃(0) = 1
by normalization, in the unbiased (〈�〉 = 0) and symmetric
case, an expansion near k = 0 gives

p̃(k) = 1 − C|k|μ + · · · . (2)

Two basic situations emerge: the analytic case μ = 2, corre-
sponding to 〈�2〉 < ∞ (and C = 〈�2〉/2), and the nonanalytic
case 0 < μ < 2 when 〈�2〉 does not exist, due to a power-law
decay of p(�),

p(�) ∼ 1/|�|1+μ, (3)

at large � [9]. Combining (1) and (2) yields the celebrated
Gaussian-Lévy CLT

P̃ (k,t) → e−C|k|μt . (4)

Equation (4) implies a scaling law P (n,t) → t−1/μf (n/t1/μ)
where the scaling function f (x) is a Gaussian distribution
or a symmetric Lévy law Lμ,0(x) for μ = 2 and 0 < μ < 2,
respectively. The latter case is superdiffusive as the typical
diffusion length is proportional to t1/μ 	 t1/2.

Consider now a simple modification of Eq. (1): Suppose
that for certain diffusion processes with memory or sums of
correlated random variables (we do not need to specify a model
at this point), P̃ is not an exponential function of t but a power
law

P̃ (k,t) 
 t−a(k) = e−a(k) ln t (5)

at large t and small k. The function a(k) satisfies a(0) = 0,
owing to the normalization P̃ (k = 0,t) = 1. Again, a(k) can
be generically analytic or nonanalytic near k = 0. In the first
case, since P̃ (k,t)∗ = P̃ (−k,t) and |P̃ (k,t)| � 1, the Taylor
expansion of the exponent must be of the form a(k) 
 ia1k +
a2k

2 + · · · , with a1 and a2 two real constants and a2 > 0. For
simplicity, we first consider a1 = 0, or motion without bias.

In the nonanalytic case, the same arguments lead to a(k) 

aμ|k|μ with 0 < μ < 2 a priori and aμ > 0. Inserting into (5),
we see that the main difference from (4) is that the variable t

is substituted by ln t . Hence

P (n,t) → 1

(ln t)1/μ
fμ

(
n

(ln t)1/μ

)
, (6)

where the limit laws fμ(x) are the same as in the ordinary
CLT. If μ = 2, diffusion is Gaussian but very slow, 〈X2

t 〉 =
2a2 ln t , in sharp contrast to BM, where 〈X2

t 〉 = 2Dt . [In this
case, Eq. (6) should not be confused with the log-normal
distribution, where the logarithm applies to the space variable,
not the temporal one.] A basic Markovian example is, by
construction, scaled Brownian motion, which is BM where
the time T is rescaled as t = eT . Such a process is also
equivalent to BM with a time-dependent diffusion coefficient
D(t) decaying as 1/t at large t [42].

In the nonanalytic case, the situation looks paradoxical at
first sight. The ensemble average 〈X2

t 〉 = ∞ like in ordinary
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FIG. 1. (a) Schematic view of a process relocating at a constant
rate q to sites occupied at previous times, these times being chosen
stochastically. The numbers label the beginning and end of each
excursion. Each end is followed by the beginning of the next
excursion (arrow). (b) Two simulated trajectories corresponding to
Lévy excursions with p(�) ∼ 1/|�|1+μ, relocation rate q = 0.05, and
relocation kernel given by Eq. (8) (panels at the same scale).

Lévy processes due to the broad tails of Lμ,0(x) [or due to the
fact that ∂2P (k,t)/∂k2 does not exist at k = 0, from Eq. (5)].
Yet Eq. (6) also defines a typical diffusion length l(t) ∝
(ln t)1/μ, which grows extremely slowly. Therefore, based on
this scaling length l(t), motion is strongly subdiffusive and
all the finite moments 〈|Xt |ν〉 with ν < μ also evolve very
slowly, as (ln t)ν/μ. Still, the process keeps superdiffusive
features through the divergence of the second moment. This
situation is reminiscent of scaling violation, which also arises
in continuous-time random walks [44] or Lévy walks [10,45].

III. RANDOM WALKS WITH RELOCATIONS

We now consider a concrete class of non-Markovian walks
for which the above ideas apply. The processes of interest are
self-attracting, namely, they tend to revisit locations visited
in the past. Particular examples were studied numerically
in [22,23] as animal movement models and theoretically in
[25,46]. We present here a unified view of this class of
processes.

Let q be a parameter (0 < q < 1). At any time t , the walker
chooses its next position according to the following rules.

(i) With probability 1 − q, it performs a random displace-
ment � drawn from a given distribution p(�) like in standard
random walks or Lévy flights.

(ii) With the complementary probability q, it jumps (or
resets) directly to the site occupied at some previous time t ′ �
t . The time t ′ is chosen according to a given probability πt (t ′),
or memory function, with

∑t
t ′=0 πt (t ′) = 1 by normalization.

The rules are depicted in Fig. 1(a), with two simulated
examples in Fig. 1(b). Note that in (ii), the next target site is
chosen independently of its distance to the location Xt of the
walker. If πt (t ′) = δt ′,0, the site chosen for revisit is unique (the
origin), a case that corresponds to the well-studied random
walk with resetting to the origin [47–50]. For more general
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kernels, the walk is strongly path dependent but still described
by a master equation

P (n,t + 1) = (1 − q)
∞∑

�=−∞
p(�)P (n − �,t)

+ q

t∑
t ′=0

πt (t
′)P (n,t ′). (7)

Standard random walks or Lévy flights are recovered for q =
0. If q �= 0, the last term indicates that site n can be chosen to
be occupied at time t + 1, provided it was visited at the earlier
time t ′.

We first consider a uniform memory function, that is,
independent of t ′,

πt (t
′) = 1

t + 1
. (8)

We call this case the preferential visit model (PVM): With
such a kernel, rule (ii) is simply equivalent to choosing a given
site n (among all visited sites) with probability proportional to
the number of visits received by n since t = 0. Therefore, the
walker is prone to revisit familiar sites, at the expense of rarely
visited ones. The moments 〈X2p

t 〉 were calculated in [25] for
the PVM with nearest-neighbor (NN) steps (�i = ±1) in rule
(i). To solve Eq. (7) more generally, we define the Laplace
transform of P̃ (k,t):

P̂ (k,λ) =
∞∑
t=0

λt

∞∑
n=−∞

e−iknP (n,t). (9)

By taking the double transform of Eq. (7) with the kernel (8)
and writing λt/(t + 1) = λ−1

∫ λ

0 utdu, we obtain

P̂ (k,λ) − 1 = (1 − q)p̃(k)λP̂ (k,λ) + q

∫ λ

0
du

P̂ (k,u)

1 − u
.

(10)
Taking the derivative of Eq. (10), one obtains a first-order
ordinary differential equation in the variable λ. As P (n,t =
0) = δ0,n, the condition P̂ (k,0) = 1 must be enforced, leading
to the exact solution

P̂ (k,λ) = (1 − λ)−[1−a(k)][1 − (1 − q)p̃(k)λ]−a(k), (11)

with

a(k) = (1 − q)
1 − p̃(k)

1 − (1 − q)p̃(k)
. (12)

We can infer the large-t behavior of P̃ (k,t) by studying the
divergence of P̂ (k,λ) near λ = 1, with k fixed but small. Noting
that a(k) � 1, Eq. (11) yields P̂ (k,λ) 
 (1 − λ)−[1−a(k)]. This
expression is simply inverted as

P̃ (k,t) 
 t−a(k), (13)

as announced in (5). In the absence of bias, one can use Eq.
(2), which, combined with (12), gives the exponent

a(k) 
 1 − q

q
C|k|μ, (14)

implying the limit law (6). We conclude that this random walk
always diffuses logarithmically, unlike other reenforced walks

(a) (b)

(c)

FIG. 2. Preferential visit model in one dimension. (a) Here
〈|Xt |ν〉μ/ν , obtained from simulations with different μ and ν (averages
over 5 × 105 runs), is proportional to ln t as expected. (b) Mean and
variance of Xt for a NN walk with bias α in rule (i). Colored solid lines
are simulations and dark dashed lines, theory. (c) Normal diffusion
for spatially uniform relocations.

that exhibit transitions to localized states [36,39]. Numerical
simulations confirm the very slow dynamics, even when the
excursions between relocations are Lévy flights, or μ < 2:
Perfect agreement with the prediction 〈|Xt |ν〉 ∼ (ln t)ν/μ for
ν < μ is observed in Fig. 2(a). We emphasize again that
the scaling function f (x) in this non-Markovian process is
the same as for the underlying Markovian process between
relocations (or with q = 0). This property stems from the fact
that the cumulant characteristic function ln p̃(k) [Eq. (1)] and
the function a(k) [Eq. (12)] have the same leading behavior at
small k, except for a multiplicative constant. In other words,
the analyticity or nonanalyticity of P̃ (k,t) is preserved when
q is set different from zero.

IV. GENERALIZATIONS

We now show that several extensions of the PVM also admit
a propagator of the form given by Eq. (5).

A. Decaying memory

The results of the previous section do not change qual-
itatively by considering memory kernels other than a pure
preferential one. For instance, the time in the past t ′ may be
chosen not uniformly like in Eq. (8) but with a probability
decaying with t − t ′, the interval of time between a remem-
bered occupation and the present time. Consider, for instance,
a power-law memory decay

πt (t
′) = (t − t ′ + 1)−β∑t

t ′′=0(t − t ′′ + 1)−β
, (15)

with β > 0 an exponent. Here the visits are still preferential,
but with a tendency towards more recent sites (an effect
actually observed in human mobility [51]). If β < 1 the sum
in (15) diverges at large t and can be substituted by an integral;
by taking the Fourier transform of (7) and making the ansatz
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P̃ (k,t) 
 t−a(k), one obtains an integral equation for a(k):

1 − (1 − q)p̃(k) = q(1 − β)
∫ 1

0
du(1 − u)−βu−a(k). (16)

Combining Eqs. (16) and (2) gives, at small k,

a(k) 
 1 − q

q
F(β)C|k|μ, (17)

with

F(β) =
[

(1 − β)
∫ 1

0
du(1 − u)−β ln(1/u)

]−1

.

Equation (17) shows that the scaling law (6) applies to more
general processes than the PVM. [Equation (14) is recovered
for β = 0.] Interestingly, F(1) = ∞, which indicates that
the scaling form (5) breaks down for β � 1. Actually, a
calculation similar to the one above shows that, for β > 2,
memory decays too fast to be relevant and the usual CLT
(4) is recovered. Of course, these results do not mean that
the aforementioned preservation property holds for arbitrary
πt (t ′). For instance, for memory walks with 1 < β < 2 and
steps �i of finite variance, the process is non-Gaussian [46].
Likewise, Brownian random walks and Lévy flights subjected
to stochastic resetting to the origin have asymptotic probability
densities that are non-Gaussian [47] and non-Lévy [50],
respectively.

B. Model with bias

We now study the response of the non-Markovian walks (at
fixed q) to the presence of a constant forcing, namely, a bias
α ≡ 〈�〉 = ∑∞

�=−∞ �p(�) �= 0. Here we assume 〈�2〉 < ∞ or
μ = 2. By taking the first moment of Eq. (7), an equation for
the average position 〈Xt 〉 ≡ ∑∞

n=−∞ nP (n,t) is obtained:

〈Xt+1〉 = (1 − q)[〈Xt 〉 + α] + q

t∑
t=0

πt (t
′)〈Xt ′ 〉 (18)

for any kernel πt (t ′). We now denote by 〈X2
t 〉0 the mean-square

displacement of the walker at zero bias. It is easy to show that
〈X2

t 〉0 obeys exactly the same equation as (18), where α has to
be replaced by 〈�2〉0 = ∑∞

�=−∞ �2p0 (�), with p0 (�) unbiased.
We deduce an Einstein fluctuation-dissipation relation (FDR)

〈Xt 〉 = α

〈�2〉0
〈X2

t 〉0. (19)

The exact equality (19) is general: It is valid at all t and for any
kernel πt (t ′) (allowing one to recover results on the resetting
to the origin with bias [48]). Despite being out of equilibrium,
the FDR with constant bias in this system is the same as for
ordinary random walks, where the response 〈Xt 〉 is entirely
determined by the fluctuations at zero bias. With the kernel (15)
and β < 1, the drift is thus logarithmic: 〈Xt 〉 
 α

1−q

q
F(β) ln t ,

from Eqs. (19) and (17) with μ = 2. The time evolution of the
first moment 〈Xt 〉 is displayed on the left side of Fig. 2(b) for
different parameter values.

In other words, the effective friction coefficient of the
walker (proportional to α〈Ẋt 〉−1) grows linearly with t .
This illustrates the nonstationarity emerging from long-range

memory and the increasingly sluggish dynamics caused by
frequent relocations to the same preferred sites.

We further show that the combination of memory and
bias has a drastic impact on the fluctuations of Xt around
〈Xt 〉. We take, for example, the PVM with NN steps in rule
(i) and expand Eq. (12), which is valid for any p(�), near
k = 0. Now using p̃(k) = 1 − iαk − 1

2k2 + · · · , we obtain
P̃ (k,t) 
 exp[−iμtk − 1

2σtk
2], which corresponds for P (n,t)

to a Gaussian distribution of mean μt and variance σt . We
recover μt = α

1−q

q
ln t [see (19)] and obtain, for σt ,

σt =
[

1 − q

q
+ 2

(
1 − q

q

)2

α2

]
ln t. (20)

If q is small, the presence of a bias therefore strongly amplifies
the fluctuations of Xt , as the second term in (20) is greater than
zero and dominant. This effect is displayed on the right side
of Fig. 2(b). For ordinary NN random walks, on the contrary,
the bias decreases the fluctuations: In that case σt = (1 − α2)t
and motion becomes deterministic at α = 1 (see, e.g., [52]).

V. DISCUSSION AND CONCLUSION

In summary, we have shown that Lévy and Gaussian
distributions can emerge generically far from the domain of
applicability of the CLT, namely, in strongly subdiffusive
path-dependent processes. We emphasize that the processes
studied here exhibit subdiffusion because the relocation sites
are selected heterogeneously in space. This situation is also
encountered in the resetting to the origin, an extreme case
where only one site receives all relocations, causing the
typical diffusion length l(t) to tend to a constant [47]. To
illustrate the importance of uneven relocations, one may by
contrast consider a NN random walk, which, in rule (ii) above,
relocates to a site chosen randomly and uniformly among
the visited sites. In this case, l(t) roughly obeys dl/dt ∼
(2R/l)[(R/2)/(1/q)], with R = √

2D/q the characteristic
diffusion scale between two relocations, 2R/l being the
probability of resetting near the edges of the territory covered
by the walk. This leads to l(t) ∼ √

4Dt , a normal diffusive
behavior, which is qualitatively confirmed by the numerical
simulations of Fig. 2(c).

The emergence of logarithmic diffusion can be understood
qualitatively by drawing, from Fig. 1(a), an analogy to a
branching random walk (see, e.g., [53,54]). Consider an initial
normal random walk with a constant branching rate qb. At
each branching event, a new random walk is created that starts
from the current position of the parent walk. The walks are
independent, do not disappear, and all branch at the same rate
qb. The process follows until it is stopped at some final time
T . Let us then imagine a single walker starting at the origin
and following the paths left by all the branches, from the
oldest to most recent, relocating at the start of the next branch
when reaching the end of a branch. The average number of
branches at time T is Nb(T ) = eqbT and the total number
of steps needed for the single walker to walk along all of
them is t 
 ∫ T

0 dτ Nb(τ ) 
 eqbT /qb. At time t , the single
walker will be at a typical distance l(t) from the origin, with
l(t)2 ∼ T 
 1

qb
ln t . This form is surprisingly similar to our
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result 〈X2
t 〉 
 1

q
ln t for the PVM at small q. The argument

above can be repeated with branching Lévy flights, where
l(t) ∝ T 1/μ, leading to a similar correspondence between the
two models.

Note that the above analogy is only qualitative, as the PVM
differs quantitatively from a set of branching random walks.
Setting qb = q, numerical simulations (not shown) indicate
that, due to the rule of preferential visits, the relocation
points in the memory model are distributed much more
heterogeneously in space (namely, closer to the origin) than
the branching points of the branching walks.

We conclude by mentioning that the processes studied here
can explain two properties very often observed in human
and animal mobility [15,19–21,25]: (a) Power-law-distributed
step lengths can coexist with a very slow diffusion in the

long term (i.e., home-range behavior) and (b) the occupation
of space by an individual within its home range is very
nonuniform. Lévy flights with relocations to visited places
could be an efficient strategy for searching and exploiting re-
newable resources, a challenge faced by many living organisms
[12,55–57].
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