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Abstract – We study the dynamics of a deterministic walk confined in a narrow two-dimensional
space randomly filled with point-like targets. At each step, the walker visits the nearest target
not previously visited. Complex dynamics is observed at some intermediate values of the domain
width, when, while drifting, the walk performs long intermittent backward excursions. As the
width is increased, evidence of a transition from ballistic motion to a weakly non-ergodic regime is
shown, characterized by sudden inversions of the drift velocity with a probability slowly decaying
with time, as 1/t at leading order. Excursion durations, first-passage times and the dynamics of
unvisited targets follow power law distributions. For parameter values below this scaling regime,
precursory patterns in the form of “wild” outliers are observed, in close relation with the presence
of log-oscillations in the probability distributions. We discuss the connections between this model
and several evolving biological systems.

Copyright c© EPLA, 2008

Introduction. – Deterministic walks in disordered
environments have received an increasing attention over
the past years. They describe diffusion processes following
non-random rules and have applications, among others, to
the study of the displacements of individuals in complex
landscapes. Examples are human travels [1,2], human
displacements in a city [3], movement patterns of hunter-
gatherer [4] or foraging animals [5].
From a given position, the next site visited by a purely

deterministic walker is assigned from a given set of rules
and not stochastically. These walks still have probabilistic
and fluctuating features if the environment is random or
heterogeneous. Interesting dynamics have been observed,
such as normal [6] or anomalous diffusion [7], behaviors
analogous to that of the Lorentz gas [8], cycles with
power law distributed periods [1,9] or Lévy-like step length
distributions [10,11]. Complex behavior can emerge from
very simple rules, e.g., when each step optimizes a given
cost function. Deterministic walks have also been used to
process large data sets in galaxy surveys [12], thesaurus
graphs [13] or for pattern recognition [14].
In many situations, in particular biological, the deter-

ministic walker itself changes the medium, which intro-
duces memory [8]. An important case is the self-avoiding

(a)E-mail: boyer@fisica.unam.mx

walk (SAW), which can be implemented to model biolog-
ical systems with negative feedbacks that tend to avoid
past behaviors. A simple example is that of a foraging
animal relying on mental maps to navigate an environ-
ment composed of food patches that are not revisited after
they have been depleted [5]. In a different context, the
brain activity has been modeled by random walks keep-
ing memory of their complete history in order to avoid
persistent patterns; recent memory loss producing patho-
logical repetitions, like in the Alzheimer’s disease [15]. In
evolutionary ecology, the well-known Red-Queen princi-
ple assumes that any organism must constantly evolve in
order to prevent its predators or preys to adapt to an
otherwise predictable behavior. Similar considerations can
apply to the dynamics of technological innovations [16].
Freund and Grassberger introduced some time ago a
self-avoiding deterministic walk model in disordered two-
dimensional domains, mimicking evolving organisms in
phenotype landscapes [7]. These kinds of models are very
difficult to handle analytically; they are firstly dynamical
and not equivalent to canonical SAWs [17].
Here, we study a minimal model of a deterministic walk

with a SAW constraint (in the infinite memory limit) and
confined in a nearly one-dimensional random medium. In
an evolutionary context, whereas SAWs can be justified
by natural selection, organisms also have developmental
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constraints due to limited phenotypic variability [18].
Similarly, the development of human artifacts is restricted
by design limits. We model this important constraint by
a narrow random medium where the walker can evolve
without bounds only in one direction. In narrow land-
scapes, the model exhibits very rich dynamical features
not observed in unbounded ones, such as intermittent
behavior, scaling laws, discrete scale invariance and very
large events (outliers). A discussion of these results is
then presented.

Model description. – Consider a two-dimensional
strip of width l and infinite length along the horizontal
direction. The strip is randomly filled with fixed point-
like targets with uniform number density ρ0, representing,
say, food patches for a foraging animal or phenotypes for
an evolving species. The only control parameter is the

reduced domain width, defined as δ= l/l0, with l0 = ρ
−1/2
0

the characteristic distance between neighboring targets.
At time t= 0, a walker is located at some target with
coordinates (x0, y0), taken as the origin. Two rules of
motion are then recursively applied: the walker i) moves to
the nearest available target, ii) does not visit a previously
visited target. When the new target is reached, t is
updated to t+1.
The medium can be made one(two)-dimensional in

the limit δ≪ 1 (δ≫ 1), respectively. We will focus here
on values of δ of O(1), typically in the range (2,5),
such that the walker has a some vertical degree of
freedom but a practically one-dimensional motion on large
scales, described by the horizontal coordinate x(t). In
the simulations, the medium is a rectangle of area unity
containing N targets and of width l= δ/

√
N . Each run

start near the middle of the domain and is stopped before
the walker reaches the lateral vertical walls.

Trajectories. – In the one-dimensional case (δ≪ 1),
the targets are randomly distributed on a line and motion
is simply ballistic. After a possible short transient, the
walker breaks the right-left symmetry and always moves
to the nearest target to its right (or left) so that x(t) is
a sum of same-sign independent random variables with
Poisson distribution. The 2d case (δ≫ 1) is sometime
called the “tourist walk” [1,2]: the trajectories are not
very different from 2d random walks, although slightly
superdiffusive [19].
For the cases δ=O(1) of interest here, the situation is

quite different and trajectories exhibit a rich structure. As
shown in fig. 1 at δ= 4.1, the motion is on average ballistic
due to the confining effect of the horizontal walls. The
numerically calculated root-mean-square displacement
〈x(t)2〉1/2 follows a linear behavior with time (not shown
here). Note that the walker horizontal velocity x(t)−
x(t−1) often changes sign: the walker performs many
“backward excursions” while drifting along the strip.
These excursions, that were observed in a preliminary
study of the model [10], can be explained qualitatively.
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Fig. 1: Space-time diagram of a trajectory with δ= 4.1 (x is in
unit of l0).

A walker drifting, say, toward the left does not necessarily
visit all the targets of a given neighborhood on its way and
may ignore some targets. From time to time, rules i) and
ii) make the walker turn back and visit these unvisited
targets toward the right, until it ends up in a region
depleted of available targets. In that case, a single step
can bring the walker back to the unexplored region
located to the left.
Unexpectedly, backward excursions of all sizes can be

observed in fig. 1a. Whereas most excursions are short,
some can be of order 102–103× l0, e.g. near t= 9300.
A close-up of fig. 1a (inset b) reveals further details
and suggests that the trajectory is fractal. In [10,11], it
was found that these intermittent backward excursions
can lead to “Lévy-like” distributions for the distance
separating successively visited targets, of the form ℓ−(1+µ),
with μ≃ 1 at δ= 4 [11].
Additionally, the sign of the drift velocity can change

suddenly at large t (e.g. at t≈ 600 and t≈ 5000 in fig. 1a).
Such inversions happen during a backward excursion, at
some point when the closest unvisited target is located,
say, to the right of x0 for a trajectory that was previously
drifting toward the left. Obviously, inversions cannot occur
in the 1d ballistic limit of the model. We investigate below
the possible existence of a transition between different
dynamical regimes as δ is varied.

Inversion probability and first-passage times. –

We define the explored interval at time t as [xmin(t),
xmax(t)], where xmin(t) (xmax(t)) is the coordi-
nate of the leftmost (rightmost) visited target after
t steps, respectively. A inversion (say, from right
to left) occurs during the t-th step if xmin(t)−
xmin(t− 1)< 0 and if there exists a time t′ < t such
that xmax(t

′)−xmax(t′− 1)> 0 and such that xmin(t′′)−
xmin(t

′′− 1) = xmax(t′′)−xmax(t′′− 1) = 0 for t′ < t′′ < t.
We then define Pinv(t) as the probability that an

inversion (to the left or right) occurs during the t-th step,

20001-p2



Intricate dynamics of a deterministic walk confined in a strip

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
6

10
5

10
4

10
3

10
2

101

P
in

v
(t

)

t

δ=3

δ=5

δ=4.1
δ=1.5

Fig. 2: Probability that the drift velocity changes its sign at
time t, as a function of t and for various strip widths. The
probabilities are calculated from 8× 104 independent random
media.
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Fig. 3: Same data as in fig. 2, replotted as tPinv(t) vs. t. Inset:
details of tPinv(t) for δ= 4 (◦), 4.1 (△), 4.2 (•).

and P0(t) as the probability that the walker crosses x0
during the t-th step. In the random walk language, P0
is analogous to the probability of presence at the origin.
If motion is essentially ballistic between two inversions, a
trajectory crosses its origin at large times only during an
inversion: Pinv and P0 have the same asymptotic behavior.
In fig. 2, the numerically computed Pinv(t) decays very

slowly with time for several O(1) values of the strip
width δ. In domains as narrow as δ= 1.5, after an initial
steep decay, Pinv(t) exhibits a surprising fat tail. At the
larger value δ= 4.1, Pinv(t) can be well fitted by the simple
inverse power law c/t, with c a constant. The same curves
are reploted in fig. 3 as tPinv(t) vs. t: for δ = 4.1, the curve
remains remarkably constant during almost 6 decades,
while strong corrections to scaling are present below and
above that parameter value (δ= 3 and 5). Very similar
results are obtained for P0(t).

Despite that the walker crosses less frequently the origin
than a 1d random walker (where P0(t)∼ t−1/2), the return
probability at large times in narrow strips (δ≪ t) remains
very high instead of being exponentially small as for usual
ballistic motion (e.g., a 1d random walker with a bias).
Contrary to random walks, sign changes in x(t) are

abrupt and not strongly correlated to the evolution of
x(t) during the preceding steps (see fig. 1). It is therefore
useful to make a connection between this result and a
simpler two-state stochastic problem consisting of a walker
moving ballistically on a line with two possible velocities,
v and −v. Starting in one state, the walker changes its
velocity in the time interval [t, t+1] with probability
pinv(t), that is given. It is well known that if pinv(t)
decays faster than 1/t, there is a finite probability that
the walker remains indefinitely in a same state (v or −v)
after reaching this state. If pinv(t) decays as 1/t or
slower, the probability that the walker remains in a same
state forever is zero. The behavior of the system is non-
ergodic in the former case, as the left-right symmetry is
asymptotically broken, while it is weakly non-ergodic1, or
ergodic in the latter case. Obviously, the above two-state
problem only provides an approximate description of our
model and makes sense only in the regime where inversions
are abrupt.
We investigate more in details the possibility of a non-

ergodic/weakly non-ergodic transition as the strip width
δ is increased across some critical value δc where Pinv(t)≃
c/t. Making an analogy between the behavior of Pinv
(or P0) and that of a correlation function near a critical
point, for δ slightly below δc one may look for a standard
scaling form: Pinv(t)≃ t−1g(t/τ(δ)), with g(x) a scaling
function rapidly decaying to zero at large x and τ(δ) a
diverging timescale as δ→ δc. The inset of fig. 3 displays
tPinv(t) vs. t for different values of δ near 4.1, showing
that the above ansatz does not hold.
Interestingly, the probability exhibits an unusual behav-

ior instead. First, the different curves cannot be rescaled
onto a single curve. Second, a pure power law behavior was
never obtained for Pinv(t) (nor P0(t)) for the values of δ
considered in this study. Intricate corrections to scaling
in the form of logarithmic oscillations are observed. Log-
oscillations have been observed in a variety of systems and
are a manifestation of the phenomenon of discrete scale
invariance [21]. Our log-oscillations have a large period, of
order 2 ln 10, which complicates the observation of several
periods: we cannot conclude whether they converge toward
a finite amplitude or are amplified. However, the ampli-
tude of the oscillations is minimum at δc ≃ 4.1.
The leading 1/t decay of Pinv at δc is probably not a

coincidence. From a renormalization group (RG) perspec-
tive, the model has a trivial attracting fixed point, δ∗ = 0,
corresponding to simple ballistic motion in very narrow
strips. The 1/t law indicates that δc should lie at the

1In this context, weakly non-ergodic means that both states
always remain accessible to the walker, although the time interval
between two visits diverges asymptotically [20].
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Fig. 4: a) Probability distribution P1(t) of the first-passage time
at δ= 4.1 (△). Opposite side: probability distribution P (∆t) of
the time intervals between two consecutive zeros of Nu(t) for
δ= 4.1 (◦) and δ= 2.45 (•). P1(t) and P (∆t) are obtained from
8× 104 and 103 independent runs, respectively. b) Probability
distribution of the excursion duration (τ � 2). Lines are guides
to the eye.

boundary of the basin of attraction of that fixed point.
Besides, the increasing corrections from power law behav-
ior for δ slightly above δc (see fig. 3 at δ= 5) suggest that
RG trajectories above δc flow towards an other attract-
ing fixed point (that could be δ∗ =∞). This argument
supports the idea that the transition is not a cross-over
and that δc might be a non-trivial repelling fixed point.
An other possibility is that the walk may become

asymptotically ballistic without inversions after extremely
large times, unreachable with standard numerical meth-
ods. In this case, the results above would describe a very
long transient preceding an asymptotic regime of limited
practical relevance.
Other insights into inversion processes can be gained

from the distribution P1(t) of first-passage times. The
first-passage time is defined here as the step number when
the walker crosses x0 for the first time. As shown in fig. 4a,
a t−α law with α≃ 3/2 holds remarkably well over nearly
6 decades in the vicinity of δc. As for Pinv (and P0), log-
oscillations were detected in P1 at (and near) δc.
This exponent value can be qualitatively explained

with the help of the simple two-state approximation
described above, where the probability that the velocity
changes its sign for the first time at time t reads: p1(t) =

pinv(t)exp[−
∫ t
0
pinv(t

′)dt′]. If pinv ≃ c/t at large times,
then p1(t)∼ t−α with α= 1+ c. The numerical value of c
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Fig. 5: Number of unvisited targets Nu(t) as a function of t, at
early (a) and late (b) times, for a same trajectory below the
transition region (δ= 2.45).

calculated from Pinv at δ= 4.1 yields α≃ 1.33. This value
is close to, but lower than the observed 3/2. Therefore,
inversion events are not independent but probably long-
range correlated. It is actually surprising (and most likely
coincidental) that the first-passage exponent is close to the
simple value of the 1d random walk [22].

Backward excursions and unvisited sites. – We
now come back to the description of backward excursions,
that are much more frequent than inversion events. The
probability distribution of excursion durations, Pe(τ), can
be obtained from the sizes of the time intervals when
xmin(t) or xmax(t) remains constant. As shown in fig. 4b,
in the vicinity of δc this distribution is also well fitted
by a power law behavior, Pe(τ)∼ τ−β , with β ≃ 2.7. This
distribution has finite first moment but infinite variance.
On average, the walker remains “trapped” in an excursion
during a finite number of steps, but its progression is quite
intermittent. For strip widths well below δc, excursions are
still observed and Pe(τ) remains fairly broad, although
it can no longer be fitted with a power law. Generally
speaking, backward excursions tend to restore the right-
left symmetry of the system. For this reason they are
reminiscent of the effect of thermal fluctuations on a
broken symmetry phase in equilibrium.
Another quantity of interest related to excursion

dynamics is the number of unvisited sites in the explored
interval [xmin(t), xmax(t)], denoted as Nu(t). As shown in
fig. 5a, for values of δ below δc, Nu(t) displays cycles of
irregular durations analogous to oscillations in excitable
systems. The cycles are composed of i) a slowly increasing
part on average and ii) a fast decay down to zero. This
behavior reflects the fact that a small fraction of sites
are left as unvisited while the walker is drifting in the
disordered medium, leading to an increase in Nu(t).
These sites can be visited later, in a long backward
excursion, leading to an “avalanche-type” relaxation of
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Nu(t). (Note that many smaller excursions also occur
during the ascending part of Nu(t).) The distribution
of the time intervals ∆t between two successive zeros of
Nu(t) is displayed in fig. 4a. One expects P (∆t) and the
first-passage time distribution P1(t) to have the same
asymptotic behavior, as observed. At δ= 4.1, one finds
P (∆t)∼ (∆t)−3/2, implying that 〈∆t〉=∞: Nu(t) grows
asymptotically unbounded. In the transition region, the
walker is therefore unable to visit all the targets of the
explored interval at large time (it is “inefficient”). Below
δc, the distribution P (∆t) decays faster (fig. 4a) and the
evolution of Nu(t) seems to have a characteristic cut-off
period. In fig. 5a, where δ is well below δc, this charac-
teristic time is still very long (∼ 104). Large avalanches,
where Nu drops from about 600 to 0, are present.
The walker is a priori “efficient” below δc, since it

regularly leaves no sites as unvisited (fig. 5a). However,
this behavior is not persistent on very large time scales,
as shown in fig. 5b. Surprisingly, at a given time that can
be of order 106 or more, Nu(t) does not come back to zero
and starts to oscillate above a finite value. This happens
when a large excursion fails to visit some of the unvisited
targets left behind. After such an incomplete excursion,
〈∆t〉 obviously starts to grow with time. This behavior
is observed in a whole range of parameter values below
δc, down to about δ∼ 1.30. The walk is therefore efficient
during a finite time, until a “catastrophic” event with very
large ∆t occurs.
One can draw an analogy between these “outliers”

and very large earthquakes or financial crisis in other
contexts [23,24]: their magnitude cannot be explained
from a simple extrapolation of the distribution P (∆t), as
displayed in fig. 4a, to larger arguments. Here, outliers are
unusual precursory patterns of the power law distribution
(in sharp contrast with common critical phenomena) and
can be attributed to the presence of log-oscillations in
P (∆t): As noticeable in fig. 4a, after an initial steeper
decay, the distribution for δ= 2.45< δc very closely
approaches the critical curve for a range of values around
∆t1 ∼ 5× 103, before decaying fast again. Although
computational limitations do not allow to observe more
log-periods, it is very likely that the next oscillation can
reach (or even cross) the critical distribution, for some
values ∆t2≫∆t1 (see fig. 3 for a similar behavior at
δ= 3). Therefore, the emergence of very large intervals of
order ∆t2 between the zeros of Nu becomes as probable
as at δc. This explains qualitatively the time series of
figs. 5a,b, composed of many intervals of order 103–104

followed by a single one of much larger size, precursor of
the critical regime with diverging 〈∆t〉.

Discussion. – We have shown that a simple self-
avoiding process taking place in a confined Poissonian
random medium can display complex dynamics and broad
distributions in a wide parameter range. Quenched disor-
der introduces randomness in the model, that other-
wise follows simple deterministic rules. Similar results as

reported here should be observed in a semi-infinite strip
with the walker initially located at one end, with the differ-
ence that the walker would drift without inversions.
In ref. [7], the trajectories generated by the Red-Queen

rules can be similar to random walks after time scales that
depend strongly on the lattice size and geometry [7]. In
contrast with the Red-Queen Walk, where sites can be
revisited after a very long time, our model has infinite
memory, leading to intermittent and complex behavior.
The evolution of single species is known to be intermit-

tent and not gradual, long period of stasis being “punc-
tuated” by burst of rapid biological changes [25]. Such
active periods might be driven by the internal dynamics
of evolution. According to the fossil record, the number
of genera with a lifetime τ follow a power law N ∼ 1/τβ ,
with β ≃ 2 [26]. The Bak-Sneppen model [27] considers
interacting species with high mutation barriers, leading to
self-organized critical states with β = 1.1 [26]. This evolu-
tion is slower than observed because it occurs by collec-
tive modes, or avalanches. Changes are easier in our model
(where explicit interactions are ignored), but still intermit-
tent. The distribution of time intervals between successive
changes in xmax, for instance, is fitted with an exponent
β = 2.7. One may speculate that phenotypic restrictions
could play a role on the punctuated dynamics of evolu-
tion, in addition to species interactions.
Our system does not become critical in an ordinary

way. At δc, the inversion probability of the drift velocity
decays as a power law with small log-periodic correc-
tions. In a first-harmonic approximation [21], Pinv(t)≃
ct−1[1+ a1cos(2πln t/lnλ)], with a1≪ 1 and λ≈ 100.
This asymptotic regime is numerically hard to reach, as
observed in other problems with log-oscillations [15,28].
The leading term above represents the law that separates,
in analogy with a two-state stochastic process, asymptot-
ically ballistic (non-ergodic) trajectories and walks that
keep changing direction indefinitely.
The log-oscillations present in various distribution

functions indicate the presence of a hierarchy of time
scales related to each other by a particular scaling factor
λ, such that P (λt)≃ λαP (t). These oscillations are often
displayed by cooperative phenomena taking place on
hierarchical structures (spin models near criticality [21],
contact processes [29]), or by random walk models with
memory [15,30], among other examples. In ref. [28]
log-oscillations appear in a simple biased 1d random walk
model in a disordered medium containing a small fraction
of “slow” sites, where the walker jumps in the direction
opposite to the bias with a probability close to one. These
slow sites are somehow analogous to our (dynamically
generated) backward excursions. A crucial ingredient
leading to log-oscillations in [28] is spatial discreteness,
where clusters of slow sites trap the walker during a time
that increases exponentially with the cluster size. In our
model, no such discreteness is apparent. Instead, inversion
events are correlated in a complicated way: if the strip
is sufficiently narrow, an inversion cannot occur in the
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interval [t1, 2t1] if an inversion occurred at time t1. The
time intervals separating inversions might introduce a
particular scaling factor, although its precise origin is
unclear.
Well below the critical region, the distributions exhibit

log-oscillations of irregular amplitudes whose maxima can
be identified with outliers, that are “wild” precursors of
critical fluctuations. From the above discussion, the char-
acteristic size of these events can be roughly extrapolated
as being of order λn (n= 1, 2 . . .), and as probable as at
criticality. At δc, these specific scales are mixed with all
the others (a1≪ 1), in a practically scale-invariant distri-
bution. A detailed study the behavior near δc remains to
be done. Correlation functions (e.g. velocity) other than
Pinv might exhibit clearer scaling relations.
In this scenario, it is however clear that outliers exist

in a wide parameter range and do not even require that
the bulk of the distribution follows a power law. On the
contrary, they are off-critical events by nature. This prop-
erty has to be contrasted with more common views in seis-
mology, for instance, where outliers are either considered
as coming from the tail of power law distributions [31], or,
in a more refined way, as coming from a bump at large sizes
in a otherwise power law distribution of bulk events [32].

∗ ∗ ∗

Fruitful discussions with H. Larralde, F. Leyvraz,
M. G. E. da Luz, O. Miramontes, A. Robledo and
G. M. Viswanathan are gratefully acknowledged.

REFERENCES

[1] Lima G. F., Martinez A. S. and Kinouchi O., Phys.
Rev. Lett., 87 (2001) 010603.

[2] Stanley H. G. and Buldyrev S. V., Nature, 413 (2001)
373.

[3] Chowell G., Hyman J. M., Eubank S. and Castillo-
Chavez C., Phys. Rev. E, 68 (2003) 066102.

[4] Brown C. T., Liebovitch L. S. andGlendon R., Hum.
Ecol., 35 (2007) 129.

[5] Boyer D., Ramos-Fernandez G., Miramontes O.,
Mateos J. L., Cocho G., Larralde H., Ramos H.

and Rojas F., Proc. R. Soc. B, 273 (2006) 1743.
[6] Grosfils P., Boon J. P., Cohen E. G. D. and
Bunimovich L. A., J. Stat. Phys., 97 (1999) 575.

[7] Freund H. and Grassberger P., Physica A, 190 (1992)
218.

[8] Bunimovich L. A., Physica D, 187 (2004) 20.
[9] Derrida B. and Flyvbjerg H., J. Phys. (Paris), 48
(1987) 971.

[10] Boyer D., Miramontes O., Ramos-Fernandez G.,
Mateos J. L. and Cocho G., Physica A, 342 (2004)
329.

[11] Santos M. C., Boyer D., Miramontes O.,

Viswanathan G. M., Raposo E. P., Mateos J. L.

and da Luz M. G. E., Phys. Rev. E, 75 (2007) 061114.
[12] Elson E. C., Bassett B. A., van der Heyden K. and

Vilakazi Z. Z., Astron. Astrophys., 464 (2007) 1167.
[13] Kinouchi O., Martinez A. S., Lima G. F., Lourenço

G. M. and Risau-Gusman S., Physica A, 315 (2002) 665.
[14] Campiteli M. G., Batista P. D., Kinouchi O. and

Martinez A. S., Phys. Rev. E, 74 (2006) 026703.
[15] Cressoni J. C., da Silva M. A. A. and Viswanathan

G. M., Phys. Rev. Lett., 98 (2007) 070603.
[16] Kauffman S. A., At Home in the Universe (Oxford

University Press, Oxford) 1995.
[17] Ponmurugan M., Narasimhan S. L. and Murthy

K. P. N., Physica A, 371 (2006) 171.
[18] Arnols S. J., in Behavioral Mechanisms in Evolutionary

Ecology, edited by Real L. A. (University of Chicago
Press, Chicago) 1994, p. 258.

[19] Lopez-Corona O. and Boyer D., unpublished.
[20] Bouchaud J. P., J. Phys. I, 2 (1992) 1705.
[21] Sornette D., Phys. Rep., 297 (1998) 239.
[22] Redner S., A Guide to First-Passage Processes

(Cambridge University Press, Cambridge) 2001.
[23] Sornette D., arXiv:0707.2194v1.
[24] Sornette D., in Extreme Events in Nature and Society,

edited by Albeverio S., Jentsch V. and Kantz H.
(Springer, Berlin) 2006, p. 95.

[25] Gould S. J. and Eldredge N., Paleobiology, 3 (1977)
115.

[26] Sneppen K., Bak P., Flyvbjerg H. and Jensen M. H.,
Proc. Natl. Acad. Sci. U.S.A., 92 (1995) 5209.

[27] Bak P. and Sneppen K., Phys. Rev. Lett., 71 (1993)
4083.

[28] Bernasconi J. and Schneider W. R., J. Phys. A: Math.
Gen., 15 (1982) L729.

[29] Bab M. A. and Albano E. V., J. Phys. A: Math. Theor.,
41 (2008) 045001.

[30] Kenkre V. M., arXiv:0708.0034v2.
[31] Bak P., Tang C. andWiesenfeld K., Phys. Rev. Lett.,

59 (1987) 381.
[32] Gil L. and Sornette D., Phys. Rev. Lett., 76 (1996)

3991.

20001-p6


