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We analyze a class of estimators of the generalized diffusion coefficient for fractional Brownian motion Bt of
known Hurst index H , based on weighted functionals of the single-time square displacement. We show that for
a certain choice of the weight function these functionals possess an ergodic property and thus provide the true
ensemble-average generalized diffusion coefficient to any necessary precision from single-trajectory data, but at
the expense of a progressively higher experimental resolution. Convergence is fastest around H � 0.30, a value
in the subdiffusive regime.
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Single-molecule spectroscopy techniques allow the track-
ing of single particles over a wide range of time scales [1–3]. In
complex media such as living cells, a number of recent studies
have reported evidence for subdiffusive transport of particles
such as proteins [4], viruses [5], chromosome monomers [6],
mRNA [7], and lipid granules [8]. Subdiffusion is typically
characterized by a sublinear growth with time of the mean
square displacement (MSD) E(B2

t ) = Ktν with ν < 1, where
Bt is the particle position at time t , E denotes the ensemble
average, and K is a generalized diffusivity.

A growing body of single-trajectory studies suggest that
fractional Brownian motion (FBM), among the variety of
stochastic processes that produce subdiffusion, may be a
model particularly relevant to subcellular transport. Fractional
Brownian motion is a Gaussian continuous-time random
process with stationary increments and is characterized by
a so-called Hurst index H = ν/2. If H < 1/2, trajectories
are subdiffusive with increments that are negatively and
long-range correlated [9]. Such correlations were observed
in subdiffusing mRNA molecules [10], RNA proteins, and
chromosomal loci [4] within E. coli cells. Similarly, FBM can
be used to describe the dispersion of apoferritin proteins in
crowded dextran solutions [11] and of lipid molecules in lipid
bilayers [12].

Whereas the determination of an anomalous exponent
from data has been extensively studied, as it demonstrates
deviation from standard Brownian motion (BM), the prob-
lem of estimating the generalized diffusion constant K has
received much less attention. It appears that K is much more
sensitive than ν to many biological factors and its precise
determination can potentially yield valuable information about
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the kinetics of transcription, translation, and other physi-
cobiological processes. The generalized diffusivity of RNA
molecules in bacteria is greatly affected (either positively
or negatively) by perturbations, for instance, treatment with
antibiotic drugs, which have, however, a negligible effect on
ν [4]. Likewise, the coefficient K of lipids in membranes is
strongly reduced by small cholesterol concentrations, whereas
ν remains unchanged [12]. In the context of search problems,
a particle following a subdiffusive FBM actually explores the
three-dimensional space more compactly than a BM and can
have a higher probability of eventually encountering a nearby
target [13]. The larger the value of K , the faster this local
exploration.

In this paper, generalizing our previous results for standard
BM [14], we present a method to estimate the ensemble-
average diffusivity K from the analysis of single FBM
trajectories of a priori known anomalous exponent. Estimating
diffusion constants from data is not an easy task when trajec-
tories are few and ensemble averages cannot be performed.
Brownian motion and FBM are ergodic processes and time
averages tend to ensemble averages, but convergence can be
slow [15]. For finite trajectories of finite resolution, variations
by orders of magnitude have been observed for estimators of
the normal diffusion coefficient obtained from single particles
moving along DNA [16], in the plasma membrane [2] or in
the cytoplasm of mammalian cells [17]. Large fluctuations are
also manifest in subdiffusive cases [4,12].

A broad dispersion in the measures of the diffusion
coefficient raises important questions about optimal fitting
methodologies. A reliable estimator must possess an ergodic
property so that its most probable value should converge to
the true ensemble average independently of the trajectory
considered and its variance should vanish as the observation
time increases. Recently, much effort has been invested
in the analysis of this challenging problem and several
different estimators have been analyzed, based, e.g., on the
sliding time-average square displacement [18,19], the mean
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length of a maximal excursion [20], the maximum likelihood
approximation [21–25], and optimal weighted least-squares
functionals [14].

Our aim here is to determine an ergodic least-squares
estimator for the generalized diffusion coefficient when the
underlying stochastic motion is given by a FBM. The estima-
tors considered here are single-time quantities, unlike others
based on fits of two-time quantities such as the time-average
MSD.

Let us consider a fractional Brownian motion Bt in one
dimension with B0 = 0 and zero expectation value for all t ∈
[0,T ], where T is the total observation time. The covariance
function of the process is given by [9]

Cov(Bt,Bs) = E{(Bt − E{Bt })(Bs − E{Bs})}
= K

2
(t2H + s2H − |t − s|2H ), (1)

where D (=K/2) is the generalized diffusion coefficient and
the Hurst exponent H ∈ (0,1). The Hurst index describes
the raggedness of the resulting motion, with a higher value
leading to a smoother motion. Standard Brownian motion
is a particular case of the FBM corresponding to H = 1/2.
As already mentioned, for H < 1/2 the increments of the
process are negatively correlated, so the FBM is subdiffusive.
In contrast, for H > 1/2 the increments of the process are
positively correlated and superdiffusive behavior is observed.

We consider a single trajectory Bt , that is, a particular
realization of a FBM process with a known H , and write
the following weighted least-squares functional:

F = 1

2

∫ T

0
dt W (t)

(
B2

t − Kf t2H
)2

, (2)

where W (t) is some weighting function to be determined
afterward and Kf is a trial parameter. We call Kf an
estimate of the generalized diffusion coefficient from the
single trajectory Bt if it minimizes F . Calculating the
partial derivative ∂F/∂Kf , setting it to zero, and solving
the resulting equation for u = Kf /K , we find the following
least-squares estimator of the generalized diffusion coefficient
K:

u ≡ Kf

K
= 1

K

∫ T

0 dt ω(t)B2
t∫ T

0 dt t2Hω(t)
, (3)

where we have introduced the notation

ω(t) = t2HW (t). (4)

Note that the estimator u measures the ratio of the observed
generalized diffusion coefficient for a single given trajectory
relative to the ensemble-average value. Moreover, E{u} ≡ 1
holds for any arbitrary ω(t), making it possible to compare
the effectiveness of different choices of ω(t). It is worth-
while remarking that u is given by a single-time integration
(a local functional) and thus differs from other estimates
used in the literature that involve two-time integrals (see,
e.g., [15]).

Further on, from a straightforward calculation the variance
of the estimator u is, for arbitrary weight function ω(t),

Var(u) = 1

K2

∫ T

0

∫ T

0 dt ds ω(t)ω(s)Cov
(
B2

t ,B
2
s

)
( ∫ T

0 dt t2Hω(t)
)

2
, (5)

where Cov(B2
t ,B

2
s ) is the covariance function of a squared

FBM trajectory

Cov
(
B2

t ,B
2
s

) = E
{(

B2
t − E

{
B2

t

})(
B2

s − E
{
B2

s

})}
. (6)

This function can be calculated exactly using Eq. (1) to give

Cov
(
B2

t ,B
2
s

) = 2 Cov2(Bt,Bs)

= K2

2
(t2H + s2H − |t − s|2H )2. (7)

Inserting the latter expression into Eq. (5) and noticing that the
kernel is a symmetric function of t and s, we have

Var(u) =
∫ T

0

∫ t

0 dt ds ω(t)ω(s)[t2H + s2H − (t − s)2H ]2

( ∫ T

0 dt t2Hω(t)
)2 .

(8)

Following Ref. [14], we choose

ω(t) = (t0 + t)−α, (9)

where t0 is a lag time and α a tunable exponent. In a
discrete-time description, t0 can be set equal to the interval
between successive measurements [14]. We thus identify t0 as
a resolution parameter in the present continuous description.
We also note that in [14], it was proven that a power-law weight
function of the type in Eq. (9) was optimal among all weight
functions. Fixing t0 and scanning over different values of α,
we seek the value for which the variance of u is smallest.
Hopefully, for a such value, the variance should vanish
in the limit of infinite resolution or infinite data size, i.e., when
the parameter ε = t0/T tends to zero. To check the latter point,
we consider first the limit of an infinitely long observation time
ε = 0. For α < γH = 1 + 2H the integrals in Eq. (8) can be
performed exactly yielding

Var(u) = γH − α

2

(
1

1 − α
+ 2

γH − α

+ 1

2γH − 1 − α
− 2

�(1 − α)�(γH )

�(1 + γH − α)

+ �(1 − α)�(2γH − 1) − 2�(γH )�(γH − α)

�(2γH − α)

)
,

(10)

where �(·) is the Gamma function. In contrast, for α > γH =
1 + 2H and ε = 0, the result in Eq. (8) can be conveniently
represented as a single integral

Var(u) = �(2γH )�(2α − 2γH )�2(α)

�2(α − γH )�2(γH )

×
∫ 1

0
[1 + (1 − x)2H − x2H ]2

2F1(α,2γH ,2α; x),

(11)
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FIG. 1. (Color online) Variance in Eqs. (10) (for α < 1 + 2H )
and (11) (for α > 1 + 2H ) as a function of α for different values of
the Hurst parameter H .

where 2F1 (·) is the hypergeometric function. The integral
in Eq. (11) can also be performed exactly by using the
series representation of the hypergeometric function and
then resumming the resulting series. However, the expression
obtained is rather lengthy as it contains several hypergeometric
functions 3F2 (·). In contrast, the result in the form of Eq. (11)
can be tackled by MATHEMATICA; in addition, the asymptotic
behavior can be easily extracted from it, so we prefer to work
with the compact expression (11) rather than with an exact but
cumbersome expression.

In Fig. 1 we show the dependence of the variance of the
estimator u on the exponent α for different values of the Hurst
index H . We notice that for any fixed H , the variance vanishes
as α approaches α = 1 + 2H and is nonzero for any other
value. This means that for a fractional Brownian motion with
Hurst index H the estimators in Eq. (3) with power-law weight
functions ω(t) = (t0 + t)−α possess an ergodic property only
when α = 1 + 2H .

The last issue we discuss is that of the decay rate of the
variance when ε is small but finite in the ergodic case α =
1 + 2H . It is straightforward to show from Eq. (8) that in the
limit ε → 0 the variance is given to leading order by

Var(u) ∼ C(H )

ln(1/ε)
, (12)

where C(H ) is a constant defined by

C(H ) =
∫ 1

0

dx

x1+2H
[1 + x2H − (1 − x)2H ]2, (13)

which exists for any H ∈ (0,1). This result generalizes that
of Ref. [14] for ordinary Brownian motion. We conclude
that the variance of the estimator vanishes logarithmically
with the total observation time. In other words, the diffusion
constant estimated from one trajectory by this method tends
toward the correct value logarithmically slowly. The prefactor
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FIG. 2. (Color online) Prefactor in Eq. (12) as a function of the
Hurst index.

C(H ), which is displayed in Fig. 2, reaches a minimum at
H ∗ � 0.30. From Fig. 2 we notice that, keeping the resolution
ε fixed, the variance of u will typically be small for processes
with H ∈ [0.15,0.6]. This interval encompasses almost all
the anomalous exponent values reported in single-particle
studies. Conversely, the function C(H ) diverges as H → 0
or 1. Therefore, we can expect that, even with the ergodic
choice of α, the estimates of the diffusion constant should
become highly inaccurate for nearly localized or nearly
ballistic FBM processes.

In conclusion, we have shown that the true ensemble-
average generalized diffusion coefficient K of a fractional
Brownian motion of known Hurst index H can be obtained
from single-trajectory data using the weighted least-squares
estimator in Eq. (3) with the weight function ω(t) = 1/(t0 +
t)1+2H . Such an estimator possesses an ergodic property so
that K can be evaluated with any necessary precision but at the
expense of increasing the observation time T (or decreasing t0).
A limitation of the present class of estimators, which are
based on single-time functionals of B2

t , is admittedly their
slow convergence toward the ensemble average. Two-time
functionals, based on the time-average MSD, for instance,
exhibit faster convergence: For FBM with H < 3/4 the relative
variance of the time-average MSD vanishes as t0/T [15].
Nevertheless, these other estimators might be more sensitive
to measurement errors and may not be accurate when diffusion
is no longer a pure process but a mixture of processes
with different characteristic times. A quantitative comparison
between estimators beyond the ideal cases considered here is
a necessary future step.
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