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Optimal fits of diffusion constants from single-time data points of Brownian trajectories
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Experimental methods based on single particle tracking (SPT) are being increasingly employed in the physical
and biological sciences, where nanoscale objects are visualized with high temporal and spatial resolution. SPT
can probe interactions between a particle and its environment but the price to be paid is the absence of ensemble
averaging and a consequent lack of statistics. Here we address the benchmark question of how to accurately extract
the diffusion constant of one single Brownian trajectory. We analyze a class of estimators based on weighted
functionals of the square displacement. For a certain choice of the weight function these functionals provide the
true ensemble averaged diffusion coefficient, with a precision that increases with the trajectory resolution.
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Single particle tracking (SPT) generates the time series
of the position of an individual particle trajectory Bt in a
medium (see, e.g., [1,2]). Properly interpreted, the information
so obtained provides an insight into the mechanisms and forces
that drive or constrain the motion of the particle [3]. Nowadays
single particle tracking is extensively used to characterize
the microscopic rheological properties of complex media
[4] and to probe the active motion of biomolecular motors
[5]. In biological cells and complex fluids, SPT methods
have become instrumental in demonstrating deviations from
standard Brownian motion (BM) [6–10].

The reliability of the information drawn from SPT analysis
is not always clear: Data is obtained at high temporal and
spatial resolution but at the expense of statistical sample size.
Time averaged quantities associated with a given trajectory
are subject to large fluctuations across trajectories. For a
wide class of anomalous diffusion problems, for instance,
time averages of certain particle’s observables are, by their
very nature, random variables distinct from their ensemble
averages [11–14].

Even though standard BM is much better understood than
anomalous diffusion processes, averaging problems persist
and complicate the analysis of single trajectories. Moreover,
in bounded systems, substantial manifestations of sample-to-
sample fluctuations occur in first passage time phenomena
[15]. Standard fitting procedures applied to a finite Brownian
trajectory unavoidably lead to fluctuating estimates Df of the
diffusion coefficient, due to different thermal histories, particle
interactions with different defects, or simply due to blur and
localization errors, as discussed in [16–18]. In fact, Df might
be very different from the true ensemble average value D, as
noticed in SPT measurements of diffusion along DNA [19], in
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the plasma membrane [2], or in the cytoplasm of mammalian
cells [20].

The broad dispersion of estimate values extracted from
common SPT analysis raises an important question: Does
an optimal methodology able to determine the diffusion
coefficient from just one single trajectory exist? Clearly, it
is highly desirable to have an estimator of this kind even for
hypothetical pure cases, such as the unconstrained standard
BM with perfectly known location at a given time. Such an
estimator should possess an ergodic property, i.e., its most
probable value should converge to the ensemble average and
its variance should vanish as the observation time increases.
In addition, knowledge of the distribution of a family of
estimators could provide a way to disentangle the effects of the
medium complexity or localization errors from variations due
to the thermal noise driving microscopic diffusion. Recently it
was found that two-time estimates of the diffusion constant for
Brownian trajectories with N points can be used to estimate
the diffusion constant with a variance ∼1/N [16–18].

In this Rapid Communication, we show surprisingly, that
among the basic fits using one-time quantities there is a unique
fit achieving a variance 1/ ln(N ). We focus on determining,
when one applies a weighted least-square fit to a BM trajectory,
an appropriate weight function which makes the method
ergodic. We assume that the Brownian trajectory is known
with a given resolution and do not take into account any
additional observational error. We study a family of weighted
least-squares estimators (uμ) of the diffusion coefficient of
standard d-dimensional BM, given by the following quadratic
functionals of a trajectory Bt :

uμ = Aμ

T

∫ T

0
dt ω(t)B2

t , (1)

where Bt=0 = 0, ω(t) is some “trial” weight function of the
form

ω(t) = 1

(t0 + t)μ
, (2)
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μ being a tunable exponent, T —the observation time, t0—
a certain lag time (t0 � T ), and Aμ—the normalization
constant. The term “least-squares” and the choice of the weight
function will be made clear below.

Here we evaluate the distribution P (uμ) for arbitrary μ

and spatial dimension d. To easily compare the accuracy of
estimators with different values of μ, we chose Aμ such that
E{uμ} ≡ 1, where the symbol E{. . .} denotes the ensemble
average. Hence, uμ = Df /D with D being the diffusion
constant,

D = E
{
B2

t

}
2dt

, (3)

and Df —its estimate from Bt . The best choice of μ should
produce P (uμ) whose maximum u∗ is the closest to the
ensemble averaged value 1 and have the smallest variance
Var(uμ). Ultimately, we seek the choice at which uμ is ergodic,
i.e., Df → D, independently of Bt as ε ≡ t0/T → 0.

Before we proceed, two remarks are in order. First, note
that μ = −1 corresponds to the standard least-square estimate
(LSE) of the square displacement [2,16,20,21]. The case μ = 1
arises when the unconditional probability of observing the
whole trajectory Bt is maximized (assuming that it is Brown-
ian). It is the so-called maximum likelihood estimate (MLE),
known to be more accurate than the LSE [16–18,22,23].

We next give a physical interpretation of the estimators in
Eq. (1). Consider a least-squares functional:

F = 1

2

∫ T

0

ω(t)dt

t

(
B2

t − 2dDf t
)2

, (4)

which generalizes the usual functional by adding a time
dependent weight function ω(t) [the standard choice—LSE—
is ω(t) ≡ t]. The value of Df that minimizes F is

Df

D
=

(
1

T

∫ T

0
dt ω(t)B2

t

)/(
2dD

T

∫ T

0
dt tω(t)

)
. (5)

One recovers Eq. (1) by choosing the weight function ω(t) =
(t0 + t)−μ and identifying the denominator with 1/Aμ. Hence
uμ minimizes a functional (4) and can be referred to as a
weighted least-squares estimator. Furthermore, as we discuss
below, the continuum limit of Eq. (23) shows that for the
function with μ = 2 in Eq. (2), the weight function minimizes
the variance of uμ.

The moment generating function �(σ ) of the random
variable uμ, Eq. (1), is defined as

�(σ ) = E{e−σuμ}. (6)

This function can be calculated using the Feynman-Kac
formula (see Refs. [22,23] for more details). For μ �= 2, we
find that to leading order in ε = t0/T ,

�(σ ) =
[
�(ν)

(
σ

χ1

)(ν−1)/2

I1−ν

(
2
√

σ

χ1

)]−d/2

, (7)

for μ < 2, while for μ > 2 it obeys

�(σ ) =
[
�(1 − ν

(
σ

χ2

)ν/2

I−ν

(
2
√

σ

χ2

)]−d/2

, (8)
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FIG. 1. (Color online) The variance of the distribution P (uμ) for
different values of μ. The curves correspond to Eq. (9). The symbols
correspond to the values obtained from direct numerical simulations
of 3D random walks for (from light to dark) ε = 5 × 10−5, 5 × 10−6,
and 5 × 10−7.

where ν = 1/(2 − μ), χ1 = d(2 − μ)/2, χ2 = d(μ − 2)/
2(μ − 1), and Iμ(z) is the modified Bessel function [24].

The variance Var(uμ) of P (uμ) is obtained by differentiat-
ing Eqs. (7) or (8) twice with respect to σ . For arbitrary μ �= 2
it is then given explicitly by

Var(uμ) = 2

d

{
(2 − μ)/(3 − μ), μ < 2

(μ − 2)/(2μ − 3), μ > 2.
(9)

The consequence of the latter equation is shown in Fig. 1.
Unexpectedly, the variance can be made arbitrarily small at
leading order in ε by taking μ gradually closer to 2, either
from above or from below. The slopes at μ = 2+ and μ = 2−
appear to be the same, so that the accuracy of the estimator
will be the same for approaching μ = 2 from above or
below.

A word of caution is now in order. Finite-ε corrections to
the result in Eq. (9) are of the order O(ε2−μ) for 1 < μ < 2.
Therefore the asymptotic behavior above can only be attained
when ε � exp [−1/(2 − μ)]. In other words, the variance can
be made arbitrarily small by choosing μ closer to 2, but only at
the expense of increasing the experimental resolution (t0 → 0
or T → ∞).

To confirm our analytical results we simulated random
walks on a 3d lattice and computed P (uμ) using Eq. (1) from
a large ensemble of trajectories, for different values of μ and
different resolution ε. For μ < 1.5 or μ > 2.5, the variance
computed numerically is well described by Eq. (9) and is
independent of ε (Fig. 1). Near μ = 2, corrections due to
the finite resolution are noticeable, but the numerics clearly
show that the variance of the distribution P (uμ) decreases
as ε → 0.

The large- and small-u asymptotics of P (uμ) can be
deduced directly from Eqs. (7) and (8). For μ < 2 and uμ � 1,
P (uμ) shows a singular behavior:

P (uμ) ∼ exp

(
− d2

4χ1uμ

)
1

u
ζ
μ

, ζ = 3

2
+ d

4

μ

|2 − μ| . (10)
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FIG. 2. (Color online) The distribution P (uμ) for different μ �= 2
in 3D systems. The curves correspond to numerical inversion of
Eq. (7) and the symbols to direct numerical simulations of random
walks: from dark to light, μ = −1 (circles), μ = 1 (squares), μ =
3/2 (triangles), and μ = 1.95 (stars). The numerical values were
obtained for ε = 10−5, except for μ = 1.95 for which we used ε =
10−7. Recall that μ = −1 corresponds to LSE and μ = 1 to MLE
[16–18,22,23]. In the inset we depict the curves corresponding to the
inversion of Eq. (8): from dark to light μ = 5, 2.5, 2.1, and 2.05.

The asymptotic behavior for μ > 2 can be obtained from
Eq. (10) by simply replacing χ1 → χ2. Note that Eq. (10)
describes a bell-shaped function with a maximal value u∗ → 1
when μ → 2 from above or below for arbitrary d. Next, for
uμ 	 1 and μ < 2, we find

P (uμ) ∼ ud/2−1
μ exp

(
− χ1γ

2
1−ν,1

4
uμ

)
, (11)

where γν,1 is the first zero of the Bessel function Jν(z) [24].
Results for μ > 2 follow from Eq. (11) via the replacements
χ1 → χ2 and γ1−ν,1 → γ−ν,1. As μ gradually approaches 2,
the distribution becomes increasingly narrow: the left tails
vanish because of the divergence of the factor 1/|2 − μ| in the
exponential, while the right tails vanish because |2 − μ|γ 2

−ν,1

and |2 − μ|γ 2
1−ν,1 diverge.

The distributions P (uμ), obtained by inverting Eqs. (7) and
(8), are plotted in Fig. 2. Indeed, the maximal value u∗ → 1
when μ → 2 either from above or from below. Already for
μ = 1.95 (or μ = 2.05) we get the most probable value u∗ ≈
0.94, which outperforms the LSE (u∗ ≈ 0.47) and the MLE
(u∗ ≈ 0.6). For μ = 1.95 the variance Var(uμ) ≈ 0.032, which
is an order of magnitude less than the variances observed for
LSE (=0.5) and the MLE (≈0.33). Similarly to Fig. 1, finite-
resolution corrections are negligible for μ < 3/2, and P (uμ)
is well described by Eq. (7). For μ = 1.95 and finite resolution
ε = 10−7, we obtain a broader distribution and with a smaller
u∗ than that corresponding to Eq. (7) for infinite resolution.
However, note that the most probable value of P (u1.95) that
we obtain at finite resolution is ≈0.84, which outperforms the
LSE and MLE for infinite resolution.

We turn next to the case μ ≡ 2 with ε = t0/T small but
finite, seeking the variance and the distribution of uμ=2. We

consider a slightly more general form for ω(t):

ω(t) =
{

2ξ/t2
0 , for t < t0

1/t2, for t0 � t � T ,
(12)

where ξ is a tunable amplitude. For such a choice, the moment
generating function is given explicitly by

�(σ ) =
(

2 δ ε(δ−1)/2

φ+

)d/2[
1 + φ−

φ+
εδ

]−d/2

,

φ± = (δ ± 1)

[
cosh(

√
2γ ξσ ) ± δ ∓ 1

2
√

2γ ξσ
sinh(

√
2γ ξσ )

]
,

(13)

where δ = √
1 + 4γ σ and γ = 2/d [ξ + ln(1/ε)]. Differenti-

ating Eq. (13), we find

Var(u2) = 4

3d

3 ln(1/ε) − 3(1 − ε) + 2(1 − ε)ξ + ξ 2

[ξ + ln(1/ε)]2
. (14)

It is a nonmonotonic function of ξ with a minimum at

ξ = ξopt = (2 + ε) ln(1/ε) − 3(1 − ε)

ln(1/ε) + ε − 1
. (15)

The corresponding optimized variance is given by

Varopt(u2) = 4

3d

3 ln(1/ε) − 4 + 5ε − ε2

ln(1/ε) [ln(1/ε) + 1 + 2ε] − 3(1 − ε)
.

(16)

From Eq. (16) we find that in 3d Varopt(u2) ≈
0.144,0.096,0.082 for ε = 10−3,10−5,10−6, respectively.
When ε → 0, Varopt(u2) vanishes as

Varopt(u2) ∼ 4

d

1

ln(1/ε)
. (17)

Therefore, Varopt(u2) can be made arbitrarily small but at the
expense of a progressively higher resolution. In the limit ε → 0
the distribution converges to a delta function. The estimators
with μ = 2 are the only ones, in the family defined by Eqs. (1)
and (2), that possess an ergodic property. This is shown in
Fig. 3 where we plot P (u2) obtained by numerically inverting
Eq. (13) for different resolutions. The symbols in this figure
correspond to numerical simulations using the weight function
of Eq. (12).

Finally let us consider the case of BM recorded at discrete
regular time steps (the calculation can be extended to an
arbitrary sequence of time steps [25]) �j , j = 1, . . . ,N

(T = �N ), which is an important problem in its own right but
also will allow us to justify the choice of the weight function
in Eq. (2). We focus on the estimator of a general form

ũ = 1

2d�

N∑
j=1

ωj B2
�j

/ N∑
j=1

jωj , (18)

where ωj now is an arbitrary weight function. The culminating
point of our analysis is to determine, via a variational approach,
the function ωj which yields the lowest possible variance
Var(ũ), given from Eq. (18) by

Var(ũ) = 2

d

N∑
j=1

ωj

N∑
k=1

ωk min(k,j )2

/ ⎛
⎝ N∑

j=1

jωj

⎞
⎠

2

, (19)
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FIG. 3. (Color online) The distribution P (u2) obtained from a
numerical inversion of Eq. (13) for 3D systems. The curves from
the dark to light correspond to ε = 10−3, 10−4, 10−5, and 10−6.
The symbols are results of numerical simulations of random walks
for ε = 10−3 (circles), ε = 10−4 (squares), ε = 10−5 (triangles), and
ε = 10−6 (diamonds).

where min(k,j ) is the minimum of k and j . Minimizing

F̃ = 1

2

N∑
j=1

ωj

N∑
k=1

ωk min(k,j )2 − λ

⎛
⎝ N∑

j=1

jωj − 1

⎞
⎠ , (20)

with respect to each ωj (λ is a Lagrange multiplier enforcing
the constraint E {ũ} = 1), we find that the optimal weight
obeys

N∑
j=1

ωj min(k,j )2 = λk, k = 1, . . . ,N, (21)

which can be solved exactly to give

λ = N

(
N∑

k=1

k

4k2 − 1

)−1

(22)

and

ωj = 2λ

4j 2 − 1
=

(
N∑N

k=1
k

4k2−1

)
1

4j 2 − 1
. (23)

The optimal variance in this case reads

Var(ũ) = 1

d

⎛
⎝ N∑

j=1

j

(4j 2 − 1)

⎞
⎠

−1

. (24)

Therefore, the weight function in Eq. (23) minimizes the
discretized least-squares functional in Eq. (20) and produces
an ergodic estimator: the smallest possible variance [for the
class of estimators defined by Eq. (18)] vanishes as N → ∞.
Choosing some initial time lag and turning to the limit
� → 0 and N → ∞, while keeping �N = T fixed, the
weight function in Eq. (23) converges to the form in Eq. (2)
with μ = 2, which thus justifies our choice of the power-law
trial weight function for continuous-time Brownian motion.
Note that for N 	 1, the leading asymptotic behavior of the
variance in Eq. (24) coincides with Eq. (17), but produces
slightly higher values of the variance (as the former estimator
is based on an everywhere discrete process).

To conclude, we have analyzed the ergodic properties and
the asymptotic behavior of a family of least-squares estimators
in Eq. (1). We have demonstrated that the estimators with μ =
2 are the only ones that possess an ergodic property, i.e., they
can provide the true ensemble averaged diffusion coefficient
from a single trajectory data with any necessary precision,
but at the expense of a progressively higher experimental
resolution.
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