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Apartado Postal 20-364, 01000 México D.F., México
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The complex arrangements of atoms near grain boundaries are difficult to understand
theoretically. We propose a phenomenological (Ginzburg–Landau-like) description of
crystalline phases based on symmetries and some fairly general stability arguments.
This method allows a very detailed description of defects at the lattice scale with vir-

tually no tunning parameters, unlike the usual phase-field methods. The model equa-
tions are directly inspired from those used in a very different physical context, namely,
the formation of periodic patterns in systems out-of-equilibrium (e.g. Rayleigh–Bénard
convection, Turing patterns). We apply the formalism to the study of symmetric tilt
boundaries. Our results are in quantitative agreement with those predicted by a re-
cent crystallographic theory of grain boundaries based on a geometrical quasicrystal-like
construction. These results suggest that frustration and competition effects near a defect
in crystalline arrangements have some universal features, of interest in solids or other
periodic phases.

Keywords: Grain boundaries; pattern formation; geometrical frustration; quasicrystals;
faceting.

1. Introduction

The structure and dynamics of grain boundaries in materials are still not well

understood.1,2 The possible relationships between the mesoscopic features of grain

boundaries and their inner microscopic structure at the atomic scale remain unclear.

The energies of some interfaces can be accurately described with continuous theories

and topological arguments. But the study of other quantities (like mobilities), as

well as short scale phenomena such as faceting, may require a deeper understanding

of the microscopic structure, which directly reflects the discrete and anisotropic

character of the lattice. Near a boundary, the crystal structure usually has no
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simple periodic behavior and is therefore difficult to characterize. Any quantitative

and sufficiently simple theory allowing a systematic characterization of the fine

structure of grain boundaries at zero temperature could open the way toward a

general description of these objects. Following such an approach requires going

beyond usual continuous media approximations.

In this paper, we discuss a way of elucidating grain boundary microscopic struc-

tures within a theoretical framework that explicitly takes into account spatial vari-

ations at the atomic length scale. The models considered here have a very small

number of parameters. They derive from very general energy and symmetry argu-

ments. Although the nonlinear approach proposed below is fairly uncommon for

crystals, it is largely used in a (apparently) completely different field of physics,

namely, in pattern formation problems. Many physical systems driven out of equi-

librium spontaneously form periodic structures, some of which are characterized by

a crystal-like order.3 Some well-known examples are the cellular structures formed

in Rayleigh–Bénard convection of heated fluid layers or Turing patterns in reaction-

diffusion processes. Pattern formation is ubiquitous in nature and has universal fea-

tures. Some of these features may be of relevance to solid crystals as well. Striking

analogies between pattern forming systems and dissipative processes taking place

in solid crystals have been recently pointed out.4,5 In Sec. 2, we briefly justify why

some simple nonlinear models of pattern formation may be useful to study defects

in crystals. We show in Sec. 3 that these models are very efficient to capture ele-

mentary competition and geometrical exclusion effects that probably take place in

genuine grain boundaries. In particular, they are able to predict interface faceting,

a feature still little understood from continuous theories.6 The results obtained are

in very good agreement with those given independently by a theory of grain bound-

aries developed recently, which is based on geometrical arguments and inspired from

quasicrystals theory.7

2. Basics of Pattern Formation

We briefly recall some concepts of pattern formation that can be found in well docu-

mented reviews or textbooks.3,8,9 Consider a spatially extended system described by

a phenomenological, dimensionless local order parameter ψ(x, t) depending a priori

on space and time variables. In convection problems, for instance, ψ(x, t) is related

to the vertical velocity at the mid-plane of the convective cell. A uniform phase is

characterized by the trivial solution ψ = cst(= 0). When a non-trivial stationary

periodic pattern sets up in the system, e.g. above the onset of convection, ψ can be

written in a first approximation as a sum of plane waves:

ψ(r) =

N
∑

n=1

An cos(kn · x) , (1)

where N is the number of wavevectors (of same modulus |kn| = k0 = 2π/λ0)

characterizing the base pattern (in two spatial dimensions, N = 3 for hexagonal
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symmetry and N = 2 for square symmetry). A perfect crystal is observed when

the amplitudes An are all equal to a constant A0. Figures 2 and 3 further show

examples of the field ψ in gray scale in 2D (dark regions have ψ(x) ≥ 0, bright ones

ψ ≤ 0). We now look for a simple phenomenological isotropic partial differential

equation satisfied by ψ. Keeping in mind the analogy with crystals, in addition

to the periodicity λ0, one wishes an equation that imposes a symmetry on the

stationary solution (for instance hexagonal, N = 3). A linear wave equation like

(∆ + k2
0)ψ = 0 is not acceptable as a superposition of any N ≥ 1 waves would

be the solution. Instead, we need to resort to a nonlinear equation, introducing a

coupling between the different amplitudes An in Eq. (1). We consider here the well-

known Swift–Hohenberg model (first introduced in the context of Rayleigh–Bénard

convection), which also involve the time variable t:3

∂ψ

∂t
= εψ −

1

k4
0

(k2
0 + ∆)2ψ + g2ψ

2 − ψ3 , (2)

where ε � 1 is a dimensionless control parameter, the reduced Rayleigh number

in convection problems. If ε ≤ 0 in Eq. (2), ψ = 0 is the only stationary solution

(∂ψ/∂t = 0) that is stable. The uniform solution ψ = 0 becomes unstable for

ε > 0. In that case, new solutions with broken symmetries appear, in the form of a

periodic pattern characterized by a layer spacing λ0 = 2π/k0. The order parameter

ψ can be approximated by a sum of the form (1) provided that ε � 1. Nonlinear

terms are responsible for mode combinations: given an arbitrary set of wavevectors

{kn}, one can derive equations for their amplitudes An, these amplitudes being

now coupled to each other. The An’s happen to have stable non-zero solutions only

in a very small number of cases that generally correspond to symmetric, crystal-

like arrangements of the {kn}. For instance, Eq. (2) with g2 = 0 leads to stripes

formation (N = 1). On the other hand, if g2 6= 0 and 0 < ε < 4g2
2/3, only hexagonal

solutions are stable.9

Let us now point out one of the crucial properties of this type of model: the

evolution equation (2) has a potential structure. One can associate an “energy” or

Liapunov functional F to the system, such that Eq. (2) reads ∂ψ/∂t = −δF/δψ

(the right hand side representing a functional derivative). F is given in that case

by

F =

∫

dx

[

−
ε

2
ψ2 +

ψ

2k4
0

(k2
0 + ∆)2ψ − g2

ψ3

3
+
ψ4

4

]

. (3)

It is easy to show from Eq. (2) that dF/dt ≤ 0: the quantity F always decreases with

time. The dynamics is dissipative and converges toward stationary stable solutions

that correspond to local minima of F in the configuration space. The absolute

minimum of F corresponds to a perfectly regular pattern of the form (1), with

wavenumber k0 (a “perfect crystal”). Consider now an immobile grain boundary

separating two differently oriented domains that are otherwise in the ground state:

near the boundary, it is impossible to preserve the regular crystal structure imposed

in the bulk. As a consequence, such a configuration must have a higher F .
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One can now see the pattern formation process given by Eq. (2) from an al-

ternate viewpoint, very useful for applications to materials: namely, as an energy

minimization problem within some constraints. Stationary grain boundaries can be

regarded as optimal solutions of a frustration problem of two competing lattices of

different orientations. The free-energy functional imposes a fixed periodicity on the

field ψ in the bulk, minimizing the term ψ(k2
0 + ∆)2ψ in the functional (3), as well

as a given bulk symmetry, which is fixed by mode combination through the higher

order terms. The equations for the amplitudes An show that the grain boundary

is actually an interference pattern between the two crystals, with amplitudes not

constant in space and not equal to each other.

Different choices of nonlinear terms can lead to different crystal symmetries in

the bulk. Adding other cubic or higher order terms in the functional (3) generates

new nonlinear terms in Eq. (2), modifying the relative coupling constants between

the different amplitudes An in the solution (1). As a consequence, a crystal formerly

unstable may become stable. For instance, a square crystal lattice (N = 2) can be

obtained by choosing:10 F =
∫

dx[−(ε/2)ψ2 + 1/(2k4
0)ψ(k2

0 + ∆)2ψ − g2ψ
3/3 +

βψ4/4 + (γ/4)ψ2∆2(ψ2)], with β < 0 and ε > 16g2
2(3β + 13γ)/(3β + 4γ)2. This

free energy gives coefficients that depend on the angle between the wavevectors in

the amplitude equations, such that they stabilize solutions with perpendicular wave

numbers.

The energy (3) involves a Taylor series expansion of an order parameter, as usual

in Ginzburg–Landau descriptions of phase transitions. This simple form suggests

that geometrical frustration in crystalline phases with isotropic interactions is likely

to have some universal features. Actually, numerical solutions of Eq. (2), or slight

variants of it, are able to reproduce known features of crystals. The behavior of the

energy F of grain boundaries as a function of misorientation angle follows a Read–

Shockley law.4 In addition, short-range pinning forces act on defects, a phenomenon

analogous to the Peierls stress in crystals.5

In the following section, we emphasize the close relationships that exist between

this pattern formation approach of grain boundaries and some space filling prob-

lems under constraints, that have been solved in Ref. 7 by the use of quasi-crystal

methods. We briefly recall the main aspects of this second theory below.

3. Structures of Grain Boundaries

3.1. A geometrical construction

The main distinctive feature of this theory is that it considers interfaces and qua-

sicrystals as a region in space where two or more interpenetrating crystal lattices

compete for space. The final atomic positions are then decided by a modified version

of the strip-projection proposed by Katz and Duneau11,12 to study quasicrystals.

Perhaps, the most important attribute of this approach is that it allows interfaces

and quasicrystals to be described by the same set of equations, thus rendering them

formally equivalent.
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Given a completely arbitrary set of lattices and relative orientations the formal-

ism produces ideal (minimum local strain) structures which are expected to play for

grain boundaries the same role than the perfect crystal concept plays for crystals,

i.e. they define defect free, reference structures analogous to Bravais lattices. Since

strain minimization is a physical consideration, the formalism is endowed with a

physical basis in spite of its geometrical formulation.

Full details of this method can be found in Ref. 7. Briefly, the crystal lattices are

embedded in a higher dimensional space where they define an hyper lattice whose

symmetry depends on that of the lattices and their relative orientation. This hyper

lattice is then projected back to physical space to produce the actual interfacial

structure or quasicrystal.

The higher dimensional 6D space is schematically represented in Fig. 1. It is

divided in two sets of orthogonal 3D subspaces: (V1, V2) and (E‖, E⊥). V1 and V2

contain the lattices L1 and L2 of the two crystals, and E‖, E⊥ contain respec-

tively, the actual interfacial structure and the strain field across the interface. E⊥

is actually the Bollmann’s displacement space or b-space.1

Only those hyperpoints contained within a small region around E‖ (see Fig. 1)

called the strip11,12 are projected. The size of the strip is chosen to include pairs

of atoms that occupy incompatible positions, these atoms are then replaced in E‖

by a single atom at their average position. Given two interpenetrating lattices in

x

E

L1

(V )1

(V )2
E

x
(1)

x

x

x
(2)

L2

Fig. 1. Schematic representation of 6D space showing the orthogonal 3d subspaces V1, V2, E‖,
E⊥ as 1D lines. The crystal lattices L1 and L2 are respectively contained in V1, V2. The interface
is defined as the set of points x‖ that are projections of the hyperlattice points located inside a

small region around E‖. This region is called the strip and is delimited by the two thin lines (see
text).
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physical space, the method constructs an ideal, best fit, minimum strain lattice as

the set of points of E‖. By adopting the average position, atoms at the interface act

as a strain buffer between the crystals on each side of the interface. The component

in E⊥ is a measure of the local strain or frustration between two nearly coincident

(overlapping) atoms from each lattice.

This method allows the construction of a complete bicrystal with the parent

crystals separated by a unique, fully 3D structure called the interfacial layer (IL),

arising from the projection of hyperpoints within the strip. The role of the IL,

whose structure is different from that of either crystal is to resolve the positional

incompatibilities that occur at the interface. Since grain boundaries are usually

2D, a suitable IL plane (or manifold) must be selected in order to model any

particular boundary plane, of given relative orientation to the parent crystals. A

bicrystal can then be built by filling the space on either side of the boundary with

crystal sites projected from (V1) and (V2). Note this approach is unique in that

the grain boundary always contains atomic (IL) sites, which makes it susceptible

to crystallographic analysis.

We recall now the definition of the O-lattice, a concept that will be useful in

the next section. Given two crystal lattices, L1, L2 and a transformation A, such

that L2 = AL1, in the absence of translations, the O-lattice is defined as the set of

points x(o) that satisfy

(I −A−1)−1l(1) = x(o) (4)

where I is the identity matrix, and l(1) ∈ L1. Geometrically, the O-lattice corre-

sponds to points in space (not necessarily lattice points) of minimum strain i.e. the

minimum misfit between L1 and L2. Another interesting property of the O-lattice

is that if l(i)∗ and (Al(i))∗ with i = 1, 2, 3 are the base vectors of the reciprocal

lattices of L1 and L2 respectively, then

(l(i)∗ − (Al(i))∗) · x(o) = n (5)

with integer n. This equation establishes a relationship between the O-lattice and

the Moiré pattern formed by the superposition of L1 and L2.

3.2. Results

In this section we study symmetric tilt grain boundaries in two-dimensional (2D)

crystals. The initial condition ψ(x, t = 0) in Eq. (2), or its analogue for square

patterns, is made of two crystals rotated by θmis, the interface being directed along

the vertical axis (see Ref. 5 for more details). We introduce an angle θ that either

corresponds to the misorientation angle θmis or to 90◦− θmis (for square patterns),

depending on the orientation of the symmetric boundary plane. Note that 0 ≤

θmis ≤ 45◦ and 0 ≤ θ ≤ 90◦. For each rotation θmis, there are two possible boundary

orientations (with different structure) that lead to a symmetric interface. The angle

θ represents the angle formed between two atomic planes that are symmetric with

respect to the boundary.
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Fig. 2. Singular tilt boundary with θ = 28.072◦ (Σ17). Right: ψ in gray scale given by the
nonlinear model. Left: E‖ from the construction of Sec. 3.1. See text for legend.

We analyze the stationary (minimum energy) fields obtained at large times by

solving Eq. (2) numerically, and compare their structures with those given by the

method described in Sec. 3.1.

Figure 2 displays (on the right) a boundary obtained by solving the Swift–

Hohenberg equation for square patterns, with an angle θ = 2 tan−1(1/n), where n

is an integer (4 in this case). Such interfaces are singular7 and characterized by a

simple repeating pattern, as emphasized by the bright circles.

In the geometrical method, any grain boundary structure is a 2D manifold (a

plane, usually) included in the 3D IL. The most likely manifolds are a priori the

ones that run along directions that maximize the density of IL sites. Such dense

planes must clearly intersect perpendicular IL planes along directions that have also

a high density of sites. In the particular case of a tilt boundary configuration, the

planes of the IL normal to the tilt boundary constitute the model’s prediction for

the so called twist boundary. Hence, in the geometrical approach, twist boundaries

do provide information about the possible directions that a perpendicular (tilt)

boundary may run along. We will hence focus on the structure of twist planes

below.

The left part of Fig. 2 shows the twist interface corresponding to the example

above, obtained using the approach of Sec. 3.1 for a cubic lattice. It is a plane normal

to the 〈001〉 direction in the cubic (100)/〈001〉 twist interface. As indicated above,
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this plane is a map of all the possible transverse conformations (or trajectories) of a

tilt grain boundary between two grains of given misorientation angle. A particular

trajectory is indicated in gray. Large disks represent atomic positions, or interfacial

sites. The short and long arrows indicate the O-lattice (OL) and coincidence sites

lattice (CSL) base vectors, respectively. Note that the interface is composed of

identical domains centered at O-points (small dots) that are points of zero strain.

Atomic domains are separated by a network of primary screw dislocations.1 The

intersection of these dislocations with the boundary plane is highlighted by a square

grid in the figure.

The predicted atomic positions (grayed dots) match nearly exactly the (black)

regions where ψ is maximum in the nonlinear model. The short horizontal lines

on the figure mark the positions of dislocations. These are edge dislocations, with

Burger’s vectors normal to the boundary line. A similar remarkable agreement was

obtained in every case for a variety of angles θ chosen arbitrary, in square and

hexagonal symmetries. Non-singular interfaces are characterized by more compli-

cated interfacial patterns (not shown).

Since elastic strain is minimized near O-points, it is expected that tilt interfaces

of low angles θ tend to run along directions that follow the O-lattice, preserving

this way the structure of the domains around the O-points. The O-lattice has the

same symmetry as the crystal (see Fig. 2, left), but a distinct period λO , given

by λO = λ/[2 sin(θ/2)] independently of the symmetry7 (λ is the period of the

crystal; λO > λ at low angles). Therefore, the grain boundaries separating two

symmetric grains along the vertical axis should be located at some discrete x-

positions, separated from each other by λO (Fig. 2, left). On the other hand, a

weakly nonlinear analysis of Eq. (2) allows the derivation of the law of motion of

straight grain boundaries.5 It is found analytically that interfaces feel a pinning

potential, periodic along the x-direction. Strikingly, the nonlinear model agrees

perfectly with the geometrical construction: The periodicity of the pinning potential

is λ/[2 sin(θ/2)] and coincides with λO . In the nonlinear model, the derivation of this

formula follows from a solubility condition that imposes particular combinations of

the modes kn. The result is formally equivalent to the the formula (5) above. The

lines going through points of the O-lattice thus correspond to minima of a pinning

potential in the nonlinear model.

Figure 3 (on the right) represents a configuration obtained at time t = 2000

from the same nonlinear model, with a high angle θ = 73.74◦. The initially straight

interface quickly destabilizes into a broken-symmetry phase, characterized by facets

of short period. This faceting instability is not observed for low θ boundaries, for

instance that of θ = 90 − 73.74, the other symmetric boundary orientation in this

bicrystal.

The faceted structure is also visible from the geometrical construction of E‖

(left). In this configuration, a straight tilt grain boundary would run vertically,

i.e. along the diagonal of the domains of best fit of size 3 or 4, where the distance
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Fig. 3. Facet formation. Right: Nonlinear model with at θ = 73.74◦ (Σ25). Left: Geometrical
construction.

between O-points is larger. In order to keep the structure of these domains anyway,

the interface becomes faceted instead. It runs along the core lines of the screw

dislocation network. In this case, the interface is locally aligned with the Burgers

vectors of the dislocations that compose it. Along this line, a repeated structure

of 4 atoms facing 3 atoms of the other grain appears, as correctly reproduced by

the nonlinear method. Note that the geometrical map of Fig. 3 (left) also contains

the structure of symmetric tilt boundaries with the angle θ = 90− 73.74 = 16.26◦.

The direction of these interfaces is now inclined of 45◦ with respect to the vertical

direction in Fig. 3 (left): the most likely trajectories are straight and run along a

line of maximum O-point density (or pinning potential minimum), as confirmed

by nonlinear calculations (not shown). If an interface with such an orientation

destabilized, it would find it difficult to develop the same “Chinese hat” facets

as observed for the other orientation θ = 73.74◦. Hence, low θ grain boundaries

are probably less likely to facet. In conclusion, when the average orientation of a

boundary is not parallel to the O-lattice, the boundary may become faceted.

Preliminary numerical results on the nonlinear model for square patterns show

that the faceting instability does not occur for misorientation angles lower than a

characteristic value θc ≈ 60◦. This value can be interpreted qualitatively as follows:

For θ ≥ θc, the periodicity of the pinning potential λ/[2 sin(θ/2)] becomes similar

to that of the crystal making it easier for the interface to deform under stress.
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The configuration of Fig. 3 (right) has a relatively high elastic stress. After a

sufficiently long time, it starts to slowly evolve into more complicated patterns,

with longer facet lengths in order to relieve the initial stress.

4. Conclusions

We have presented a theory of crystals based on a local order parameter descrip-

tion and general stability and symmetry principles. The theory is well suited for the

description of short scale phenomena, in particular the intricate spatial distribu-

tions of atoms in grain boundaries. The results compare very well with those given

independently by a generic geometrical theory of grain boundaries. The nonlinear

nature of the model naturally incorporate some underlying topological structures,

such as the O-lattice, which in this theory is interpreted as the set of boundary

pinning sites.
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Phys. Rev. Lett. 90, 246102 (2003).
7. D. Romeu, Phys. Rev. B 67, 024202 (2003).
8. P. Manneville, Dissipative Structures and Weak Turbulence (Academic Press, New

York, 1990).
9. D. Walgraef, Spatio-Temporal Pattern Formation (Springer-Verlag, New York, 1996).
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