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We have read with great interest the Invited Anniversary Essay by 
Bradbury and Vehrencamp (2014). A general and explicit recogni-
tion of  the benefits of  a complex systems approach in behavioral 
ecology was long overdue and therefore this essay is more than 
welcome. However, we believe that it contains several imprecise 
statements and misconceptions about what emergent properties 
are and how they arise out of  the interactions between parts of  
a system. The impact of  this essay (causing readers to “stop and 
wonder whether [their] favorite system is actually nonlinear and 
complex”) would be better served if  the relationship between non-
linear interactions and emergent properties was explained more 
accurately, using some well-known examples that the authors have 
not used.

Our main concern is that readers of  this essay may be left with 
the impression that the properties of  a complex system can only 
emerge when there are nonlinear, complicated interactions between 
the system’s components. In their Background section, the authors 
cite a sentence from Strogatz’s (1994) book on nonlinear dynam-
ics: “Whenever parts of  a system interfere, cooperate, or compete, 
there are nonlinear interactions going on.” (Strogatz 1994, p.  9). 
This sentence certainly applies to simple systems of  low dimension 
and with nonlinear internal dynamics, which are the subject of  
Strogatz’s book, but it must be nuanced if  one deals with systems 
composed of  several interacting elements.

Many complex systems can be viewed as a large number of  
individual entities connected to each other, where each entity is a 
low dimensional nonlinear dynamical system. By low dimensional, 
we mean that an entity is characterized by a small number of  
internal variables evolving with time. When an entity is completely 
isolated from others, it has an autonomous and relatively simple 
nonlinear dynamics (characterized, say, by limit cycles, station-
ary attractor points, or even chaotic behavior). We agree that the 
dynamics of  each entity is the result of  internal nonlinear interac-
tions, in the sense meant by Strogatz (1994), among the internal 
variables. These variables characterize the state of  the entity and 
can be, for instance, the activator and inhibitor concentrations in 
a well-mixed chemical reactor, the self-regulated electric potential 
of  a piece of  excitable biological tissue, the velocity of  a mobile 
animal, etc. Since the entity is described as a low dimensional 

dynamical system, it is not a complex system according to the 
above definition.

An important aim in the study of  complex systems is to predict 
the patterns emerging from connecting many such entities. By con-
necting, we mean that, typically, the values of  the internal variables 
of  an entity at a given time will affect the evolution of  the internal 
variables of  its neighbors, and vice versa. Our main point here is to 
emphasize that complex phenomena can emerge at a global scale 
even if, locally, entities interact in extremely simple, additive, and 
linear terms. Many paradigmatic examples of  complex systems fol-
low this scheme.

For instance, in colonies of  pigment cells, chemical reactants 
can diffuse from one part to the other by simple Brownian motion 
(which translates into the linear Fick’s law of  diffusion) and pro-
duce ordered, periodic color patterns in animal skins, or Turing 
patterns (Murray 1993). In the context of  synchronization, 
another phenomenon of  great relevance to biology, nonlinear 
oscillators that are coupled linearly (similarly to masses linked by 
harmonic springs) can explain the different gait regimes in animal 
locomotion (Collins and Stewart 1993). In very large populations 
of  nonlinear oscillators, the same linear interactions are sufficient 
to lead to the emergence of  globally synchronized states (with 
application to heart pacemaker cells or flashing fireflies, an exam-
ple cited by the authors), as well as to other spatial patterns like 
nonlinear traveling waves or intricate turbulent states (Pikovsky 
et al. 2001).

In behavioral ecology, social insect colonies are paradigmatic 
examples of  complex systems. Individual ants may behave and 
interact with others using very simple rules (trail laying using pher-
omones, trail following, bringing found food back to nest, etc.). 
Individual ants may respond linearly to a pheromone concentration 
gradient and still produce surprisingly elaborate collective patterns 
at the colony level, including optimal foraging behaviors attributed 
to the colony as a whole (Bonabeau et al. 1997). It is somewhat sur-
prising that the authors left this classic example of  self-organization 
in behavioral ecology out of  their essay.

In their section on Networks, the authors of  the essay “would 
not expect to see emergent properties” when relationships between 
network members are “essentially linear” but only when links are 
“largely nonlinear.” The above examples clearly contradict this 
statement. In addition, unexpectedly rich network structures can be 
the outcome of  minimal models of  network formation, such as the 
classic Erdös-Renyi “random growth” model. This model has dem-
onstrated that networks where nodes connect randomly to other 
nodes, and where each connection is independent of  previous con-
nections, can exhibit a percolation phase transition when a “giant 
cluster” of  connected nodes appears at some critical value of  the 
average connectivity. In this example, the number of  links in the 
network is a linear function of  the connection probability, but the 
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size of  the giant cluster is a nonlinear function of  that probability. 
Thus, even though the rules of  network formation are strictly linear 
(a succession of  independent events), we can see the emergence of  
a collective property that holds across different network types and 
sizes (Strogatz 2001).

Of  course, there are also many complex systems where the inter-
actions between elements are nonlinear, such as neural networks or 
discrete cellular automata, of  relevance to avalanches in sand piles, 
a topic that is discussed in the essay. But this type of  nonlinearity is 
by no means a necessary condition for complex behavior in general, 
in particular if  the elements are themselves internally nonlinear. We 
hope that this clarification can serve to strengthen the essay’s mes-
sage and increase the awareness among behavioral ecologists that the 
properties of  their study systems could be emerging not out of  com-
plicated rules, but out of  linear interactions between their elements.
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Complex behavior can also emerge from 
simple linear interactions. A reply to 
Ramos-Fernández and Boyer

Jack W. Bradbury and Sandra Vehrencamp
Department of Neurobiology and Behavior, Cornell University, 
Ithaca, NY 14850, USA

We appreciate the thoughtful comments by Ramos-Fernández and 
Boyer (2014) on our article (Bradbury and Vehrencamp 2014). As 
we noted in the article, we do not pretend to be experts in com-
plexity theory but feel that this perspective, so useful in other fields, 
deserves greater attention by behavioral ecologists.

That said, we would like to respond to some of  the issues raised 
by Ramos-Fernández and Boyer. Their main point is that emergent 
properties can arise in large systems with linear interactions. All of  
the examples they cite involve interacting entities that are them-
selves nonlinear systems. We accept their point and acknowledge 
that we neglected this possibility in our article. Perhaps it helps to 
classify interacting systems into 1)  linear entities interacting lin-
early, 2)  linear entities interacting nonlinearly, 3) nonlinear entities 

interacting linearly, and 4) nonlinear entities interacting nonlinearly. 
By the definition of  emergent properties used in our article (mod-
eled after the discussion in Mitchell 2011), we would not expect the 
first category to produce emergent properties regardless of  dimen-
sion beyond coupled oscillations (which can be fully described with 
linear equations). Our article focused on the second and last cat-
egories, whereas Ramos-Fernández and Boyer emphasize the third.

The question of  which process trail-making ants fall into is unclear 
to us. Ramos-Fernández and Boyer imply that they fit the third 
option. We actually doubt that nonlinear entities, including ants and 
termites, are ever limited to linear interactions (although researchers 
studying them tend to linearize the observed patterns). The decision 
of  an ant leaving the colony to follow a given trail may be linearly 
related to the amount of  existing trail pheromone for intermediate 
pheromone intensities, but there is likely a minimal threshold below 
which the ant ignores the trail and a saturation point above which 
additional concentrations have no further effect on the ant’s deci-
sions. Similarly, although recruits at a dead prey may adjust their trail 
marking on their return quasi-linearly according to the quality and 
quantity of  prey parts they can grab, there will again be likely thresh-
old and saturation points that make the decision nonlinear.

It is often possible to linearize responses of  nonlinear systems 
to varying contexts at least over a limited range of  those contexts. 
But like the mammalian larynx discussed in our article, continued 
linear increases in some contextual parameter such as airflow can 
trigger sudden bifurcations and state transitions (Herzel et al. 1995; 
Riede et al. 2000; Fitch et al. 2002; Tokuda et al. 2002). Perhaps 
the pheromone levels in ant trails should be better considered con-
textual parameters (like air flow) affecting the behavior of  the non-
linear ant entities. Although the behaviors and densities of  recruits 
may change linearly with pheromone over a range of  intensities, 
there could well be bifurcations outside that zone. Unless one con-
siders this possibility, one might never look for such transitions.

We did not try to assign each of  the behavioral systems we discuss 
in the latter part of  our article to one of  the four categories above. 
But we wonder whether any of  them will turn out to consist of  
linear entities with linear interactions. Ramos-Fernández and Boyer 
did not mention which, if  any of  these systems, they think truly 
are just nonlinear entities with strictly linear interactions. Certainly 
those examples that have been examined with an eye to nonlinear 
processes (e.g., Hemelrijk 2002; Hemelrijk and Hildenbrandt 2008) 
appear to involve nonlinear interactions between nonlinear entities. 
We suspect that this is the more likely general case.

Ramos-Fernández and Boyer’s mention of  Erdös-Renyi network 
models is interesting. It is definitely the case that adding links to a 
sparse network randomly and at a steady rate initially produces a 
monotonic increase in the scope of  propagation of  any stimu-
lus introduced into that network (see discussion in Chapter  15, 
Bradbury and Vehrencamp 2011). However, once every node is 
connected by some path to every other node, no further propaga-
tion scope is possible (although speeds might change). A  graph of  
propagation scope (percolation) versus number of  links added would 
show a monotonic rise that either asymptotes or hits a ceiling at high 
values. Any equation(s) for the entire graph would not be linear, and 
it is instructive that the point at which the state transition occurs is 
right when the graph shows a major kink. This raises the general 
question of  whether bounded linear processes should be considered 
linear or nonlinear. We scientists have spent decades focusing on the 
former, but maybe it is time to look at the whole curve.

Finally, we note a minor correction. In our article’s comparisons of  
linear and nonlinear oscillators, we imply that the two differ in how fre-
quencies are determined. In fact, frequencies in both are determined 
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