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ABSTRACT 
We present a theoretical  study  of the modification of Casimir forces between 
nanocomposite slabs that exhibit a metal-dielectric transition. In particular, we consider 
slabs made of VO2 precipitates in sapphire, whose effective dielectric function is calculated 
within a mean field approximation. The results for the Casimir force as a function of the 
separation of the slabs, show that at a fixed separation the magnitude of the force changes 
as temperature increases from 300 K to 355 K. The possible applications of these results to 
Casimir devices is discussed.  
 
 
INTRODUCTION 
   In 1948 Casimir [1] showed that two parallel plates separated by a distance a and  made 
of a perfect conductor will attract each other with a force per unit area given by  
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240a4 .                                                             (1)  

 
 
This force is attributed to the quantum vacuum fluctuations of the electromagnetic field.  
Indeed, Casimir forces appear whenever the mode distribution of a fluctuating field is 
modified by the presence of boundaries [2].  Although Casimir  forces are small (0.13 
dynes for  1 mm2 plates separated by one micron) they have been measured through a series 
of ingenious experiments. Lamoreaux  [3] reported an agreement with theory at the level of 
5% using  an electromechanical system based on a torsion balance. More recent 
experiments performed by Mohideen with atomic force microscopes achieved precisions 
close to 1%  [4]. In another experiment, a micromachined torsional device was employed to 
measure the Casimir attraction between a plate and a spherical metallic surface [5].   
The original formulation of Casimir was for perfect conductors  motivating Lifshitz to 
propose in 1956 a theory for vacuum  forces between semi-infinite dielectric media [6].  
The corresponding theory for finite dielectric systems  has been developed in last few years 
[7]. 
    With the advent of novel experimental techniques associated to the development of 
micro electromechanical systems (MEMS), and instruments such as the atomic force 
microcope (AFM) different proposals related with the technological uses of the Casimir 
forces have been investigated.  For example, the  deflection of a thin microfabricated 
rectangular strip due to Casimir forces was calculated by Serry  et al. [8]. According to 
their results, the strength of these forces  is high enough as to buckle the strip and limit the 
operation of MEMS. Maclay [9] has also suggested to build  MEMS devices in order to 
study the properties and energy balance of MEMS when static or  vibrating membranes are  
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placed on the top of open rectangular cavities. The proposed experimental configuration 
consists of an array of  open rectangular metallic cavities. A top plate suspended by 
micromecanical springs may be used to measure the sign and magnitude of the Casimir 
interaction between the plate and the cavity array.  
 
   In a recent paper [10],  we discussed the possibility of controlling the strength of Casimir 
forces  using heterostructures  made of materials with different dielectric properties such as 
metals and semiconductors.  This kind of structures would be also useful in the building of 
Casimir engines in which part of the energy cycle could be driven by the Casimir 
interactions. Such a cycle has been proposed by Pinto [11] in order to design a vacuum 
energy transducer, using optically active elements. He estimated that the power per unit 
area of this Casimir engine could be as high as  1 kW/m2.  Based on these ideas, in this 
work we  study a system made of nanocomposite slabs that exhibit a metal-dielectric 
transition. In particular, we consider slabs made of VO2 precipitates in sapphire [12], whose 
effective dielectric function is calculated within a mean field approximation. These 
nanocomposites undergo a first order phase transition which changes their dielectric 
response from semiconducting to metallic. 
This behavior would allow to build devices  in which the Casimir forces could be modified 
not only by changing the separation between the slabs, but also  by temperature variations 
as we show in this paper. 
 
 
 
THEORY 
 
   Consider two parallel slabs made of a dielectric of thickness d and separated by a distance 
a.  The Casimir force between dielectric media considering only wave vectors 
perpendicular to the slabs  is given by [7] 
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where the  r(ω) is the frequency-dependent reflection coefficient. To calculate r(ω) the 
dielectric function of the slabs is needed. For a nanocomposite slab made of a host material 
with a dielectric function εh(ω) and inclusions with dielectric function  εi(ω), the effective 
dielectric response εM(ω) can be calculated  within a mean field approximation as [13] 
 

                                        
εM

εh

=1+ 3fα + f 2α 2[3+ 2log
8 + α

8 − 2α
]                                                  (3) 

 
where f  is the volume fraction of the inclusions and α is the effective polarizability given 
by the Maxwell Garnett theory.  This expression for the effective dielectric function 
includes higher order corrections in the volume fraction and is a first approximation beyond 

V3.3.2



single particle mean field theories.  To model the dielectric function of the VO2 precipitates 
embbeded in sapphire we considered a Lorentz model for both εh(ω)  (sapphire) and  εi(ω) 
(VO2). The parameters appearing in Lorenz formula for these materials have been taken 
from Ref.[14]. In the case of VO2, these parameters change as a function of temperature 
due to the phase transition.   
 
 
RESULTS 
 
   The system we study consists of two parallel planar nanocomposite slabs separated a 
distance a and with a thickness of d=0.1 microns. The volume fraction of the VO2 

precipitates was arbitrarily set at 20 %. In figures (1a) and (1b), we present the real and 
imaginary parts of the dielectric function as calculated from Eq.(3). The dielectric function 
is shown for two different temperatures, Tsc = 300 K, and , Tm = 355 K. The first 
temperature corresponds to the semiconducting state, and the second to the metallic one. 
                

               (a)                                                         (b)      
 
 
Figure 1. (a) Frequency dependence of the real part of the effective dielectric function for 
the semiconducting (Tsc = 300 K) and metallic phases (Tm = 355 K). (b) Frequency 
dependence of the imaginary part of the effective dielectric function for the semiconducting 
(Tsc = 300 K) and metallic phases (Tm = 355 K). 
 
    In figure (2) we present the calculated reflectance of a nanocomposite slab for the 
semiconducting and metallic phases based on our results for εM(ω) .  The metallic case 
shows a significant deviation with respect to the semiconducting one at  an angular 
frequency of 1.5 x 10 15  Hz.  The changes in  r(ω) as a function of temperature should be 
reflected in the calculation of the Casimir force. This is indeed the case, as shown in figure 
(3) where we plot the force as a function of the separation a. The force is normalized to the 
ideal case. The ideal case is when the slabs are made of a perfect conductor.   As shown in 
the figure, after a separation of roughly 0.3 µm the magnitude of the force is different. This 
is understood from Eq. (2) since at a given separation of the slabs the modes that will 
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contribute more to the  force are those  with a wavelength that fit within the slabs. This is, 
modes with a frequency of ω=πc/a.  The region of small separations (a<0.2 µm) the force 
is the same at the two temperatures since these separations correspond to frequencies at 
which the reflectivity of the material is very small and the mode density within the slabs is 
similar to that of vacuum resulting in a negligible Casimir force.  
 
 
 

 
 
        Figure 2. Frequency dependence of the reflectance of the nanocomposite slab at Tsc, 
and  Tm.  In the frequency region around 1.5x1015 Hz the reflectance differs at the two 
temperatures.  
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Figure 3. Casimir force as a function of the nanocomposite slab separation a . The dashed 
curve corresponds to the metallic phase, while the continuous one corresponds to the 
semiconducting phase. The force is normalized  with respect to the perfectly conducting 
case  given by equation (1). 
 
 
CONCLUSIONS 
 
   We have explored the possibility of  using the dielectric properties of nanocomposite 
slabs that exhibit a metal-dielectric transition to modulate the Casimir forces.  In this work, 
we considered slabs made of VO2 precipitates in sapphire. The results for the Casimir force 
as a function of the separation of the slabs  show that at a fixed separation the magnitude of 
the force changes as temperature increases from 300 K to 355 K. This effect could be used  
in principle, as part of a thermodynamic cycle of a micromachined motor similar to the one 
proposed by Pinto [11] but working at ambient temperature.  
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