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Abstract. We study the two-dimensional overdamped motion of an active particle

whose orientational dynamics is subject to fractional Brownian noise, whereas its

position is affected by self-propulsion and Brownian fluctuations. From a Langevin-like

model of active motion with constant swimming speed, we derive the corresponding

Fokker-Planck equation, from which we find the angular probability density of the

particle orientation for arbitrary values of the Hurst exponent that characterizes

the fractional rotational noise. We provide analytical expressions for the velocity

autocorrelation function and the translational mean-squared displacement, which show

that active diffusion effectively emerges in the long-time limit for all values of the Hurst

exponent. The corresponding expressions for the active diffusion coefficient and the

effective rotational diffusion time are also derived. Our results are compared with

numerical simulations of active particles with rotational motion driven by fractional

Brownian noise, with which we find an excellent agreement.

Keywords: active matter, Brownian motion, diffusion, persistence, anomalous diffusion,

memory effects

1. Introduction

Active matter is composed of non-equilibrium entities capable of converting

autonomously the energy of their surroundings into directed motion or into mechanical

work [1]. This definition encompasses a broad variety of systems such as locomotive

animals, motile microorganisms, microtubules and actin filaments in the cytoskeleton of

eukaryotic cells, biomolecular motors, active colloids and nanomotors [2]. In particular,

one type of active systems that has been the subject of intensive research in recent years

are the so-called microswimmers. These are micron- or submicron-sized particles that

propel themselves through fluid environments at vanishing Reynolds numbers [3]. Most

microswimmers exhibit patterns of locomotion characterized by a persistent ballistic

motion at sufficiently short timescales, whereas its swimming direction is not fixed but

strongly affected by random changes in the particle orientation [1, 4]. Such orientational
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changes can be caused by, e.g., stochastic polymorphic transformations during the run-

and-tumble dynamics of flagellated bacteria [5], or due to thermal fluctuations from the

surrounding fluid, as those observed for self-propelled colloids [6]. For timesscales much

larger than the typical reorientation time (persistence time), the randomization of the

microswimmer orientation often leads to an effective diffusive behavior with a diffusion

coefficient higher than than expected under thermal equilibrium conditions [6, 7, 8].

One of the most-widely studied models of active motion of microswimmers is the

so-called active Brownian particle (ABP). It consists of a disc or a sphere moving with

a prescribed swimming velocity, where the direction of self-propulsion is determined

by a well-defined orientation vector that changes with time by rotational diffusion [9,

10, 11, 12, 13, 14, 15]. Both the translational and the angular motion of the ABP are

overdamped and the inverse of the rotational diffusion coefficient sets the reorientation

time above which the fluctuations of particle orientation become decorrelated. Despite

its simplicity, the ABP model captures the main dynamical features of many active

colloidal systems. For instance, it exhibits a swimming-persistence length, determined

by the product of the propulsion speed and the rotational diffusion time, whereas a

translational diffusion coefficient that depends quadratically on the swimming velocity

emerges in the long-time limit. Such a behavior is consistent with an exponential

decay of the swimming-velocity autocorrelation function, as experimentally measured

in several active colloidal suspensions [6, 16, 17]. Furthermore, the ABP model is

also the basis for the theoretical investigation of intricate phenomena in active matter,

such as self-propelled motion in presence of external potentials [18, 19, 20], external

flows [21, 22, 23], under geometrical confinement [24, 25, 26], as well as collective

phenomena of self-propelled particles, e.g. dynamical clustering and motility-induced

phase separation [8, 11, 12, 27, 28, 29]. Moreover, the ABP model has allowed the

analysis of stochastic thermodynamics and symmetry properties of extreme fluctuations

in active systems [30, 31, 32, 33, 34].

In this paper, we investigate the active motion of self-propelled particles whose

orientation is driven by long-ranged correlated noise. While most of the Langevin

models of active particles consider the effect of thermal fluctuations by means of

delta-correlated Gaussian noises, only a few works have addressed the role of long-

lived correlations in the rotational motion [24, 35, 36, 37, 38, 39]. In fact, memory

effects caused by colored noise are a common feature of the orientational motion of

active particles in complex media [38, 40, 41, 42, 43, 44]. In particular, our work is

motivated by the occurrence of anomalous diffusion in several examples of soft matter

systems, where spatial heterogeneities lead to a non-linear monotonic growth with

time of the mean-square displacement [45]. For instance, anomalous diffusion arises

in the translational motion of granules within the cytoplasm [46], colloidal beads in

entangled actin filament networks [47] or wormlike micelles [48], and vacuoles in highly

motile amoeboid cells [49]. Moreover, there is direct evidence of anomalous rotational

diffusion in the orientational dynamics of single molecules of polymer melts near the glass

transition [50], the rotational subdiffusion of proteins [51] and the angular fluctuations
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of spherical colloidal probes suspended in polymer solutions [52, 53], Among the distinct

approaches to describe anomalous diffusion [54], here we focus on fractional Brownian

noise [55] in order to capture the effect of long-ranged temporal correlations in the

directional changes of a self-propelled particle.

The paper is organized as follows. In Section 2 we present a model that describes the

two-dimensional (2D) motion of a self-propelled particle subject to fractional rotational

Brownian noise. The Fokker-Planck equation for the one-particle probability density,

and the explicit solution for the angular density are shown in Section 3. Then, in

Section 4 we derive the analytical expressions for the swimming-velocity autocorrelation

function and the corresponding mean-squared displacement. In the same Section we

analyze the different timescales that arise due to the persistent or antipersistent nature

of the rotational noise, as well as the emergence of an active diffusion coefficient in the

asymptotic limit. Finally, in Section 5 we summarize the main results of our work and

make some further remarks.

2. Model of active motion with fractional rotational Brownian noise

2.1. Langevin equation

We consider a particle that self-propels and rotates in a two-dimensional domain with

swimming velocity vs(t) = vs(t)v̂(t), where v̂(t) = [cosϕ(t), sinϕ(t)] is a unit vector

defined by the angle ϕ(t) between the direction of swimming and the horizontal axis

of a given Cartesian reference frame, whereas vs(t) is the swimming speed. The

particle is subject to thermal fluctuations due to the surrounding fluid, and also to

active fluctuations from internal mechanisms that result in self-propulsion. The thermal

velocity fluctuations ξT (t) affect the translational part of motion and are characterized

by a fixed temperature T . These are modeled as white noise, i.e., 〈ξT (t)〉 = 0

and 〈ξi,T (t)ξj,T (s)〉 = 2DT δ(t − s)δi,j, where the subscripts i, j denote the Cartesian

components x, y, of a two-dimensional vector and DT the diffusion constant given

by kBTµ, with µ the particle mobility. On the other hand, the active fluctuations,

ξR(t), affect the angular velocity of the particle orientation and are modeled as a

colored Gaussian noise with vanishing mean, 〈ξR(t)〉 = 0, and autocorrelation function

〈ξR(t)ξR(s)〉 = ω(t, s). In this way, the overdamped dynamics of this active particle is

described by the following Langevin equations

d

dt
x(t) = vs(t) v̂(t) + ξT (t), (1a)

d

dt
ϕ(t) = ξR(t), (1b)

where x(t) denotes the particle position in two dimensions at time t, given in Cartesian

coordinates by the vector x(t) = [x(t), y(t)]. In the following, we restrict our analysis

to the case for which the swimming speed remains constant over time, vs(t) = v0 , and

where active angular fluctuations are a stochastic stationary process, i.e. they satisfy

ω(t, s) = ω(t−s). In particular, we investigate the situation for which ξR(t) corresponds



Active particles with fractional rotational Brownian motion 4

to a continuous-time fractional Gaussian noise [55], whose autocorrelation function is

given by

ω(t− s) = 2HDH |t− s|2H−1

[

2H − 1

|t− s| + 2δ(t− s)

]

. (2)

In Eq. (2), 0 < H < 1 stands for the so-called Hurst exponent that characterizes the

time-correlation range of the active fluctuations, while DH (with units of [time]−2H)

depicts their amplitude. For 0 < H < 1
2
, the stochastic process ξR(t) is anticorrelated

(antipersistent), whereas for 1
2
< H < 1, the motion is positively correlated (persistent),

i.e. if t 6= s, then ω(t − s) < 0 or ω(t − s) > 0, respectively. These two distinct

behaviors have deep consequences in the pattern of motion of the active particle, as

it will be unveiled in the following sections. The specific value H = 1
2
corresponds to

the case of Gaussian white noise, ω(t − s) = 2D1/2δ(t − s). Furthermore, the process

ϕ(t) =
∫ t

0
ξR(t

′)dt′ is a continuous-time fractional Brownian motion with zero mean, i.e.

〈ϕ(t)〉 = 0, and autocorrelation function

〈ϕ(t)ϕ(s)〉 = DH

(

|t|2H + |s|2H − |t− s|2H
)

, (3)

where the brakets denote an ensemble average over different realization of the fractional

Brownian noise ξR(t). Eq. (3) yields the following expression for the mean-squared

angular displacement

〈ϕ(t)2〉 = 2DHt
2H , (4)

where t ≥ 0 and ϕ is defined in the unrestricted domain (−∞,∞). Eq. (4) reduces to

the case of rotational Brownian diffusion for H = 1
2
, whereas the values 0 < H < 1

2
and

1
2
< H < 1 correspond to rotational subdiffusion and superdiffusion, respectively.

2.2. Numerical analysis

In order to gain insight into the statistics of active particles subject to fractional

rotational Brownian motion, we have simulated stochastic trajectories evolving

according to Eqs. (1a)-(1b) for different values of H . To this end, fractional Brownian

motion with autocorrelation function given by (3), is generated using the circulant

embedding method of the covariance matrix [56], whereas the 2D particle position

is solved by means of an Euler-Cromer scheme. In the numerical results presented

throughout the paper, velocities, timescales, length-scales, and translational diffusion

coefficients are normalized by v0, τH ≡ D
− 1

2H
H , ℓH ≡ v0D

− 1
2H

H , and DH ≡ v20D
− 1

2H
H ,

respectively. In particular, τ1/2 ≡ D−1
1/2 and ℓ1/2 ≡ v0D

−1
1/2 correspond to the rotational

diffusion time and the swimming-persistence length for active Brownian motion driven

by rotational diffusion (H = 1
2
), respectively.

In Fig. 1(a), we show some examples of the temporal evolution of the angle ϕ(t), in

the extended domain (−∞,∞), for different values of the Hurst exponent over the time

interval 0 ≤ t ≤ 104D
− 1

2H
H . The corresponding mean-squared angular displacements

are plotted in Fig. 1(b), thus showing agreement with the expression given in Eq. (4).
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Figure 1. (a) Examples of the stochastic time evolution of the angle ϕ(t) obtained

from numerical simulations of fractional Brownian motion for different values of the

Hurst exponent H . From bottom to top: H = 0.1, 0.3, 0.5, 0.7, 0.9. (b) Corresponding

mean-squared angular displacements
〈

∆ϕ(t)2
〉

. The symbols correspond to the

numerical results obtained from the simulated trajectories in (a) whereas the solid

lines are computed from Equation (4). The resulting 2D trajectories of the particle

position (x, y) are plotted for (c) H = 0.1, (d) H = 0.3, (e) H = 0.5, (f) H = 0.7,

and (g) H = 0.9. All trajectories start at [x(0) = 0, y(0) = 0]. (h) Expanded view

of the active trajectory in (b), showing the loops resulting from the superdiffusive

angular motion for H = 0.9. The arrows represent the instantaneous orientation

v̂(t) = [cosϕ(t), sinϕ(t)] at different times t.

2D trajectories of the active particle position [x(t), y(t)], resulting from the fractional

rotational Brownian motion, are shown in Figs. 1(c)-(h). For the sake of simplicity and

in order to better appreciate the separate effect of fractional rotational Brownian noise

on the 2D active motion, here we focus on the case without translational fluctuations,

i.e., DT = 0. We want to clarify this is not an approximation, but rather a consequence

of the separate dynamics given by Eqs. (1a)-(1b), as is shown in the next Section 3.

For 0 < H < 1
2
, the anti-persistence of the stochastic rotational dynamics leads to a

highly persistent translational motion, as seen in Figs. 1(c) and 1(d) for H = 0.1 and 0.3

respectively. This translates into actual persistence lengths much larger than the one

expected for δ-correlated rotational diffusion, ℓ1/2. This effect vanishes for H = 1
2
, for

which the rotational dynamics results in diffusive translational motion with an effective

active diffusion coefficient Deff
1/2 = 1

2
D1/2 = 1

2
v20D

−1
1/2. Then, for observation times much

larger than τ1/2 = D−1
1/2, the swimming persistence is lost and the particle performs an

effective memoryless random walk, as is seen in Fig. 1(e). Similarly, for 1
2
< H < 1,

an active random walk also emerges at timescales much larger than D
− 1

2H
H , as shown in
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Figure 2. Profiles of the probability density function of the particle orientation angle

φ for different values of H : (a) H = 0.1 (subdiffusive regime), (b) H = 0.5 (diffusive

regime), (c) H = 0.9 (superdiffusive regime), at the times: t = 0.01 (thick solid line),

t = 0.1 (dashed line), t = 1 (dotted line), t = 10 (dotted-dashed line) and t = 100

(thin solid line). The insets in (b) and (a) are expanded views of the main plots for

P (φ, t) ≤ 0.3.

Figs 1(f) and 1(g) for H = 0.7 and H = 0.9, respectively. However, a close inspection

of the active trajectories reveals that the short-time motion is qualitatively distinct

from the active Brownian motion for H = 0.5: looped trajectories are formed as H

increases and become more conspicuous as H approaches the value 1, see Fig. 1(g) for

H = 0.9. We point out the different nature of such looped trajectories from the ones

developed by chiral self-propelled particles driven by a constant torque [57], for which

the sense of rotation remains fixed over time. Instead, the trajectories obtained in

this paper resemble the stochastic circular orbits performed by active colloids moving in

viscoelastic fluids [38] and the meandering and chaotic motion predicted for self-phoretic

particles at large Péclet numbers [58].

3. Statistics of active motion

3.1. Fokker-Planck equation

The Fokker-Planck equation for the one-particle probability density p(x, ϕ; t) ≡ 〈δ[x−
x(t)]δ[ϕ − ϕ(t)]〉 that corresponds to the Langevin equations (1a), can be derived by

standard methods, see for instance [13, 14]. By taking the derivative with respect to

time t, we get

∂

∂t
p(x, ϕ; t) = − v0v̂ · ∇p(x, ϕ; t)

−∇ · 〈ξT (t)δ[x− x(t)]δ[ϕ− ϕ(t)]〉

− ∂

∂ϕ
〈ξR(t)δ[x− x(t)]δ[ϕ− ϕ(t)]〉, (5)

where ∇ =
(

∂
∂x
, ∂
∂y

)

and the brackets stand for an average over realizations of both the

translational and rotational noises, ξT (t) and ξR(t), respectively. The second and the
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third terms on the right-hand side of Eq. (5), namely, the mean value of the product

of the functional δ[x − x(t)]δ[ϕ − ϕ(t)] with the Gaussian noises ξT (t) and ξR(t),

respectively, can be evaluated by applying the Furutsu-Novikov theorem [59, 60]. A

straightforward calculation leads to the Fokker-Planck equation for the Langevin model

(1a)

∂

∂t
p(x, ϕ; t) + v0v̂ · ∇p(x, ϕ; t) = DT∇2p(x, ϕ; t) + Ω(t)

∂2

∂ϕ2
p(x, ϕ; t), (6)

where Ω(t) =
∫ t

0
ds ω(s) for an arbitrary stationary correlation function ω(t) of the

rotational noise ξR(t). In the case of fractional Gaussian noise, the correlation function

given in Eq. (2) leads to

Ω(t) = 2HDHt
2H−1. (7)

Note that the parameter Ω(t) given by Eq. (7) plays the role of a time-dependent

rotational diffusion coefficient in the Fokker-Planck equation (6), where the Brownian

rotational diffusion coefficient, Ω(t) = D1/2, is recovered for H = 1
2
.

We point out here that the net diffusion of a freely active particle described by Eq.

(6) can be split into the free-self-induced diffusion by orientational fluctuations, and the

free-induced diffusion by thermal fluctuations. By writing

p(x, ϕ, t) =

∫

d2x′G(x− x′; t)pa(x
′, ϕ, t), (8)

where G(x; t) is the bivariate Gaussian distribution that solves the diffusion equation

∂tG(x; t) = DT∇2G(x; t), it can be shown that the diffusion induced by the orientational

fluctuations is described by

∂

∂t
pa(x, ϕ; t) + v0v̂ · ∇pa(x, ϕ; t) = Ω(t)

∂2

∂ϕ2
pa(x, ϕ; t), (9)

where pa(x, ϕ; t) gives the probability density of finding a particle at x, moving in the

direction ϕ at time t, due to self-propulsion only. Notice that (9) can be obtained from

Eq. (6) by simply putting DT = 0.

3.2. Angular probability density function

By integrating Eq. (6) with respect to x over the entire two-dimensional spatial domain,

we find the Fokker-Planck equation for the probability density of the angle ϕ at time t,

i.e., for P (ϕ, t) =
∫∞
−∞

∫∞
−∞ dx dy p(x, ϕ; t)

∂

∂t
P (ϕ, t) = Ω(t)

∂2

∂ϕ2
P (ϕ, t). (10)

This corresponds to the diffusion equation with time-dependent rotational diffusion

coefficient Ω(t). The periodicity of P (ϕ, t) with respect to the variable ϕ is imposed

by requiring that P (ϕ, t) = P (ϕ + 2π, t). The domain of description for the particle

orientation is restricted to the interval [0, 2π) (or sometimes (−π, π]) if we introduce the

new angle φ = mod(ϕ, 2π). Then, the probability density that a single active particle
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transits from moving along the direction φ′ at time t′ to move along the direction ϕ in

the time interval t− t′, P(φ, t− t′|φ′), is given by the solution of Eq. (10) for time t ≥ t′.

Given the initial condition P(φ, 0|φ′) = δ(φ− φ′), such a solution is

P(φ, t− t′|φ′) =
1

2π

∞
∑

n=−∞

ein(φ−φ′)e−n2Ω(t−t′), (11)

=
1

2π

(

1 + 2
∞
∑

n=1

cos[n(φ − φ′)]e−n2Ω(t−t′)

)

,

where Ω(t−t′) =
∫ t−t′

0
dsΩ(s) for an arbitrary autocorrelation function of the rotational

noise ξR(t). Eq. (11) can be written in terms of the Jacobi theta function ϑ3(z, q) =
∑∞

n=−∞ qn
2
e2inz = 1 + 2

∑∞
n=1 q

n2
cos 2nz [61], namely

P (φ, t|φ′) =
1

2π
ϑ3

(

φ− φ′

2
, e−Ω(t)

)

. (12)

By use of the Poisson summation formula [62], P (φ, t|φ′) can be rewritten as

P (φ, t|φ′) =

√

1

4πΩ(t)
exp

[

−(φ− φ′)2

4Ω(t)

]

ϑ3

(

π(φ− φ′)

2iΩ(t)
, e

− π2

Ω(t)

)

, (13)

from which the Gaussian distribution appears explicitly as a factor.

Notice that, in a short time interval t, P(φ, t|φ′) peaks sharply around φ′, meaning

that the transition from the direction of motion φ′ to the new one φ, occurs more

frequently in the forward direcion, i.e., around the direction of motion φ′. As the

duration t of the time interval of the transition becomes larger, the peak is smoothed

out, thus converging to a uniform transition distribution in the asymptotic limit t → ∞.

The mean value of quantities of the form f(φ− φ′), defined by

〈f(φ− φ′)〉t =
∫ 2π

0

dφ

∫ 2π

0

dφ′f(φ− φ′)P(φ, t|φ′)P (φ′, 0), (14)

is of special interest. In particular, it can be shown from (11) and (14) that
〈

ein(φ−φ′)
〉

t
= e−n2Ω(t) (15)

or equivalently

〈cosn [φ− φ′]〉t = e−n2Ω(t), (16a)

〈sinn [φ− φ′]〉t = 0, (16b)

which give the contributions to the moment expansion of P(φ, t|φ′) when this is written

as

P(φ, t|φ′) =
1

2π

∞
∑

n=−∞

ein(φ−φ′)
〈

ein(φ−φ′)
〉

t
. (17)

The probability density P (φ, t), independent of the initial angle φ′, is obtained from

P(φ, t|φ′) as

P (φ, t) =

∫ 2π

0

dφ′P(φ, t|φ′)P (φ′, 0) (18)
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where P (φ′, 0) denotes the initial distribution of the particle direction of motion.

In the case of fractional Gaussian noise with autocorrelation given by Eq. (2),

Eq. (7) leads to

Ω(t) = DHt
2H , (19)

which corresponds to half the variance of the fluctuations of ϕ, see Eq. (4), thus yielding

P (φ, t) =
1

2π
ϑ3

(

φ

2
, e−DHt2H

)

,

=
e
− φ2

4DHt2H

√
4πDHt2H

ϑ3

(

πφ

2iDHt2H
, e

− π2

DHt2H

)

, (20)

for the initial angular distribution P (φ′, 0) = δ(φ′). The angular probability density

given by Eq. (20) retains a Gaussian-like shape at sufficiently short time-scales (D
1

2H
H t ≪

1), then spreads over the entire interval 0 ≤ φ < 2π as t increases and converges to the

uniform distribution P (φ, t) = 1
2π

as D
1

2H
H t → ∞ for all 0 < H < 1. However, depending

on the specific value of H , different profiles of P (φ, t) are observed at a given time t > 0,

for the same initial condition P (φ, 0) = δ(φ). This is illustrated in Figs. 2(a), 2(b)

and 2(c) where we plot the angular density P (φ, t) for different values of the Hurst

exponent, H = 0.1 (antipersistent orientational dynamics), 0.5 (Brownian orientational

dynamics), and 0.9 (persistent orientational dynamics), respectively, at different times

D
1

2H
H t = 0.01, 0.1, 1, 10, 100.

For antipersistent rotational noise (H < 1
2
), P (φ, t) broadens quickly over the full

angular domain [0, 2π) during 0 < t < D
− 1

2H
H and markedly peaks around φ = 0

[Fig. 2(a)]. This indicates that the particle moves more frequently in the forward

direction even when the probability density is finite for any change of the orientation

(rectification of motion), thereby causing a highly correlated motion. In contrast, P (φ, t)

converges very slowly to the uniform angular density (2π)−1 for time intervals t > D
− 1

2H
H ,

thus retaining a smooth peak at φ = 0 [see Fig. 2(a) for H = 0.1], thus leading to a

strong persistence of translational motion, as shown in Fig. 1(c). The opposite trend

is observed for persistent fractional noise (H > 1
2
). For instance, in Fig. 2(c) we show

that, for H = 0.9, the initial delta peak δ(φ) at t = 0 broadens rather slowly during

0 < t < D
− 1

2H
H . As a result, the particle retains its direction of motion, whose persistence

causes the translational looped trajectories shown in Fig. 1(g)-(h). On the other hand, a

very fast convergence to the steady-state uniform value (2π)−1 occurs for time intervals

t > D
− 1

2H
H . For such a large value of H , the typical timescale needed to observe such

a convergence is t ∼ 10D
− 1

2H
H , see dotted-dashed line in Fig. 2(c). Only for the specific

time interval t = D
− 1

2H
H , the angular density profile is the same for all values of the Hurst

exponent, and is given by P
(

φ,D
− 1

2H
H

)

= 1
2π
ϑ3

(

φ
2
, e−1

)

, see dotted lines in Figs. 2(a)-

(c).

We point out that the convergence of P (φ, t) to a uniform angular distribution

suggests that an active particle with fractional rotational Brownian motion must exhibit
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Figure 3. (a) Velocity autocorrelation function computed from Equation (23), for

different values of H : 0.1 (dashed line), 0.3 (dotted line), 0.5 (thick solid line), 0.7

(dotted-dashed line), and 0.9 (thin solid line). Inset: expanded view for 0 ≤ t ≤ 1.

(b) Velocity autocorrelation function computed from simulated active trajectories with

fractional rotational Brownian motion for the same values of H as in (a), plotted with

same line style.

active diffusion at sufficiently long timescales, for both persistent and antipersistent

rotational noise, as explicitly shown in Section 4.

4. Active diffusion

4.1. Velocity autocorrelation function

We now compute the autocorrelation function of the swimming velocity, i.e., 〈vs(s) ·
vs(s

′)〉 = v20〈v̂(s) · v̂(s′)〉, where the orientational correlation function can be expressed

in terms of the angular coordinate φ as

〈v̂(s) · v̂(s′)〉 = 〈cos[φ(s)− φ(s′)]〉 , (21)

which is equivalent to 〈cos[φ − φ′]〉s−s′ for s ≥ s′. Therefore, Eq. (21) can be explicitly
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computed by means of

〈v̂(s) · v̂(s′)〉 =
∫ 2π

0

∫ 2π

0

dφ dφ′ cos(φ− φ′)P(φ, s− s′|φ′)P (φ′, s′), (22)

where P(φ, s− s′|φ′) is the transition probability density from φ′ at time s′ to φ at time

s, as was introduced in Sect. 3.2, whereas P (φ′, s′) is the angular probability density at

time s′ ≥ 0 given by (20). For s ≥ s′ ≫ D
− 1

2H
H , 〈v̂(s) · v̂(s′)〉 becomes stationary, where

P (φ′, s′) → (2π)−1, while P(φ, s− s′|φ′) = P (φ−φ′, s− s′). Using the expressions given

in Eqs. (11), (19) and (22), we find that the velocity autocorrelation function is given

explicitly by

〈vs(s) · vs(s
′)〉 = v20 exp

[

−DH(s− s′)2H
]

. (23)

Eq. (23) corresponds to: a stretched exponential when 0 < H < 1
2
describing a highly

correlated motion; a pure exponential if H = 1
2
describing Brownian correlations of the

direction of motion; and a compressed exponential when 1
2
< H < 1 that describes short-

ranged correlations of the direction of motion. In Fig. 3(a) we plot the autocorrelation

function of the swimming velocity given by Eq. (23), 〈vs(t) ·vs(0)〉 = 〈vs(s
′+ t) ·vs(s

′)〉,
as a function of the time lag t = s − s′ for different values of H . We check that they

perfectly agree with the numerical results shown in Fig. 3(b). In addition, we find

that, regardless of H , the velocity autocorrelation attains the value v20e
−1 at t = D

− 1
2H

H .

Nevertheless, for other values of t, different regimes are observed depending on H .

For instance, for 0 < H < 1
2
, 〈vs(t) · vs(0)〉 decays sharply from v20 to v20e

−1 for

0 ≤ t < D
− 1

2H
H , as highlighted in the insets of Figs. 3(a) and 3(b), followed by a

very slow decrease for t ≥ D
− 1

2H
H . On the other hand, for H = 1

2
we find that a

purely exponential decay is recovered, i.e., 〈vs(t) · vs(0)〉 = v20 exp(−D1/2t), for which

the particle orientation is driven by Gaussian white noise with rotational diffusion

coefficient D1/2 and decorrelation time set by τ1/2 = D−1
1/2. Finally, for 1

2
< H < 1

(persistent rotational noise) the velocity autocorrelation function decreases more slowly

in time for 0 ≤ t < D
− 1

2H
H , whereas it quickly goes to 0 for t ≥ D

− 1
2H

H . In particular, as

H → 1, the velocity autocorrelation approaches a Gaussian decay, i.e., v20 exp(−D1t
2).

Consequently, for 1
2
≤ H < 1, the typical decorrelation time of the swimming velocity

is . D
− 1

2H
H , whereas for 0 < H < 1

2
, long-range temporal correlations of the particle

orientation lead to a rather high persistence of the swimming velocity.

4.2. Mean-squared displacement

The translational mean-squared displacement of the particle position, x = (x, y), can

determined by employing the relation

〈|x(t)|2〉 =
∫ t

0

∫ t

0

ds ds′
〈

d

ds
x(s) · d

ds′
x(s′)

〉

, (24a)

=

∫ t

0

∫ t

0

ds ds′〈ξT (s) · ξT (s′) +
∫ t

0

∫ t

0

ds ds′〈vs(s) · vs(s
′)〉.(24b)
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Figure 4. (a) Translational mean-squared displacement given by Eq. (28), for different

values of the Hurst exponent: H = 0.1 (thick solid line), H = 0.3 (dashed line), H = 0.5

(dotted line), H = 0.7 (dashed-dotted line), and H = 0.9 (thin solid line). The top-

left and bottom-right insets show a linear-linear representation of the main plot at

short and long time-scales, respectively. (b) Translational mean square displacements

obtained from simulated trajectories. Same color code and same line style as in Fig.

4(a). (c) Long-time behavior of the translational mean square displacements for an

active particle driven by antipersistent rotational fractional noise. From top to botton;

H = 0.1, 0.125, 0.15, 0.2, 0.25. The colored symbols correspond to the curves obtained

from numerical simulations, whereas the black solid lines represent the analytical

expression given by Eq. (28). The triangles (⊲) depict the corresponding location of the

effective rotational time, τeff
H

, above which active diffusion emerges. Inset: translational

mean-squared displacement forH = 0.1. The triangles (⊳) and (⊲) indicate the location

of the persistence time τH and the effective rotational time τeff
H

, respectively, which

define the time interval [τH , τeff
H

] in which anomalous diffusion is observed. (d) Active

diffusion coefficient (solid line, left axis) and effective rotational diffusion time (dashed

line, right axis), as a function of H . The horizontal solid and dashed lines represent the

limit values as H → 1, Deff

H
=

√
π

4
and τeff

H
= 1√

π
, respectively, whereas the squares are

numerical values of Deff

H
computed from simulations. The vertical dotted line separates

the two distinct regimes of active motion: I) highly-correlated swimming velocity, and

II) fast decay of the swimming-velocity autocorrelation function.
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The first term on the right hand-side of Eq. (24b), which will be denoted by 〈|x(t)|2〉p,
represents the passive component of the mean-squared displacement due to translational

velocity fluctuations, ξT (t). Since we assume that ξT (t) is delta-correlated in the model

(1a), this yields trivially the diffusive contribution

〈|x(t)|2〉p = 4DT t. (25)

On the other hand, the second term on the right hand-side of Eq. (24b), which will

be denoted by 〈|x(t)|2〉a, originates from the orientational changes in the swimming

velocity driven by fractional rotational Brownian noise and can be rewritten as

〈|x(t)|2〉a = 2v20

∫ t

0

ds

∫ s

0

ds′〈cos(φ− φ′)〉s−s′. (26)

Henceforth, we focus on the nontrivial active contribution to the translational mean-

squared displacement, i.e., 〈|x(t)|2〉a = 〈|x(t)|2〉 − 〈|x(t)|2〉p. Thus, from Eqs. (23)

and (26), we can derive in a straightforward manner the general expression for this

active component for all 0 < H < 1, namely

〈|x(t)|2〉a = 2v20

∫ t

0

ds

∫ s

0

ds′e−DHs′2H

= v20t
2

∞
∑

k=0

(−DHt
2H)k

k!(1 + kH)(1 + 2kH)
. (27)

Eq. (27) can be rewritten as

〈|x(t)|2〉a =
v20

HD
1
H
H

[

γ

(

1

2H
,DHt

2H

)

D
1

2H
H t− γ

(

1

H
,DHt

2H

)]

, (28)

where γ(ν, z) =
∫ z

0
tν−1e−tdt is the lower incomplete gamma function. In Figs. 4(a)

and 4(b), we plot some exemplary mean-squared displacements for different H ,

computed by means of Eq. (28) and from the simulated trajectories, respectively.

We verify that the analytic expression (28) for arbitrary H agrees very well with the

numerical results.

An apparent expression can be readily derived from Eq. (28) for the particular case

H = 1
2n
, where n = 1, 2, . . .. In such a case, the mean-squared displacement can be

expressed as the following finite sum

〈|x(t)|2〉a =
2nv20
D2n

1/2n

{

(n− 1)!

[

1− e−D1/2nt
1
n

n−1
∑

k=0

Dk
1/2nt

k
n

k!

]

Dn
1/2nt

+(2n− 1)!

[

e−D1/2nt
1
n

2n−1
∑

k=0

Dk
1/2nt

k
n

k!
− 1

]}

. (29)

For n = 1, i.e. H = 1
2
, we recover the well-known expression of persistent Brownian

motion with rotational diffusion coefficient D1/2

〈|x(t)|2〉a =
2v20
D2

1/2

(

D1/2t+ e−D1/2t − 1
)

, (30)
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whereas for n = 2, i.e., H = 1
4
(antipersistent rotational noise), we get

〈|x(t)|2〉a =
4v20
D4

1/4

[

2e−D1/4

√
t
(

3 + 3D1/4

√
t+D2

1/4t
)

+D2
1/4t− 6

]

. (31)

From Eq. (27), it can be easily seen that in the limit of fully antipersistent rotational

noise, H → 0, the mean-squared displacement is ballistic at all times, i.e.,

〈|x(t)|2〉a →
1

e
v20t

2. (32)

Eq. (32) represents the limit of infinite persistence of self-propelled motion, characterized

by a constant value of the velocity autocorrelation function 〈vs(s) · vs(s
′)〉 → v20/e for

all s > s′, and an effective swimming speed v0/
√
e. The other extreme limit corresponds

to fully persistent rotational fractional Brownian noise, H → 1, for which we find

〈|x(t)|2〉a →
v20
D1

[√
π erf

(

D1

1
2 t
)

D
1
2
1 t+ e−D1t2 − 1

]

, (33)

where erf(z) = 2√
π

∫ z

0
dte−t2 is the error function. Note that, in this case, the velocity

autocorrelation approaches the Gaussian decay 〈vs(s) · vs(s
′)〉 → v20 exp [−D1(s− s′)2].

In the long-time regime D
1/2
1 t ≫ 1, erf(D1

1
2 t) ≈ 1 and hence the linear dependence

√

π/D1v
2
0 t is obtained.

For all values of 0 < H < 1, two important limiting cases are observed. First, since

γ(ν, z) → ν−1zν as z → 0, then for t ≪ D
− 1

2H
H

〈|x(t)|2〉a ≈ v20t
2. (34)

This limit corresponds to the characteristic ballistic behavior, which is expected to

happen due to the persistence of the swimming velocity vs(t) at sufficiently short

timescales. However, at intermediate timescales two qualitatively distinct regimes can

be distinguished depending on the behavior of the mean-squared displacement with

respect to the value of H :

I) First, for H < 0 < 1
2
the short-time ballistic regime is rapidly hindered at t . D

− 1
2H

H

by the antipersistence of the rotational noise. This results in an intermediate

anomalous regime where 〈|x(t)|2〉a grows with time t slower than ∼ t2 but faster

than ∼ t over a broad temporal interval up to several times D
− 1

2H
H , as shown in

Figs. 4(a) and 4(b) for H = 0.1, 0.3, and in Fig. 4(c) for H = 0.1, 0.125, 0.15, 0.2.

This is also consistent with the long-range temporal correlations of the swimming

velocity, which persist even for timescales comparatively larger than D
− 1

2H
H , as

shown in Fig. 3.

II) On the other hand, for 1
2
≤ H < 1, the persistence of the rotational noise allows

to fully preserve the ballistic behavior up to timescales t ≈ D
− 1

2H
H , see Figs. 4(a)

and 4(b) for H = 0.5, 0.7, 0.9. For t & D
− 1

2H
H , 〈|x(t)|2〉a reaches quickly a diffusive

behavior, caused by the complete decorrelation of the particle orientation, as verified

in Fig. 3. Note that in this case, the resulting slope of linear behavior of the mean-

squared displacement varies very weakly with H , as observed in the bottom-right

insets of Figs. 4(a) and 4(b).
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Furthermore, the second important limit is obtained at sufficiently long-time scales

(t ≫ D
− 1

2H
H ), for which we find

〈|x(t)|2〉a ≈
v20

HD
1

2H
H

Γ

(

1

2H

)

t, (35)

where Γ(ν) =
∫∞
0

tν−1e−tdt is the complete gamma function. Remarkably, Eq. (35)

reveals that active diffusion emerges in the long-time limit for all values of the Hurst

exponent, 0 < H < 1: 〈|x(t)|2〉a ≈ 4Deff
H t, where the resulting active diffusion coefficient

is

Deff
H =

v20

4HD
1

2H
H

Γ

(

1

2H

)

,

=
1

4H
Γ

(

1

2H

)

DH . (36)

Indeed, in Fig. 4(c), we show that, even for regime I (0 < H < 1
2
), for which an

anomalous growth of the mean-squared displacement occurs at intermediate timescales,

a diffusive behavior is reached at sufficiently long timescales. In such a case, the slope of

the long-time linear behavior of 〈|x(t)|2〉a becomes very sensitive to small variations of

the Hurst exponent: the smaller the value of H , the larger the resulting active diffusion

coefficient, as illustrated in Fig. 4(c). By performing a linear fit of the long-time behavior

of mean-squared displacements obtained from the simulated trajectories, we compute

the numerical values of Deff
H , which are plotted as squares in Fig. 4(d). For comparison,

we also plot as a solid line the dependence of Deff
H on H given by Eq. (36), thereby

showing a very good agreement with the numerical results. Once again, two distinct

behaviors ofDeff
H are observed as a function ofH , which coincide with the existence of the

two different regimes (I and II) previously identified. For regime I, the active diffusion

coefficient exhibits a sharp monotonic increase with decreasing H , and diverges as

H → 0, In addition, it approaches the value Deff
1/2 =

1
2
D1/2 =

1
2
v20D

−1
1/2 as H → 1

2
. On the

other hand, for regime II, Deff
H varies very weakly with H : starting fromDeff

1/2 it decreases

monotonically as H increases and converges to the value Deff
1 =

√
π
4
D1 =

v20
4

√

π
D1

as

H → 1.

The previous results suggest that two relevant timescales are necessary to describe

active motion driven by fractional rotational Brownian noise. The first is the natural

timescale

τH ≡ D
− 1

2H
H , (37)

which represents a persistence time over which the active particle is able to keep on

average a constant swimming velocity despite the angular fluctuations. On the contrary,

a second timescale, which will be denoted by τ effH , represents the time needed for the

particle orientation to become completely decorrelated and uniformly distributed over

[0, 2π). Therefore, τ effH can be interpreted as an effective rotational time, similar to

τ1/2 = D−1
1/2 defined for active Brownian motion (H = 0.5) as the timescale at which
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the autocorrelation function of the particle orientation decays to 1/e. In fact, for this

particular value of the Hurst exponent, both timescales coincide: τ1/2 = τ eff1/2. However,

forH 6= 1/2, it is expected that τ effH could be different from τH due to the non-exponential

decay of the velocity autocorrelation function. In order to determine τ effH , we realize that

a diffusive behavior of 〈|x(t)|2〉a must be observed for t & τ effH . Thus, taking into account

that γ(ν, z) → Γ(ν) as z → ∞, by applying the condition Γ
(

1
2H

)

D
1

2H
H t ≫ Γ

(

1
H

)

to

Eq. (28) we find

τ effH =
Γ
(

1
H

)

Γ
(

1
2H

)D
− 1

2H
H ,

=
Γ
(

1
H

)

Γ
(

1
2H

)τH . (38)

Indeed, for H = 1
2
, Eq. (38) reduces to the well known expression τ eff1/2 = D−1

1/2 = τ1/2
for pure rotational Brownian noise in two dimensions. In Fig. 4(d) we show as a dashed

line the dependence of τ effH on H given by Eq. (38). For regime I, τ effH exhibits a very

pronounced increase as H decreases, and diverges as H → 0. It should be noted

that, in the case of antipersistent rotational noise, the increase of τ effH on H is much

more pronounced than that of Deff
H , as shown in Fig. 4(d). For instance, for H = 0.1,

τ eff0.1 = 15120 τ0.1, whereas Deff
0.1 = 60D0.1. In Fig. 4(c) we represent as triangles the

location of τ effH on the mean-squared displacement curves , 〈|x(t)|2〉a vs. t, for different

0 < H < 1
2
. We verify that active diffusion emerges if the elapsed time t is only slightly

larger than the values of τ effH determined by means of Eq. (38). Note that the separation

between the persistence time and the effective rotational time opens a time interval

[τH , τ
eff
H ] over which the active motion is neither ballistic nor diffusive, as illustrated in

the inset of Fig. 4(c). The length of this interval where anomalous active motion occurs

broadens as H decreases, as illustrated in Fig. 4(c) for different values of 0 < H < 1
2
.

The opposite behavior is observed for regime II: with increasing H , τ effH decreases

monotonically from the value τ eff1/2 = D−1
1/2 at H = 1/2, thus becoming smaller than

τH . In this case, the dependence of τ effH on H is much less pronounced than in I, where

the limiting value as H → 1 is τ eff1 = τ1/
√
π = 1/

√
πD1. Note that in this regime

the time interval for the possible appearance of anomalous active motion, [τ effH , τH ],

is quite narrow. In fact, the maximum relative difference between τH and τ effH is

(τH − τ effH )/τH ≈ 0.44 as H → 1. This implies that a rather abrupt transition from

ballistic to active diffusion must occur in this regime at t ≈ D
− 1

2H
H , as verified in Figs. 4(a)

and 4(b).

5. Summary and final remarks

In this paper, we have investigated a two-dimensional model for a overdamped self-

propelled particle moving at constant swimming speed, whose orientation is driven by

fractional Brownian noise. The resulting dynamics of the swimming direction of the

particle has deep consequences on its translational pattern of motion. Remarkably,
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for positively correlated rotational noise, circular-like motion can be observed even

in the absence of external elements that break the rotational symmetry, as found for

active colloids swimming in viscoelastic media [38] or at large Péclet number [58]. We

have derived the corresponding Fokker-Planck equations, as well as the solution for

the probability density function of the particle orientation for arbitrary values of the

Hurst exponent H of the fractional rotational noise. This in turn has allowed us to

find analytical expressions for the swimming-velocity autocorrelation function and the

translational mean-squared displacement, which reduce forH = 0.5 to the widely-known

expressions of the conventional ABP model.

By analyzing the behavior of the derived quantities for different values of the Hurst

exponent, we have identified two distinct regimes of active motion, marked by the

influence of either the antipersistence or the persistence of the rotational noise. We

have demonstrated that active diffusion effectively emerges in the asymptotic long-time

limit regardless of the nature of the rotational noise. Moreover, we have provided

an analytical expression for the active diffusion coefficient as a function of H , and

checked that our results are in excellent agreement with numerical simulations of active

trajectories evolving according to the proposed model. One remarkable finding of our

work is the emergence of an H-dependent timescale which plays the role of an effective

rotational-diffusive time, even though the orientational dynamics of the particle is not

exponentially correlated if H 6= 0.5. The existence of such a timescale, in addition to

the well-known persistence time, sets an interval over which the active motion exhibits

anomalous diffusion. This is markedly apparent for antipersistent rotational noise with

small Hurst exponent. In such a case, there exists a broad time interval characterized

by long-range temporal correlations of the swimming velocity and an anomalous grow

of the mean-squared displacement.

To our knowledge, our work is the first investigation of the effects of non-exponential

orientational correlations in the motion of self-propelled particles. Thus, we expect that

the results presented here will contribute to a better understanding of active motion

in complex media with anomalous rotational diffusion, such as those found in many

biological systems. Further steps of our work could also address the effect of retarded

memory effects in the rotational friction [63, 64], which could also modify the active

diffusive behavior that emerges in the asymptotic limit. One more possible aspect to

investigate is the influence of geometrical confinements, as it is known that rotational

memory can significantly modify, e.g., the rectification of active particles in asymmetric

periodic channels [24].
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[1] Bechinger C, Di Leonardo R, Löwen H, Reichhardt C, Volpe G and Volpe G 2016 Rev. Mod. Phys.

88, 045006

[2] Ramaswamy S 2010 Annu. Rev. Condens. Matter Phys. 1, 323

[3] Elgeti J, Winkler R G and Gompper G 2015 Rep. Prog. Phys. 78, 056601

[4] Taktikos J, Stark H and Zaburdaev V, 2013 PLoS ONE 8, e81936

[5] Darnton N C and Berg H C, 2007 Biophys. J. 92, 2230

[6] Howse J R, Jones R A L, Ryan A J, Gough T, Vafabakhsh R and Golestanian R 2007 Phys. Rev.

Lett. 99, 048102

[7] Saragosti J, Silberzan P and Buguin A 2012 PLoS One 7, e35412

[8] Cates M E and Tailleur J 2013 EPL 101, 20010
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