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Abstract We report the thermodynamic properties of an ideal boson gas confined
in an infinite periodic array of channels modeled by two, mutually perpendicular,
Kronig-Penney delta-potentials. The particle’s motion is hindered in the x–y direc-
tions, allowing tunneling of particles through the walls, while no confinement along
the z direction is considered. It is shown that there exists a finite Bose-Einstein con-
densation (BEC) critical temperature Tc that decreases monotonically from the 3D
ideal boson gas (IBG) value T0 as the strength of confinement P0 is increased while
keeping the channel’s cross section, axay constant. In contrast, Tc is a non-monotonic
function of the cross-section area for fixed P0. In addition to the BEC cusp, the spe-
cific heat exhibits a set of maxima and minima. The minimum located at the highest
temperature is a clear signal of the confinement effect which occurs when the bo-
son wavelength is twice the cross-section side size. This confinement is amplified
when the wall strength is increased until a dimensional crossover from 3D to 1D
is produced. Some of these features in the specific heat obtained from this simple
model can be related, qualitatively, to at least two different experimental situations:
4He adsorbed within the interstitial channels of a bundle of carbon nanotubes and
superconductor-multistrand-wires Nb3Sn.
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1 Introduction

The properties of quantum systems at low dimensionality and temperature have at-
tracted the attention of researchers for a long time. In particular, the study of phase
transitions, such as superfluidity, superconductivity, or Bose-Einstein condensation,
has been marked by an impressive interest among scientists in the field even though
“true” long-range order phases are excluded by the Mermin-Wagner-Hohenberg the-
orem [1, 2] in dimensions lower or equal than two.

In two dimensions, however, the superfluid or superconductor transition arises by
the acquisition of quasi-long-range-order in the system as described by the Kosterlitz-
Thouless phase transition [3, 4]. This, has been experimentally confirmed in thin su-
perconducting [5–10] and helium-films [11–13]. Historically, different experimental
methods have been set up to study low dimensional phase transitions since the dis-
covery of helium superfluidity. Indeed, studies on the behavior of helium films have
been performed by using several experimental techniques, like the adsorption of he-
lium on simple plane substrates [14], or even on more complex ones as in nanoporous
media such as cylindrical pores of Anopore [15], Vycor [16] or Gelsil [17] glasses,
where the effects of the substrate structure on the specific heat has been reported
among other properties. More recently, studies of adsorption of atoms and molecules
on planar substrates [18, 19]; the two-dimensional character of high critical temper-
ature superconductivity; and the discovery of graphene, have made two-dimensional
systems to be widely explored contrary to the case of quasi-one-dimensional ones.

Although the theoretical aspects of one-dimensional systems have been exten-
sively studied [20], only very recently 1D experimental reports have attracted a great
attention. For example, nowadays it is possible to create a 1D Bose gas in cigar-
shaped magneto-optic traps [21] where the particle density, the cigar size and the
intensity of the interaction between particles are experimentally tunable parameters,
allowing one to examine quantum phenomena such as the superfluid to Mott-insulator
phase transitions [22, 23]. On the other hand, with the advent of carbon nanotubes,
the realization of phase transitions in quasi-one-dimensional systems of different
substances adsorbed on nanotube bundles is now possible [24–27]. The quasi-one-
dimensional character of these structures is a consequence of the enormous aspect
ratios that nanotubes exhibit, with cross-sections in the nanoscale regime. On such
length scales the single-particle energy levels corresponding to the cross-section de-
grees of freedom are “frozen” leading to effective one-dimensional systems.

In some other recent theoretical studies [28, 29], the occurrence of BEC of a
weakly-interacting quantum gas of Bose particles (parahydrogen or 4He) adsorbed
within the interstitial channels (IC) of a bundle of poly-disperse carbon nanotubes has
been predicted. The reported BEC transition and particularly, the dependence of the
specific heat on temperature, exhibit features of four dimensions in contrast to the ex-
pected one-dimensional behavior that has been, indeed, observed in the experimental
report of Lasjaunias et al. [30] of the specific heat of adsorbed 4He in nanotubes. The
authors of the former references, Refs. [28, 29], argue that the presence of nonunifor-
mity in the nanotube cross-section gives rise to three additional degrees of freedom
(the radii of the three tubes that form the IC), needed in their analysis to ensure the
occurrence of the BEC transition which, as they claim [31] based on the results re-
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ported in Ref. [32], doesn’t exist in a uniform bundle of identical one-dimensional
nanotubes.

Truly, it is well known that there is no BEC of a non-interacting boson gas in an
impenetrable one-dimensional box potential. Also, that there is no BEC whenever the
spatial dimensions of at least one direction is finite, thus excluding the possibility of
BEC in just one channel. Therefore, a collection of independent IC’s can not develop
a BEC unless a coupling mechanism between adjacent channels is present. A possi-
bility for such a mechanism is considered in Refs. [28, 29], where the authors argue
that the coupling between IC’s leads to an effective density of states from which a
non-vanishing BEC critical temperature is obtained. This effective density of states
can be described as an inhomogeneously broadened convolution of the density of the
heterogeneous transverse states with the one-dimensional one of a free particle that
moves along the nanotube axis.

Currently, it is commonly accepted that suitable confinement potentials make the
long-range-order character of the BEC to be stable against long-range-fluctuations.
Such is the case of the ideal Bose gas in two dimensions trapped by harmonic poten-
tials, which undoubtedly undergoes BEC. So, in the case of a collection (heteroge-
neous or not) of quasi-one-dimensional systems, one would expect a BEC transition
at a finite critical temperature if coupling between the 1D-systems is considered.
The nature of such coupling will vary from system to system. In the case of a het-
erogeneous bundle of nanotubes, packing defects due to the non-uniformity of the
nanotube cross-section [32] may lead to the necessary coupling between different
interstitial channels for BEC to take place.

In addition to the theoretical interest, the model presented in this paper could
be the basis for a more detailed calculation to estimate critical temperatures and
thermodynamic properties of superconductor-multistrand-wires whose technologi-
cal applications, that go from Nuclear Magnetic Resonances to magnets used in
high-energy accelerators, impel their understanding. For example, several authors
report experimental studies on the thermodynamic properties of multistrand Nb3Sn
(an A15 type of superconductor) wires, that exhibit a transition temperature around
18 K and can support fields up to 15 Tesla [33]. Typical numbers of filaments
range from 102 to 104 Nb3Sn superconductor wires with diameters varying from
a few to tens µm. On the other hand, Nb3Sn multifilament wires come in differ-
ent sizes, shapes and compositions, depending on the techniques used to create
them. The most common are the Bronze Route, the Internal Sn diffusion process
and the Powder Metallurgy (PM) methods, and they may have a core either of Cu,
Sn, NbSn or NbCu alloys, while usually immersed in Cu, and the use of tantalum
and/or titanium barriers to prevent the Sn pollution in Cu [34]. Experimentalists
report either total specific heat curves and/or curves that subtract the normal state
specific heat, to avoid phonon and unpaired electron interference [33, 35, 36]. The
main feature in this curves is the transition around 18 K with a typical width of
5 K. However, in some cases a second peak appears around 9 K which the au-
thors interpret as the trasition of the remnants of unreacted Nb. Here, in light of
our results we suggest an alternative interpretation to the meaning of these max-
ima.

In this paper we report the thermodynamic properties with emphasis in the BEC
critical temperature and the specific heat, of an ideal Bose gas within an infinite peri-
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odic array of tubes. Our results are benchmarks for ongoing studies on the properties
of real spatially confined systems such as: a) He atoms in interstitial carbon nan-
otube bundles [30], b) Cooper pairs in periodic tubes like multistrand Nb3Sn bundles
[33] or Bechgaard-salts [37] or c) bosonic atoms in two dimensional opto-magnetic
traps [22].

Although at very low (or zero) temperatures and/or high densities the interaction
between particles cannot be neglected, we focus on an interactionless boson gas to
study the effects of a periodic confining potential on the properties of the system.
We show that this simple model captures qualitatively the properties of real systems,
including the emergence of thermal phase transitions and/or dimensional crossovers
[38, 39].

In the following section we describe our system model. In Sect. 3 we calculate the
Bose-Einstein condensation critical temperature in addition to the specific heat and
other relevant thermodynamic quantities. In Sect. 4 we discuss the results and present
our conclusions.

2 Periodic Tube Bundles

Our system model consists of N non-interacting bosons confined in an infinite pe-
riodic array of penetrable tubes of rectangular cross section of sides ax and ay , and
infinite length. We model the tubes array by considering two perpendicular Kronig-
Penney (KP) delta barriers in the x and y directions with no constraints in the re-
maining z direction (see Fig. 1). Our periodic structure resembles either the bundle
of homogeneous nanotubes, the superconductor-multistrand-wires or the experimen-
tal 2D periodic lattice of tightly confined potential tubes created in Ref. [22]. If the
interaction between bosons is ignored, the Schrödinger equation for each boson of
mass m in this system is

{
− �

2

2m
∇2 + V (x, y)

}
ψ(x, y, z) = εkψ(x, y, z) (1)

with

V (x, y) =
∞∑

n=−∞
vxδ(x − nax) +

∞∑
n=−∞

vyδ(y − nay) (2)

where vx and vy are the delta strength in the x and y directions, respectively.
The Schrödinger equation (1) is separable in each direction such that εk = εkx +

εky + εkz is the energy per particle, where

εkz = �
2k2

z

2m
, (3)

with kz = 2πnz/L the wavenumber in the z-direction, nz = 0,±1,±2, . . . due to the
periodic boundary conditions in a box of length L, while εkx and εky are implicitly
obtained from the equations [40, 41]
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Fig. 1 Periodic array of square
cross section tubes (Color figure
online)

(Pi/αiai) sin(αiai) + cos(αiai) = cos(kiai), (4)

with α2
i ≡ 2mεki

/�
2, and ki are the wavenumber of the particles in the i (= x

or y) direction. We rewrite the dimensionless constants Pi = mviai/�
2 as Pi =

(mviλ0/�
2)(ai/λ0) ≡ P0i (ai/λ0), where λ0 ≡ h/

√
2πmkBT0 is the de Broglie ther-

mal wavelength of an ideal boson gas in an infinite box at the critical tempera-
ture T0 = 2π�

2n
2/3
B /mkBζ(3/2)2/3 � 3.31�

2n
2/3
B /mkB , with nB ≡ N/L3 the boson

number density and ai the distance between the delta barriers along the i = x and
y directions. P0i ≡ mviλ0/�

2 is a measure of the tube wall impenetrability directly
related to the delta-barrier strength. This can be understood if we recall the transmis-
sion coefficient of particles arriving at right angles with the one dimensional delta
potential of strength vi , τi = 1/(1 + P 2

0i/Ē) with P0i as defined above and Ē the
energy in �

2/2ma2 units [42, 43]. We recover the following two limits: when P0i

goes to infinity the transmission coefficient vanishes and our model becomes an infi-
nite number of decoupled tubes; when P0i = 0, τi = 1 and the confining tube walls
disappear recovering the 3D ideal Bose gas.

By performing a series expansion of the left-hand-side of (4) just above of the ex-
act Pi -dependent single-particle-ground-state energy ε0i in the first band, the single-
particle energy spectrum can be written to first order as

εki
� ε0i + �

2

Mia
2
i

(1 − coskiai). (5)

This is the dispersion that has been considered by several authors [44, 45] in
the standard nearest-neighbor hoping approximation of the well-known Hubbard
model but with ε0i = 0. ε0i satisfies (4) for ki → 0, namely (Pi/α0iai) sin(α0iai) +
cos(α0iai) = 1 where α0i = √

2mε0i/�2. Note that ε0i = 0 for either P0i = 0 or
ai = 0, since in any case Pi = P0iai/λ0 = 0. Whereas ε0i increases monotonically
to the first-band top edge value �

2π2/2ma2
i , when P0i increases with ai fixed, or

vice versa, when ai increases with P0i kept fixed. In the last case, the energy gaps
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diminish and we recover the continuous energy spectrum and hence, the 3D be-
havior of the system. The effective mass Mi is explicitly given by the expression
m[(α0iai)

−1 sinα0iai + (α0iai)
−2Pi((α0iai)

−1 sinα0iai − cosα0iai)]. As expected,
Mi → m as Pi → 0 and it grows monotonically with Pi in such a way that the relation
is almost linear for Pi � 5. Even though (5) might seem to be a good approximation
to calculate the thermodynamic properties of the system [45] in the low temperature
regime, there are distinct effects, particularly in the specific heat, that can only be
observed when the full band spectrum is considered as is shown below.

3 Critical Temperature and Specific Heat

3.1 Grand Potential

The thermodynamic properties of the system are obtained from the grand potential

(T ,L3,μ) for a boson gas



(
T ,L3,μ

) = U − T S − μN = 
0 + kBT
∑
k�=0

ln
[
1 − e−β(εk−μ)

]
(6)

where 
0 is the contribution of the ground state ki = 0 with i = x, y, z, and β ≡
1/kBT . As usual, U , S and μ denote the internal energy, the entropy and the chemical
potential, respectively. By using the dispersion relations given by (3) and (4), and after
some algebra we obtain



(
T ,L3,μ

) = kBT ln
[
1 − e−β(ε0−μ)

] − L3m1/2

(2π)5/2�

1

β3/2

×
∫ ∞

−∞

∫ ∞

−∞
dkx dkyg3/2

(
e
−β(εkx +εky −μ)

)
, (7)

where we have replaced the summations by integrals
∑

k → (L/2π)3
∫

d3k, as-
suming �

2/mL2 	 kBT , and we have introduced the Bose functions [46] gσ (t) ≡∑∞
l=1 t l/ lσ . ε0 = ε0x + ε0y is the ground state energy which depends on P0i and on

ai/λ0.
From (7) the thermodynamic properties for a monoatomic gas can be calculated

using the relations

N = −
(

∂


∂μ

)
T ,L3

, U
(
T ,L3) = −kBT 2

[
∂

∂T

(



kBT

)]
L3,z

and CV =
[

∂

∂T
U

(
T ,L3)]

N,L3
.

(8)

where z ≡ exp(βμ) is the fugacity.
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Fig. 2 Critical temperature in
units of T0 as a function of P0
for different values of
ax/λ0 = ay/λ0 = a/λ0 (Color
figure online)

3.2 Critical Temperature

We define the critical temperature Tc as the temperature when the number of bosons
in the ground-state level ceases to be negligible, i.e., N0(Tc) � 0 and the chemical
potential μ(Tc) � μ0 = ε0.

From the first expression in (8) and (7) we obtain the particle number N

N = 1

eβ(ε0−μ) − 1
+ L3

√
m

2π5�2β

×
∫ ∞

0

∫ ∞

0
dkx dkyg1/2

(
e
−β(εkx +εky −μ)

)
. (9)

At T = Tc, the first term vanishes and the critical temperature is obtained from

N

L3
=

√
m

2π5�2βc

∫ ∞

0

∫ ∞

0
dkx dkyg1/2

(
e
−βc(εkx +εky −μ0)

)
. (10)

In order to use the critical temperature T0 as a reference unit, here we set the boson
number density N/L3 equal to that of an ideal Bose gas (IBG) in the thermodynamic
limit. Note that all the integrals involving the energy-spectrum in the x and y di-
rections can be split in a sum of integrals over the energy bands folded in the first
Brillouin zone.

In the isotropic case, where P0x = P0y ≡ P0 and ax = ay ≡ a, the critical tem-
perature as a function of the parameter P0 is shown in Fig. 2 for different values
of the tube cross-section. Note that as the impermeability P0 of the tube walls in-
creases, the critical temperature diminishes monotonically from T0. In contrast, the
variation of Tc as function of a/λ0 shows a non-monotonic behavior (Fig. 3). For
finite P0, Tc/T0 diminishes from 1 down to a minimum value as the plane separation
a decreases from infinity; further reduction in a brings an increase in Tc/T0 which
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Fig. 3 Critical temperature in
units of T0 as a function of
ax/λ0 = ay/λ0 = a/λ0, for
different values of P0 (Color
figure online)

asymptotically reaches unity. This can be understood from the KP dispersion relation
(4) since when a → 0 the first term of its left member goes to zero and εki

� �
2k2

i /2m

(i = x, y) so one recovers the 3D IBG regime, as expected.
For both Figs. 2 and 3, we find a similar qualitative behavior of the critical tem-

perature as that reported for a boson gas in multilayers [38, 39], namely a decrease
in Tc/T0 as P0 increases and a trend of Tc/T0 to go back to unity as a/λ0 increases
after having reached a minimum. However, we notice that for similar P0 and a values
as those used in multilayers, we obtain even lower Tc/T0 values for bosons in square
cross-section tube bundles, showing that the presence of an additional KP delta poten-
tial emphasizes even more the effects of confinement. Although we have only shown
the critical temperatures for the isotropic case, we will show in the following sec-
tions, the effects of anisotropy in the internal energy and specific heat by considering
a rectangular cross-section.

3.3 Internal Energy

The temperature-dependent internal energy U is given by

U − ε0N = L3
√

m

2π5�2β

∫ ∞

0

∫ ∞

0
dkx dky

×
{
(ε − ε0)g1/2(χ) + 1

2β
g3/2(χ)

}
, (11)

where ε ≡ εkx + εky and χ ≡ e−β(ε−μ).
For the isotropic case, we show in Fig. 4 the particle internal energy referred to its

ground state energy and divided by kBT . Some features of the internal energy over
kBT are: for a � 0.8λ0, it increases monotonically with T/T0 until it reaches a max-
imum whose height slightly exceeds the classical value 1.5 and goes back slowly to
this value; when a � 0.8λ0 the effect of the KP potentials is revealed by two maxima
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Fig. 4 Isotropic case. Internal
energy as a function of T/T0,
for tube arrays of square cross
section of several side sizes
ax/λ0 = ay/λ0 and P0 = 100
(Color figure online)

Fig. 5 Anisotropic case.
Internal energy as a function of
T/T0, ax/λ0 = 0.5,
ay/λ0 = 0.1 and P0 = 100
(black line). For comparison, the
isotropic curves are also shown
(color lines) (Color figure
online)

and a minimum, whose positions are shifted towards higher temperature values, away
from the critical temperature region, and whose heights approach among them and
tend to the classical value as a/λ0 decreases.

For the anisotropic case, ax �= ay , which we show in Fig. 5, the behavior of the
internal energy over kBT is similar to the one described above, albeit more complex,
due to the existence now of two length scales instead of one.

These behaviors, for both the isotropic and the anisotropic cases, will be analyzed
in more detail for the corresponding specific heat curves.

3.4 Specific Heat

From (8) and (11), the specific heat becomes
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Fig. 6 Isotropic case. Specific
heat in NkB units, as a function
of T/T0, for different ax = ay

values and P0 = 100 (Color
figure online)

CV

NkB

= L3

N

√
mβ

8π5�2

∫ ∞

0

∫ ∞

0
dkx dky

[
g1/2(χ)

(
2ε − ε0 − μ + T

dμ

dT

)

+ 2β(ε − ε0)g−1/2(χ)

(
ε − μ + T

dμ

dT

)
+ 3

2β
g3/2(χ)

]
. (12)

For T < Tc the chemical potential μ = μ0 is a constant, ∂μ/∂T = 0 and, using χ0 ≡
e−β(ε−μ0), the last equation for the specific heat becomes

CV

NkB

= L3

N

√
mβ

2π5�2

∫ ∞

0

∫ ∞

0
dkx dky

{
g1/2(χ0)(ε − μ0)

+ β(ε − μ0)g−1/2(χ0)(ε − μ0) + 3

4β
g3/2(χ0)

}
. (13)

In Fig. 6 we show the specific heat for the isotropic case, as a function of T/T0

for different values of ax/λ0 = ay/λ0 = a/λ0 ∈ [0.01, 2] and P0 set to 100, where
we can observe at least two maxima and one minimum. The maxima are: a peak
which is a signature of the BEC and is located at a temperature below T0 and a hump
(from now on we will call it hump1) which is related to the threshold for 3D behavior
and is located at a temperature such that the de Broglie thermal wavelength satisfies
λ � 0.7a. The minimum (from now on we will call it minimum1) is associated with
the enhanced trapping of the boson particles when their thermal wavelength λ � 2a.

Besides the aforementioned extreme values, for a/λ0 values within the interval
[0.01, 0.18] the specific heat develops another minimum and another maximum, lo-
cated between the peak and the minimum1. The explanation for the existence of these
two additional extreme values is currently under investigation. For a/λ0 � 0.25 (not
shown) the peak reaches its maximum height from where it monotonically decreases
as a/λ0 increases.
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Fig. 7 Specific heat in NkB

units, as a function of T/T0, for
P0 = 5000, ax/λ0 = ay/

λ0 = 0.5 and 0.1 (Color figure
online)

For values of a/λ0 > 2, the transition peak diminishes its height until it smoothly
merges into minimum1, while hump1 slowly turns into the BEC peak.

For values of a/λ0 < 0.01, the BEC peak keeps its height almost constant at the
value for the ideal Bose gas and is located at temperatures close and under T0, while
minimum1 and hump1 move away to higher temperatures, the difference in their
heights diminishing until it vanishes as a/λ0 → 0.

We conclude that for values of a/λ0 � 2 and a/λ0 � 0.01 the system behavior
approaches the 3D IBG, therefore the specific heat curves look very much alike. In
that range of a/λ0 values, a similar situation is observed for the internal energy.

As P0 becomes larger, the specific heat of the isotropic case reveals a one-
dimensional behavior in a particular range of temperatures determined by the length
scale a, as is shown in Fig. 7. In both cases, ax/λ0 = ay/λ0 = 0.5 and 0.1, the specific
heat CV /NkB approaches the one-dimensional classical value 1/2 over a relatively
large region of temperatures. This behavior is more pronounced as P0 is increased.

In Fig. 8 we can see that for the anisotropic case where ax �= ay , the BEC transition
occurs at a temperature between the respective critical temperatures for the isotropic
cases a = max{ax, ay} and a = min{ax, ay}, and that the minimum corresponding to
each isotropic case, both appear in the anisotropic one.

3.5 Density of States

The effects of the band structure are conspicuously exhibited in the density of states
(DOS)

g(ε) =
∑

kx,ky ,kz

δ(ε − εkx − εky − εkz), (14)
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Fig. 8 Anisotropic case.
Specific heat in NkB units, as a
function of T/T0, for
ax/λ0 = 0.5 and ay/λ0 = 0.1
and P0 = 100 (black line)
compared to their respective
isotropic cases:
ax/λ0 = ay/λ0 = 0.1 and 0.5,
(color lines) (Color figure
online)

which can be written in the thermodynamic limit as

g(ε) = L3

(2π)3

∞∑
jx ,jy=1

∫ π/ax

−π/ax

dkx

∫ π/ay

−π/ay

dky

×
∫ ∞

−∞
dkz δ(ε − εkx,jx − εky,jy − εkz), (15)

where we have explicitly written the integrals over the energy-spectrum in the x and
y directions as a sum over bands of the integrals over kx and ky in the first Brillouin
zone.

Upon integration over dkz we obtain

g(ε) = L3

(2π)3

(
2m

�2

)1/2 ∞∑
jx ,jy=1

∫ π/ax

−π/ax

dkx

×
∫ π/ay

−π/ay

dky

θ(ε − εkxjx − εkyjy )√
(ε − εkx,jx − εky,jy )

, (16)

where θ(x) is the Heaviside step function. For energies close to the minimum, g(ε)

varies as ε1/2 as the DOS of a free particle in three dimensions does. This can be
shown by noting that for energies close to ε0i and for small k, expression (5) can
be approximated by εi0 + �

2k2
i /2Mi . In the isotropic case (εx0 = εy0 = ε0/2 and

Mx = My = M ), we can therefore write

g(ε̃) � L3

(2π)3

(
2m

�2

)1/2

2π

∫ k̃

0
dk k

θ(ε̃ − �
2

2M
k2)√

ε̃ − �2

2M
k2

,
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where ε̃ ≡ ε −ε0, k2 = k2
x +k2

y and k̃ is a cuttoff value for k in the first Brillouin zone.

The exact value is not needed as long as ε̃ < (�2/2Ma2)k̃2. Thus, after evaluating the
integral by a change of variable we obtain

g(ε̃) � L3

(2π)2

(
2m

�2

)1/2 2M

�2
ε̃1/2. (17)

The DOS g(ε) from (16) is plotted in Fig. 9 for P0 = 100, ax/λ0 = ay/λ0 = 0.1 and
0.5. For energies around the bottom of the first band given by (17) is shown in the
inset where a smaller value of P0 has been used to reveal the 3D behavior (see for
instance the empty-square curve). The P0 dependence of g(ε) enters only through
the effective mass M , and in general, g(ε) is a rather complex function of the energy,
however, in the limit of large values of P0 the reminiscent behavior ε−1/2 of the one-
dimensional DOS of a free particle is observed as a “falling” (see for example the dot
curve) of g(ε) as a function of ε. This behavior occurs when the energy-states along
the z direction are the only ones that contribute to g(ε), the contribution due to the
other two directions being a constant related to the energy band-gaps.

4 Discussion and Conclusions

At this point let us make the following remarks. In Fig. 10 we plot CV as a function
of T/T0 for different plane separations and P0 = 100, where only the first energy
band, exactly computed from (4) in the x- and y-directions, has been considered.
This situation qualitatively resembles the results obtained if the dispersion relations
(5) were used [44, 45]. However, in Fig. 8 we plot the exact calculation of CV for
which we have used enough number of bands to reach numerical convergence. We
note that the corresponding curves between Figs. 8 and 10 coincide quantitatively
and qualitatively for temperatures not greater than T0; for temperatures between T0
and about 5T0 the agreement between these curves remains better for the smaller
plane separations; finally, for temperatures greater than 5 T0 the one band approxi-
mation is completely wrong since the disagreement is evident. Important structural
information is missing when just one band is included in the calculation, for instance,
the second minimum that appears in the isotropic case of Fig. 8 (full-black line) is
missing in the corresponding curve in Fig. 10. Clearly, the use of the lowest band
leads to a one-dimensional behavior in the classical limit even though the system is
three-dimensional.

In the isotropic case (that can be related to homogeneous nanotubes bundle-
systems), our model predicts a one-dimensional behavior of the specific heat in a
range of temperatures determined by the distance between the delta-barriers. Such
results, shown in Fig. 7, can be used to comparatively explain the one dimensional
character of the specific heat of adsorbed 4He in single-wall nanotubes, as expected,
and observed in experimental situations [30]. Although Lasjaunias et al. did not re-
port the presence of the peak that marks the BEC phase-transition we can give at least
one reason to explain this fact in terms of the finite size of the experimental system
where such transition can be made much less conspicuous.
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Fig. 9 Density of states for
tubes with P0 = 100,
a/λ0 = 0.1 (empty squares) and
a/λ0 = 0.5 (dots). Inset:
corresponding density of states
with P0 = 10

Fig. 10 Specific heat in NkB

units, as a function of T/T0, for
ax/λ0 = 0.5 and ay/λ0 = 0.1
and P0 = 100 (black line)
compared to their respective
isotropic cases:
ax/λ0 = ay/λ0 = 0.1 and 0.5,
(color lines). One band only
(Color figure online)

One important result is that our system always exhibits a BEC which is possi-
ble due to the coupling between the different channels the bosons move in. When the
wall impenetrability goes to infinity our system becomes a set of decoupled tubes with
zero BEC critical temperature as expected. Some results, often found in the literature,
which claim that BEC in a bundle of homogeneous nanotubes is not possible [31],
resemble ours if homogeneity is associated with non-communication among tubes.
However in the experimental set up, it is clear that the heterogeneity of the interstitial
channels and the interactions between atoms, may have strong effects on the ther-
modynamic behavior of the system. In particular the BEC critical temperature could
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be different from zero if the heterogeneity of the channels would cause exchange of
atoms among them.

On the other hand, the use of multifilamentary superconducting tapes [47] or
wires [33] has improved the coil performance to support higher critical current den-
sity useful to create higher magnetic fields to be used, for example, in the Large
Hadron Collider currently under operation or the International Thermonuclear Exper-
imental Fusion Reactor planed to work in 2019. In both cases tapes and wires gather
many filaments where pairs flow preferentially along the longitudinal direction. Crit-
ical temperature distribution in the Nb3Sn strands as well as the specific heat have
been reported. The authors point out two transitions in the specific heat curve: one
at the critical temperature (around 18 K) which they associate to the complex su-
perconductor wire and another one at a lower temperature (around 9 K) which they
associate to the unreacted Nb. However, if the Cooper pairs should be considered as
bosons, our specific heat calculations show at least two characteristic temperatures:
the lower one, which is the BEC critical temperature where the peak is located and
is associated to the collective effect, i.e., the bosons plus the structure (our tubes),
and the other one at hump1 corresponding to the threshold for the 3D ideal boson gas
behavior in the individual filaments. In other words, the meaning given to the peak
and hump1 in our Fig. 8 are interchanged with respect to those given in Fig. 4 of
Ref. [33]. A way to elucidate this controversy would be to make wires with larger
filament diameters, then prove that their smooth maximum shifts to the left as it is
observed in our calculations.

We summarize our main results in the following list: we observe that in the pres-
ence of periodical structures constructed with orthogonal Dirac combs inside an in-
finite box filled with bosons, the critical temperature decreases from the 3D ideal
boson gas T0 as P0 increases, while the plane separations ax/λ0 and ay/λ0 are kept
constant. It becomes zero when the periodic delta potential strengths become infinite.
In other words, there is not BEC critical temperature different from zero for bosons
in a tube of finite cross section and infinite length. In addition, for finite P0, as the
separation between planes decreases from infinity, the critical temperature reaches a
P0-dependent minimum value and then it increases again towards T0 as ax/λ0 and
ay/λ0 go to zero, as expected [38, 39].

For systems with ax,y > λ0 the numerical calculations for the critical temperature
and specific heat are very sensitive to the number of energy bands considered. To
attain convergence we need to include up to 1000 bands.

At T = Tc, the specific heat is continuous but has a discontinuity in its derivative.
In the isotropic case it has one minimum and one or two maxima. The minimum
is associated to particle trapping between two planes when its thermal wavelength is
equal to 2a. This is corroborated in the anisotropic case where the specific heat shows
not one but two minima associated with the particle trapping in the x or y directions.

The maximum at higher temperatures is associated to the onset of the system’s ap-
proach to a 3D IBG behavior in this regime where the thermal wavelength λ � 0.7a.

While there is still a controversy over whether or not Bose-Einstein condensation
of 4He exists inside interstitial filaments in bundles of carbon nanotubes, we conclude
that in order to have BEC there must be a way through which the interstitial channels
are coupled among them, either by effects of inhomogeneity of the tube bundles or
by tunneling across the weaker interstitial walls.
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Finally, we mention that the proposed model in this paper gives account of systems
composed of a very large number of quasi-one dimensional systems such as: bundles
of carbon nanotubes, superconductor-multistrand wires, Bechgaard salt or 2D opto-
magnetic traps.
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