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2 Universidad Autónoma de la Ciudad de México, Campus Cuautepec, Av La Corona 320 Loma
Alta. Gustavo A Madero CP 07160, México DF, Mexico
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Abstract
In this work, we address the concept of the chemical potential μ in classical and
quantum gases towards the calculation of the equation of state μ = μ(n, T )
where n is the particle density and T the absolute temperature using the methods
of equilibrium statistical mechanics. Two cases seldom discussed in elementary
textbooks are presented with detailed calculations. The first one refers to
the explicit calculation of μ for the interacting classical gas exemplified by
van der Waals gas. For this purpose, we used the method described by van
Kampen (1961 Physica 27 783). The second one refers to the calculation of
μ for ideal quantum gases that obey a generalized Pauli’s exclusion principle
that leads to statistics that go beyond the Bose–Einstein and Fermi–Dirac
cases. The audience targeted in this work corresponds mainly to advanced
undergraduates and graduate students in the physical–chemical sciences but
it is not restricted to them. In regard of this, we have put a special emphasis
on showing some additional details of calculations that usually do not appear
explicitly in textbooks.

(Some figures may appear in colour only in the online journal)

1. Introduction

Unlike thermodynamic quantities such as temperature T , pressure p or internal energy E, the
chemical potential μ has acquired, justified or not, a reputation of a quantity that is not easy
to grasp in a physical way. This is particularly true for undergraduate and graduate students

3 Author to whom any correspondence should be addressed.
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who take for the first time an introductory course in equilibrium statistical mechanics (ESM).
In such courses, micro-canonical, canonical and grand canonical ensembles are introduced
in this particular order since the former one only involves counting micro-states compatible
with the macroscopic thermodynamic configuration, namely the internal energy. In the second
one, the situation changes since it is assumed that the system of interest is in equilibrium
with a thermal bath, while in the third one, it is assumed to be in equilibrium with a bath
that exchanges energy and particles with the system. Only for the latter system, the chemical
potential can be naturally defined because it is a representation where particle exchange is
allowed. However, in the thermodynamic limit, all three representations are equivalent. Hence,
the question arises as to the true nature of the chemical potential. In this work, we present
some ideas that may shed some light on this fundamental issue.

From the micro-canonical and canonical ensembles, the chemical potential can be
computed as

μ = −T

(
∂S

∂N

)
E,V

=
(

∂F

∂N

)
T,V

, (1)

where E, S and F = E −T S denote the internal energy, entropy and the Helmholtz free energy,
respectively. In the grand canonical ensemble, μ is assumed to be known as it guarantees the
thermodynamic equilibrium of the exchange of particles between the system and the bath.
In general, the chemical potential is discussed as a part of a mathematical procedure where
minimization of a many-variable distribution function, such as F (N,V, T ), plays a fundamental
role [1–5]. The chemical potential appears directly in the contribution μ dN to the change in the
internal energy dE regarding the exchange of particles between the reservoir and the system;
thus, μ is the conjugate thermodynamic variable to the number of particles N, given by

μ =
(

∂E

∂N

)
S,V

, (2)

in the same sense as pressure p is a conjugate variable to volume V. Still, a direct physical
interpretation in the context of simple gases might be elusive.

A discussion on the meaning of the chemical potential of the ideal gas, based on expression
(2), is given in [6], where the authors give physical arguments that attempt to explain the general
behaviour of μ as a function of temperature. For the ideal classical gas, μ is a negative quantity
given by

μideal = −kBT ln

[
V

N

(
mkBT

2π�2

)3/2
]

. (3)

This expression admits an interesting interpretation when the average distance between
particles l ≡ (V/N)1/3 and the thermal wavelength λT = (2π�

2/mkBT )1/2 are considered. In
terms of these, expression (3) can be written as μideal = −kBT ln

[
l3

/
λ3

T

]
and the sign of the

chemical potential is determined then by the ratio l/λT . In the high-temperature limit λT � l,
where the quantum effects are negligible, μ is a negative quantity (see [6] for an argument on
why this is so). In such a situation, the system can be seen as being formed of distinguishable
point-particles. In the opposite regime, λT � l, the quantum effects are no longer negligible
and the wave nature of particles starts to be conspicuous, raising μ to less negative values.
This simple reformulation suggests that for the ideal gas, μ can be represented as a balance
between length scales which in turn depend on temperature as well4. In the low temperature
regime, λT � l, the dependence of μ on temperature relies on the quantum symmetry under

4 It is important to note that even if the possibility of μ � 0 is open, the model for the classical ideal gas is no longer
valid at low temperatures. Thus, for the ideal case, μ is always a negative quantity.
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interchange of any pair of particles of the system (indistinguishability). For Fermi particles,
μ decreases monotonically with temperature from its positive zero-temperature value EF [6]
called the Fermi energy which depends on the density of particles as (N/V )2/3. The positiveness
of EF is a consequence of Pauli’s exclusion principle. For Bose particles, μ is also a monotonic
decreasing function of temperature (except in the case when a condensate of bosons is possible
at a non-zero temperature Tc for which μ is a constant for T � Tc), but decreases from the
lowest-lying energy level.

In this paper, we aim to contribute to the understanding of the chemical potential by
answering the following question: What are the effects on the chemical potential when
interactions among particles are included? For this purpose, we consider the classical van
der Waals gas and present the calculation of the chemical potential μ as a function of n
and T using the canonical ensemble in ESM. In regard to the quantum case, we consider a
generalization of Pauli’s exclusion principle and present an explicit calculation, also in the
canonical ensemble, of the averaged number of particles 〈nk〉 that occupy the single-particle
energy level εk. The calculation presented shows how the chemical potential emerge from
the condition that the total number of particles N is conserved. The methodology proposed
here can be straightforwardly used in undergraduate and graduate courses on ESM in order to
clarify how the concept of chemical potential arises and what is its role in quantum statistics. It
is of interest to call the reader’s attention to references [7–10], where complementary aspects
regarding the chemical potential have been thoroughly discussed.

This work has been organized as follows. In section 2, we present the calculation of
the equation of state μ = μ(n, T ) for the interacting classical gas in terms of the so-called
configurational coefficients Bk. Equation μ = μ(n, T ) contains fundamental information
on the thermodynamic properties of a system since it is completely equivalent to the more
familiar representation p = p(V, T ), where p stands for pressure and V is the volume of
the system. A detailed calculation of the correction with respect to the ideal result (3) is
made for the van der Waals gas by using the formalism developed by van Kampen [11]. In
section 3, we discuss the consequences of a generalization of the Pauli exclusion principle. This
generalization explores the possibility that single-particle energy levels εk of an ideal quantum
system may be occupied by at most j particles, where 1 � j � ∞. This generalized statistics is
called intermediate quantum statistics (IQS). We present our conclusions in section 4 and give
some perspectives about the potential applicability of the ideas discussed here. Appendices A
and B are included at the end for further references on the treatment of the interacting classical
gas and quantum ideal systems displaying IQS.

2. The interacting classical gas

2.1. Generic derivation

It has been shown that the chemical potential for the ideal classical gas is a negative quantity
in the temperature regime where quantum effects can be neglected. In order to enhance our
intuition on the nature of chemical potential, we will address the calculation of μ for a classical
gas where particles interact via a pairwise potential v(r1 − r2) using the formalism of ESM.
We will use this opportunity to introduce the reader to a method proposed by van Kampen [11]
which can be easily extended to consider other types of interactions. To clarify the ideas, we
will exemplify the calculation of μ(n, T ) for the van der Waals case. Given the fact that the
van der Waals gas is probably one of the most popular cases of study in classical interacting
gases, it is of utility to spend some time in getting acquainted with the method.
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To take into account the effects of interactions among classical particles on the chemical
potential, we will consider the change �μ = μ − μideal. This quantity has been related with
the averaged work W (r) required to bring an additional particle to the system from infinity to
position r by Widom [14], i.e.

exp (−�μ/kBT ) = 〈exp(−W (r)/kBT )〉, (4)

where 〈...〉 denotes the average in the canonical ensemble. It seems intuitive to expect W (r) to
be larger for a gas with repulsive interactions than for the ideal gas; thus, by using Widom’s
equivalence (4), we may conjecture that repulsive interactions yield �μ > 0. In general, a
system of N interacting particles can be described in ESM by a partition function ZN of the
form [2–4]

ZN = 1

N!

(
mkBT

2π�2

)3N/2

QN, (5)

where

QN =
∫

e−β(v1,2+v1,3+···+vN−1,N )d3r1 · · · d3rN (6)

is known as the configurational integral since it takes into account the different spatial
configurations of the system. In equation (6), vi, j ≡ v(|ri − r j|) is the interaction energy
between the ith and jth particles and β = (kBT )−1 as usual. A simple method to evaluate
QN has been given by van Kampen in [11]. In that work, it is suggested that the average
of e−βv1,2 e−βv1,3 · · · e−βvN−1,N over all possible configurations of particle’s positions can be
identified exactly as the ratio QN/V N . Some mathematical manipulation shows that the
configurational partition function QN can be expressed as [11]

QN = V N exp

{
N

∞∑
k=1

(
N

V

)k Bk

k + 1

}
, (7)

where the coefficients Bk are defined as

Bk ≡ V k

k!

∑
{k}

∫
· · ·

∫ ∏
i< j

(e−βvi, j − 1) dr1 · · · drk, (8)

the sum is taken over all irreducible terms that involve k-particle position coordinates (see
appendix A for more details) and the term e−βvi, j − 1 = fi j is the well-known Mayer function
within the context of the Mayer cluster expansion for the partition function of interacting gases
[12]. Such an expansion of the partition function is a representation of the interactions of a
real gas in terms of sets of clusters of particles of a given size. The higher the term in the
expansion, the higher the number of clusters considered [13]. The total partition function ZN

is then given in terms of the coefficients Bk as

ZN = V N

N!

(
mkBT

2π�2

)3N/2

exp

{
N

∞∑
k=1

(
N

V

)k Bk

k + 1

}
, (9)

and the Helmholtz free energy F by

F = −NkBT ln

[
V

N

(
mkBT

2π�2

)3/2
]

− NkBT

[
1 +

∞∑
k=1

(
N

V

)k Bk

k + 1

]
. (10)

The chemical potential μ can thus be obtained as

μ = μideal − kBT
∞∑

k=1

(
N

V

)k

Bk, (11)

where μideal stands for the expression obtained in equation (3) and Bk are the coefficients in
equation (8). Once the specific functional form for the interaction potential v(r1 − r2) is given,
all Bks can be calculated in principle.
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2.2. Specific example: the van der Waals gas

Expression (11) is a general result. It gives μ for the classical interacting gas as a series of
powers in the particle density (N/V )k and the coefficients Bk. The immediate consequence
here is that interactions shift the value of the chemical potential from the ideal case. In spite
of its generality, in practice, the calculation of Bk for k > 2 is only analytically possible
for a small set of interaction potentials. However, for enough dilute systems, i.e. N/V � 1,
we may consider only the first term of equation (11) as a valid approximation. Thus, at first
order in N/V , we have μ = μideal − kBT (N/V )B1, where B1 depends on the specific inter-
atomic potential between particles. In order to obtain quantitative results about the effects
of interactions on the chemical potential, let us consider the van der Waals gas as a specific
example.

One of the most commonly used pairwise potentials that approximates the well-known
semi-empirical Lennard–Jones potential v(r) = v0[(d/r)12 − 2(d/r)6] can be written as

v(r) =
{∞ for r < d
−v0(d/r)6 for r � d,

(12)

where v0 is the minimum interaction energy between a pair of particles and d their separation
for that value of energy. For this model, B1 can be evaluated exactly as follows. Spherical
symmetry enables us to write B1 = ∫

(e−βv(r) − 1) dr = 4π
∫ ∞

0 r2(e−βv(r) − 1) dr. Then, by
splitting the last integral into one integral from 0 to d plus a second one from d to ∞ and using
the fact that v(r) → ∞ for 0 < r < d, we get

B1 = 4π

[∫ ∞

d
(eβv0(d/r)6 − 1)r2 dr − d3

3

]
. (13)

The integral in equation (13) can be evaluated directly by using the Taylor series of the
exponential function. After integrating term by term, we obtain

B1 = 4

3
πd3

[ ∞∑
n=1

(βv0)
n

(2n − 1)n!
− 1

]
. (14)

It is possible to go a step further in order to write equation (14) in terms of elementary
functions. The infinite sum in equation (14) can be expressed as

∑∞
n=1 xn/(2n − 1)n! =

1 − ex + (πx)1/2erfi(x1/2), where erfi(z) = −i erf(iz) denotes the imaginary error function.
Thus, a simple expression for the correction factor �μ ≡ μ − μideal can be obtained for
temperatures such that kBT � v0, since only the first term in the series expansion in expression
(14) is needed. With these considerations and recalling that l = (V/N)1/3, we have

�μ 	 kBT
4

3
π

(
d

l

)3 (
1 − v0

kBT

)
> 0 (15)

in agreement with Monte Carlo calculations obtained previously by other authors [15].
For relatively high temperatures, v0/kBT ≈ 0 and then it is the hardcore repulsion of

the inter-particle interaction which governs the dynamics of the gas. In this limit, the system
corresponds to a hard-sphere gas, thus giving �μ = kBT 4

3π(d/l)3 in this case [15]. For
temperatures smaller than v0/kB, �μ becomes negative (see figure 1), but this should not be
considered correct since at such temperatures we are out of the classical regime and quantum
corrections must be taken into account. In terms of the parameters a and b of the standard van
der Waals equation of state(

p + N2

V 2
a

)
(V − Nb) = NkBT, (16)
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Figure 1. Left: the model potential given by expression (12) as an approximation to the more
realistic Lennard–Jones potential. Right: the change in the chemical potential, given by (15), as
a function of the ratio of the energy that characterizes the interacting potential v0 to the thermal
energy.

Table 1. Values of the van der Waals parameters a and b for some substances are given. With these
values, the ratio v0/kBTR is computed, where TR denotes the room temperature.

Substance a b v0/kBTR

Helium 0.0346 0.0238 0.0603
Neon 0.208 0.0167 0.516
Hydrogen 0.2452 0.0265 0.384
Oxygen 1.382 0.0319 1.796
Water 5.537 0.0305 7.527

the chemical potential for the van der Waals gas can be written as

μvdw = μideal − 2

(
N

V

)
(a − kBT b) , (17)

where a = v0b = v0
2
3πd3. Table 1 presents some standard values for a and b parameters for

different gases [16]. We encourage the interested reader to get immersed into the details of
the calculations by using another interacting potentials v or trying to calculate analytically or
numerically higher order corrections to the result obtained here.

General thermodynamic principles for single-component systems ensure that only two
independent variables are needed to describe completely the state of the system. Thus,
μ = μ(n, T ) and p = p(V, T ) are both valid and equivalent representations. The relevance of
calculating μ = μ(n, T ) is then twofold. On one hand, this type of elementary calculation in
simple systems enables us to gain some confidence in the methods of ESM that may guide us
to more complex situations. On the other hand and in a more physical arena, the knowledge
of μ = μ(n, T ) opens up the door to the analysis and the description of the phase transitions
inherent to the system under study.

3. Generalized quantum statistics: beyond Bose–Einstein and Fermi–Dirac

At low temperatures, gases depart from classical behaviour since quantum wave-like properties
of matter emerge. One of the main classical properties washed away in the quantum regime
is distinguishability. In the classical picture, we can in principle tag and follow the trajectory
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of any particle; however, this is not the case in the quantum regime [17]. This property has
profound consequences in the number � of different micro-states available to the system
and consequently in the macroscopic properties of the system according to the fundamental
relation S = kB log � proposed by Boltzmann. In general, classical systems will tend to exhibit
more micro-states since permutations among particles result in different configurations due to
distinguishability. Quantum systems, on the other hand, display a smaller number of different
configurations. As discussed before, the thermal wavelength λT serves as a length scale over
which wave-like behaviour appears. For high temperatures, λT → 0 and then the particles
can be visualized as classical point-like particles with a definite momentum and position.
However, as temperature is lowered, λT starts to increase accordingly down to a characteristic
temperature T ∗, such that the wavelength of particles is of the same order of magnitude as the
average distance l between any two particles. At this temperature T ∗, the system enters into
the so-called degeneracy regime.

Two quantum effects emerge due to indistinguishability. The first case corresponds to
systems formed by particles called bosons whose spin is an integer multiple of �. The second
one refers to systems formed by fermions whose spin is a half-integer multiple of �. This
relation between spin and statistics was established by Pauli [18]. These systems, Bose and
Fermi gases, exhibit completely different macroscopic properties, in particular regarding the
chemical potential. As is presented in standard textbooks [2–4], Bose–Einstein (BE) and
Fermi–Dirac (FD) statistics correspond to two opposite regimes ruled by Pauli’s exclusion
principle. This fundamental principle constrains the occupancy of a particular energy level to
the value 0 or 1 in the case of FD statistics and no restriction at all in the BE case, leaving
aside the discussion on the possibility of considering an intermediate case between BE and
FD statistics. In order to gain more intuition with respect to the chemical potential in an ideal
quantum system, we discuss in this section a generalization of Pauli’s exclusion principle
related to what we have called IQS.

In principle, it is possible to define a system to have what we have called IQS. In such a
case, the averaged occupancy 〈nk〉, i.e. the average number of particles allowed to occupy a
particular energy level k, is not restricted to the values for the Bose or the Fermi gases. Let us
consider a quantum ideal gas composed of N indistinguishable spinless particles that can be
distributed along a set of {εk} energy levels. Let us consider the case in which the number of
particles is conserved. Also consider the situation in which due to indistinguishability, each
energy level εk can be populated, at most, by j particles, with j = 1, 2, . . . ,∞. The variable j
denotes the order of the IQS and we will refer to this as IQS j. This generalizes Pauli’s exclusion
principle in such a way that it interpolates between the BE case with j = ∞ and the FD case
corresponding to j = 1. We now calculate the average number of particles 〈nk〉 j that occupy
the single-particle energy k in a system subject to the IQS j. The calculation presented here is
carried out by using the canonical ensemble; thus, we focus on the calculation of the partition
function of N particles ZN = ∑

{nk} e−βE{nk } , where {nk} denote the possible configurations for
a particular distribution of n1 particles in the energy level ε1, n2 particles in the level ε2 and so
on, compatible with the restrictions∑

k

nk = N, (18)

nk = 0, 1, . . . , j given by the statistics, and E{nk} = ∑
k nkεk being the total energy associated

with the particular configuration of nks.
It is possible to calculate the average number of particles 〈nk〉 j occupying the single-

particle energy k for an ideal quantum gas exhibiting IQS of order j by using the method
proposed in appendix B. We strongly suggest that the reader follows the technical details
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presented there. The final result allows us to write the average occupancy of the energy level
k for a quantum system with an IQS of order j in a closed formula as

〈nk〉 j = 1

eβ(εk−μ) − 1
− j + 1

eβ(εk−μ)( j+1) − 1
. (19)

Equation (19) provides evidence that the chemical potential μ is always associated with particle
conservation requirements in ideal quantum gases displaying IQS of any order.

Special cases. For j = 1, equation (19) reduces to the well-known result for the Fermi–Dirac
statistics:

〈nk〉FD = 1

eβ(εk−μ) + 1
. (20)

The limit j → ∞ is well defined always so that μ � εk for all values of k. This limit leads to
the BE distribution

〈nk〉BE = 1

eβ(εk−μ) − 1
. (21)

From equation (19), it is possible to obtain closed and analytical expressions for the average
occupancy of a system obeying an IQS of any order. For instance, for j = 2, each energy level
εk may be occupied by zero, one or two particles, and 〈nk〉2 is then given by

〈nk〉2 = e−β(εk−μ) + 2e−2β(εk−μ)

1 + e−β(εk−μ) + e−2β(εk−μ)
. (22)

Any other value for 〈nk〉 j can be obtained properly from the general result given above.

3.1. The equation of state μ = μ(n, T )

The behaviour of the equation of state μ = μ(n, T ), with n = N/V, is given by the implicit
relation

N =
∑

k

〈nk〉 j =
∑

k

[
1

eβ(εk−μ) − 1
− j + 1

eβ(εk−μ)( j+1) − 1

]
. (23)

If the spacing between energy levels is small compared to kBT or in the thermodynamic limit,
we can replace the sum by an integral, i.e.

n =
∫ ∞

0
dε ρ(ε)

[
1

eβ(ε−μ) − 1
− j + 1

eβ(ε−μ)( j+1) − 1

]
, (24)

where ρ(ε) is the density of states which depends on both the system itself and its
dimensionality [17]. For the free particle in three dimensions, we have

ρ(ε) = 2

π1/2

( m

2π�2

)3/2
ε1/2 (25)

with m the mass of the particles. Expression (24) can then be written as

n =
(

mkBT

2π�2

)3/2 [
Li3/2(e

βμ) − 1

( j + 1)1/2
Li3/2(e

βμ( j+1))

]
, (26)

where Lis(ζ ) is the poly-logarithm function defined as

Lis(ζ ) = 1

�(s)

∫ ∞

0

ts−1 dt

ζ−1 et − 1
. (27)

It is not obvious or straightforward to see whether the chemical potential is a positive or
negative quantity only from expression (24); however, in the limit of high temperature, we
expect 〈nk〉 j � 1 and from equation (19) we have the classical result that μ < 0. By solving
numerically equation (24), the monotonic-decreasing dependence on the temperature of μ is
apparent in the left panel of figure 2 for j = 1, 2, 8, 16, 32 and 128. For the same values, the
isothermal dependence on the density of μ is shown in the right panel.
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Figure 2. Chemical potential, normalized with EF j (28), is presented as a function of the
dimensionless temperature T/TF j in the left panel for different values of the order j of the statistics.
TF j is defined by EF j/kB. Right: the dependence on the dimensionless density nλ3

T of μ/EF j is
presented. In both cases, we have chosen j = 1, 2, 8, 16, 32 and 128, the former corresponding
to the chemical potential of the ideal Fermi gas.

The chemical potential at T = 0. At zero temperature, one expects that the first energy levels,
up to the generalized Fermi energy, EF j, are being occupied by exactly j particles. For this
to hold, it is necessary that in expression (B.13), ε − μ < 0 otherwise 〈nε〉 = 0, leading to
μ = EF j. By putting T = 0 in (24), we have for the three-dimensional free gas that

EF j = �
2

2m

[
6π2

j
n

]2/3

, (28)

which reduces to the usual Fermi energy EF of a spinless ideal Fermi gas when j = 1 (the
dependence on n is shown in figure 3 by the dotted line) and it vanishes in the limit j → ∞ of
the BE statistics. It is clear that the change in energy by adding only one particle to the system
corresponds to the chemical potential (there is no change in entropy at zero temperature). For
j = 1, μ = EF > 0 and starts to diminish as j increases, vanishing in the limit j → ∞,
reflecting the nature of the statistical potential interaction introduced in [2] for the BE and FD
cases.

Special cases. For the BE and FD statistics, the equation of state (26) can be described in a
unified way by using the polylogarithm function [20] in the following way:

n = ±
(

mkBT

2π�2

)3/2

Li3/2(±eβμ), (29)

which corresponds to the equation of state μ = μ(n, T ) for the ideal Bose (+) and Fermi (−)
gas, respectively. This is completely equivalent to the standard equation of state for particle
density n in terms of volume V and pressure p; see, for example, [21]. Both μ = μ(n, T )

and n = n(T, p) contain the same information and thus can be used indistinctly to obtain
the thermodynamic information of the system. In figure 3, the monotonic dependence on
temperature of the chemical potential is shown for a fixed value of particle density in the
left panel and as a function of the particle density for various isotherms in the right one. An
analytical expression for μ(T ) can be given for the Fermi gas in the regime T/TF � 1, where
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Figure 3. Left: chemical potential in units of EF (the Fermi energy of a spinless ideal Fermi gas) as
a function of temperature in units of TF = EF/kB, kB being Boltzmann’s constant, for (i) the ideal
Fermi gas (continuous-blue/dark grey line), (ii) the ideal classical gas (dashed line) and (iii) the
ideal Bose gas (dash-dotted line). The BEC critical temperature Tc/TF = [4/(3ζ (3/2)2

√
2)]2/3 	

0.436 is marked with a dot and the Fermi energy with a blue square. The inset shows how the
chemical potential of the ideal quantum gas approaches the classical one at large temperatures.
Right: chemical potential μ in units of kBTc for the ideal Bose (light lines) and Fermi gases (dark
lines) as a function of the particle density n for different values of the dimensionless temperature
T/Tc = 0.0, 1.0, 2.0, 3.0, 4.0, 5.0. Tc corresponds to the BE condensation critical temperature
(equation (31)) of a boson gas with arbitrary density n0. The variable λ0 corresponds to the thermal
wavelength evaluated at T = Tc. Note that both cases converge to the same values of the chemical
potential for small enough density. This corresponds to the classical limit.

the Fermi temperature TF is defined by EF/kB. In this regime, the well-known Sommerfeld
approximation (see [22] for details) gives

μF = EF

[
1 − π2

12
(T/TF)2 + · · ·

]
, (30)

which shows that the chemical potential for the Fermi gas, μF, decreases from its maximum
value EF. The temperature T̃ that separates the μ > 0 region from the μ < 0 one can be
computed exactly and is given by T̃ = [�(5/2)ζ (3/2)(1 − √

2/2)]−2/3 TF 	 0.989 TF. Note
that the transition to the classical behaviour can occur at very high temperatures, as high as TF

which for a typical metal is of the order of 104 K. The isotherms shown in the right panel of
figure 3 show the classical behaviour at low densities.

For the ideal Bose gas, a different picture emerges. First, since 〈nk〉 is a non-negative
quantity, it is required that ε j − μ � 0 for all j, which implies that μ � ε0, where ε0 is the
single-particle ground-state energy. In general, ε0 → 0 in the thermodynamic limit, leading to
the well-known result μ � 0 for all temperatures. Furthermore, as discussed in many textbooks
[2, 3], a phase transition occurs at a critical temperature Tc > 0 for the free three-dimensional
boson gas. Such transition temperature is given by

Tc = 2π

ζ (3/2)

�
2

kBm
n2/3 (31)

marked with a dot in the left panel of figure 3, and its value in units of TF is given by
Tc/TF = [4/(3ζ (3/2)2

√
2)]2/3 	 0.436. Expression (31) is obtained from equation (29)

when the conditions μ(Tc) = 0 and 〈nε=0〉 = 0 are set. In expression (31), the quantity
ζ (3/2) = Li3/2(1) is the zeta function of Riemann. In figure 3, isothermal curves (light
colour) of μ(n, T ) are shown. The critical density nc at which BEC occurs is determined by
μ(nc, T ) = 0 and is given by nc = (mkBT/2π�

2)2/2ζ (3/2) where all the symbols have been
defined previously.
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4. Conclusions and perspectives

We have addressed the behaviour of the chemical potential μ for the interacting classical
gas and the ideal quantum gas that obeys a generalized exclusion principle. For the former
case, we used a method proposed by van Kampen [11] to evaluate the partition function
of the interacting classical gas. The calculation allowed us to find the equation of state
μ = μ(n, T ) for a pairwise interaction potential in the case of the van der Waals gas. We
observed a positive shift �μ with respect to the ideal gas due, basically, to the repulsive nature
of the interactions as was conjectured using Widom’s equivalence. In contrast, as shown in
figure 1, if temperature is kept constant and v0 is increased making the interaction more
attractive, the chemical potential lowers its value with respect to the ideal case leading to a
negative shift.

Another novel feature discussed here refers to the introduction of quantum statistics
beyond the standard BE and FD cases. These statistics that we have called IQS enable us
to treat quantum ideal systems with single-particle energy levels occupancies 〈nk〉 between
zero up to j particles including the j = ∞ case. We provided an explicit calculation using the
canonical ensemble to obtain the most general form for the averaged number of particles 〈nk〉 j,

that occupy the energy level εk, and its relation with the chemical potential. The procedure
shown here and in particular the one that refers to equation (B.11) can be of some use to
discern between the results given by the canonical and grand canonical ensembles studied
for the fermionic lattice gas in [23]. We also showed that this general result contains the
particular cases of BE and FD statistics. Quantum systems exhibiting fractional statistics
are not just an academic exercise; quasi-particles called anyons display this property [24,
25]. In two-dimensional systems, these quasi-particles have found application in the theory
of the quantum Hall effect and anyon superconductivity [26]. Emphasis in the equation of
state, μ = μ(n, T ), has been placed, since it encodes substantial information regarding the
existence of phase transitions in the system and is completely equivalent to the more familiar
representation p = p(V, T ), with p and V the system pressure and volume, respectively.

Finally, as open problems that could be carried out in a standard course on ESM,
we propose the calculation of the shift of the chemical potential for the non-ideal
classical gas if the interactions are short ranged and attractive, the calculation of the
statistical potential (as is done in [2] for the BE and FD statistics) for the IQS j and
a discussion on the case when N is not conserved, as happens in many quasi-particle
systems.
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Appendix A. Evaluation of the configurational integral QN

The basic idea to evaluate the configurational integral QN given by equation (6) is to compute
the statistical average of e−βv1,2 e−βv1,3 · · · e−βvN−1,N over all possible configurations of the
particle positions denoted with QN/V N = e−βv1,2 e−βv1,3 · · · e−βvN−1,N . van Kampen’s approach
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is based on a factorization of D into terms of Dk that takes into account the correlations of
k � 2 particles, i.e.

QN/V N =
N∏

k=2

(dk), (A.1)

which gives the number of combinations of k particles taken from the total N, and

dk = e−βv1,2 e−βv1,3 · · · e−βvk−1,k

D
, (A.2)

with D the immediate lower approximation for the same numerator.
For k = 2, d2 = e−βv1,2 since D = 1 in this case. Thus, the first factor in equation (A.1)

is given by

e−βv1,2
N(N−1)/2 =

[
V −1

∫
dr1V

−1
∫

dr2 e−βv1,2

]N(N−1)/2

. (A.3)

In order to take the thermodynamic limit N,V → ∞ with N/V constant, consider the following
identity:[∫

dr1

V

∫
dr2

V
e−βv1,2

](N−1)/2

=
[

1 + 1

N

N

V

∫
dr(e−βv(r) − 1)

](N−1)/2

, (A.4)

thus giving as a result d(N
2)

2 = exp
{

N2

2V B1
}

with B1 ≡ ∫
dr (e−βv(r) − 1). For dilute enough

systems where only correlations of two particles are important, this approximation should
work fine. The calculation of the general factor (dk)

(N
k ) is more involved and we only present

a sketch of it. By writing e−βvi, j = 1 + fi, j, equation (A.2) can be rewritten as

dk = 1 + f1,2 + · · · + f1,2 f1,3 · · · fk−1,k

D
. (A.5)

van Kampen argues that the class of terms in the numerator of (A.5) that involve less
than k particles and those that involve k particles but are reducible are also present in D,

such that the numerator can be written as
(
1 + ∑

{k} f1,2 f1,3 · · · + O(V −k)
)
D, where the

summation extends over all irreducible terms that involve 2, . . . , k particles. A term of the form∫ · · · ∫ ∏
i< j gi, j dr1 · · · drk, with gi, j an arbitrary function of |ri − r j|, is said to be irreducible

if it cannot be factorized into products of integrals of gi, j involving less than k particle-position
coordinates. For instance, it is straightforward to check that

∫∫∫
dr1 dr2 dr3 g1,2g1,3g2,3 is

irreducible while the integral
∫∫∫

dr1 dr2 dr3 g1,2g1,3 = V
[ ∫

drg(r)
]2

is not; here we have
used the identity

∫
dr = V.

Thus, we have

dk = 1 + (k − 1)!

V k−1
Bk−1 + O(V −k), (A.6)

where Bk is given by (8) and we have recognized
∑

{k} f1,2 f1,3 . . . with the usual irreducible

cluster integral [2–4] (k−1)!
V k−1 Bk−1. In the thermodynamic limit, the factor (dk)

(N
k ) can then be

written as

exp

{
Nk

V k−1

Bk−1

k

}
and by combining this result with the result for k = 2, we finally get the desired result given
by expression (7).
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Appendix B. Derivation of mean occupancy for an ideal quantum gas with
intermediate quantum statistics of order j

Our starting point to derive 〈nk〉 j is the observation that ZN can be written as a sum over all
possible values of nk for each k, i.e.

ZN =
j∑

n1=0

j∑
n2=0

. . . e−β(n1ε1+n2ε2+···)δn1+n2+···,N, (B.1)

where δi, j is the Kronecker delta and the factor δn1+···+nk+···,N has been introduced to guarantee
the conservation of N. To proceed further [4], we write the last expression as

ZN =
j∑

nk=0

e−βnkεk

⎡
⎣ j∑

n1=0

j∑
n2=0

. . . e−β(n1ε1+n2ε2+···)δn1+n2+···,N−nk

⎤
⎦ (B.2)

=
j∑

nk=0

e−βnkεk

⎡
⎣∑

{nl}

′e−βE ′
{nl }δn1+n2+···,N−nk

⎤
⎦ . (B.3)

The term within square brackets corresponds to the partition function of N − nk particles with
the energy level k excluded, Z(k)

N−nk
; we use the superindex (k) to denote all quantities which

have been computed in this way. In terms of this, we have

ZN =
j∑

nk=0

e−βnkεk Z(k)
N−nk

. (B.4)

A general formula to compute average number of particles that occupy the energy level k,
given by 〈nk〉 j = Z−1

N

∑ j
n1=0

∑ j
n2=0 . . . nke−β(n1ε1+n2ε2+···), is derived by noting that

〈nk〉 j = − 1

β

∂ ln ZN

∂εk
; (B.5)

thus,

〈nk〉 j = 1

ZN

j∑
nk=0

nke−βnkεk Z(k)
N−nk

. (B.6)

The evaluation of equation (B.6) requires us to compute Z(k)
N−nk

from nk = 0 to j which
makes the calculation rather cumbersome (see [19] and [4] for details). We avoid this difficulty
by noting that the ratio Z(k)

N−nk
/Z(k)

N can be written as the product of the ratios of partition
functions that differ only in one particle, i.e.

Z(k)
N−nk

Z(k)
N

= Z(k)

N−1

Z(k)
N

· Z(k)

N−2

Z(k)

N−1

· · · Z(k)
N−nk

Z(k)

N−nk+1

. (B.7)

Consider the energy of N − nk particles distributed over the energy levels distinct to εk

E (k)
N−nk

=
∑

{nl}
′E ′

{nl}e
−βE ′

{nl }δn1+n2+···,N−nk∑
{nl}

′e−βE ′
{nl }δn1+n2+···,N−nk

= − ∂

∂β
ln Z(k)

N−nk
. (B.8)

The difference �E (k) = E (k)
N−nk

− E (k)

N−nk+1, i.e. the change in energy when withdrawing only
one particle, is given by

�E (k) = − ∂

∂β
ln

Z(k)
N−nk

Z(k)

N−nk+1

. (B.9)
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Since the energy change has been done at constant T and V, we must have that β�E (k) +
ln

[
Z(k)

N−nk

/
Z(k)

N−nk+1

] = �S(k)/kB, where �S(k) denotes the entropy change of the system when
withdrawing only one particle.

Using the first law of thermodynamics, we can identify the chemical potential with

μ
(k)

N−nk+1 = kBT ln
Z(k)

N−nk

Z(k)

N−nk+1

, (B.10)

which corresponds exactly with the expression μ
(k)

N−nk+1 = F (k)

N−nk+1 − F (k)
N−nk

with F (k)
N =

−kBT ln Z(k)
N the Helmholtz free energy of N particles. Thus, equation (B.7) can be written as

Z(k)
N−nk

Z(k)
N

= eβμN eβμN−1 · · · eβμN−nk+1 . (B.11)

In the thermodynamic limit N → ∞, we can write eβμN = · · · = eβμN−nk+1 ≈ eβμ, and
therefore

ZN = Z(k)
N

j∑
nk=0

e−βnk(εk−μ) = Z(k)
N

e−β(εk−μ)( j+1) − 1

e−β(εk−μ) − 1
. (B.12)

Consequently, by the use of (B.6) and after some algebra, we finally get

〈nk〉 j = 1

eβ(εk−μ) − 1
− j + 1

eβ(εk−μ)( j+1) − 1
. (B.13)

The generalization presented here shows how the chemical potential μ emerges from the
particle conservation requirement for any order of the IQS.
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