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Abstract

In this work we revisit the concept of chemical potential µ in both classical and quantum gases

from a perspective of Equilibrium Statistical Mechanics (ESM). Two new results regarding the

equation of state µ = µ(n, T ), where n is the particle density and T the absolute temperature,

are given for the classical interacting gas and for the weakly-interacting quantum Bose gas. In

order to make this review self-contained and adequate for a general reader we provide all the basic

elements in a advanced-undergraduate or graduate statistical mechanics course required to follow

all the calculations. We start by presenting a calculation of µ(n, T ) for the classical ideal gas in

the canonical ensemble. After this, we consider the interactions between particles and compute the

effects of them on µ(n, T ) for the van der Waals gas. For quantum gases we present an alternative

approach to calculate the Bose-Einstein (BE) and Fermi-Dirac (FD) statistics. We show that

this scheme can be straightforwardly generalized to determine what we have called Intermediate

Quantum Statistics (IQS) which deal with ideal quantum systems where a single-particle energy

can be occupied by at most j particles with 0 6 j 6 N with N the total number of particles. In the

final part we address general considerations that underlie the theory of weakly interacting quantum

gases. In the case of the weakly interacting Bose gas, we focus our attention to the equation of

state µ = µ(n, T ) in the Hartree-Fock mean-field approximation (HF) and the implications of

such results in the elucidation of the order of the phase transitions involved in the BEC phase for

non-ideal Bose gases.
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I. INTRODUCTION

Chemical potential has proven to be a subtle concept in thermodynamics and statistical

mechanics since its appearance in the classical works of J.W. Gibbs1. Unlike thermodynamic

concepts such as temperature T , internal energy E or even entropy S, chemical potential

µ has acquired, justified or not, a reputation as a concept not easy to grasp even for the

experienced physicist. Gibbs introduced chemical potential within the context of an extense

and detailed exposition on the foundations of what is now called statistical mechanics. In

his exposition he considers how to construct an ensemble of systems which can exchange

particles with the surroundings. In such description, µ appears as a constant required

to provide a necessary closure to the corresponding set of equations1. A fundamental

connection with thermodynamics is thus achieved by observing that the until-then unknown

constant µ is indeed related, through first derivatives, to standard thermodynamic functions

like the Helmholtz free energy F = E − TS or the Gibbs thermodynamic potential

G = F + pV . In fact, µ appeared as a conjugate thermodynamic variable to the number

N of particles in the same sense as pressure p is a conjugate variable to volume V . The

procedure outlined above and described with detailed elegance by J.W. Gibbs defines the

essence of the chemical potential in statistical mechanics and thermodynamics.

The link provided by Gibbs to define chemical potential in terms of thermodynamic

variables is certainly a master piece, however, a direct physical interpretation might still

be elusive. Consider for example, two of the most used definitions of µ in equilibrium

thermodynamics2,3, i.e.,

µ =

(
∂F

∂N

)
T,V

=

(
∂E

∂N

)
S,V

, (1)

where V is the system volume. As can be readily seen, the first definition in terms of F ’s

derivative implies that we can obtain µ as a measure of the change of F with respect to the

number N of particles at constant volume and temperature. It is straightforward to imagine

a closed box of volume V where we can add or subtract particles and observe changes in

the free energy of the system. However, depicting such situation when both volume V and

temperature T are kept fixed may require a higher degree of physical intuition recalling

that any particle added to the system will provide some additional amount of energy either

in the form of potential or kinetic energy. Let us consider the second term in Eq (1). This
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thermodynamic definition suggests that µ can be measured as the change of internal energy

E with respect to the number N of particles but this time keeping constant entropy S and

volume V . What exactly must be understood by adding particles keeping entropy constant?

Recall that each particle added to the system brings an increase in the number of configura-

tions available to the overall system and therefore an increase of entropy would be our first

intuitive expectation. In equilibrium statistical mechanics (ESM) the procedure to present

µ is very much based on the approach suggested by Gibbs in his classic works. The central

idea behind ESM is a many-variable minimization process in order to obtain a distribution

function {nq} corresponding to an extremal, minimum or maximum, of the thermody-

namic variables F or S respectively. In this context µ appears as a mathematical auxiliary

quantity identified with a Lagrange multiplier that minimizes/maximizes a physical quantity.

In this work we present a discussion on the concept of chemical potential from a

perspective of ESM and how it emerges from physical considerations in both classical and

quantum gases. Our main focus is to present to undergraduate and graduate students a

self-contained review on the basic elements that give rise to an understanding of µ. In

order to achieve this goal we shall proceed as follows. Section II carries out a detailed

calculation of µ in the case of an ideal classical gas. Using a method proposed by van

Kampen4 we include the effect of interactions and calculate µ for the van der Waals gas.

Section III deals with ideal quantum gases. We introduce calculations by giving a general

discussion on the temperature scale at which quantum effects are expected to contribute

significantly. A general description, based on a simple, but novel method to compute the

average number of particles 〈nk〉 that occupy the single-particle energy level εk for boson

and fermions is introduced. We also provide a formal calculation for 〈nk〉j when the energy

levels can be occupied at most by j particles, where 0 6 j 6 N . We call the resulting

statistics the Intermediate Quantum Statistics (IQS) of order j, which generalizes the BE

and FD statistics which are obtained for j →∞ and j = 1, respectively. Finally in Section

IV we go a step further to consider the behavior of µ as a function of particle density n

and temperature T for the weakly interacting quantum Bose and Fermi gas. The former

system has been under intense research lately since it is the standard theoretical model to

describe Bose-Einstein Condensation (BEC) in ultracold alkali atoms5, and as we outlined

here, the knowledge of µ = µ(n, T ) is of fundamental importance since it contains valuable
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information on the nature of the phase transition involved.

Our intention is not to provide an exhaustive treatment of the chemical potential in

ESM, instead, our contribution intends to integrate previous well known results within a

physically intuitive framework, and at the same time to provide some new results that

might be interesting to the reader that complement and enhance a broader view of the

subject. We kindly invite to the interested reader to study several excellent textbooks6–9

and reviews10,11,12–14 that have been written on the subject in the recent past.

II. CHEMICAL POTENTIAL I: THE CLASSICAL GAS

In order to discuss chemical potential for the ideal classical gas we shall address some basic

considerations and implications that µ must satisfies according to general thermodynamic

principles. Although we present them at this point, its validity goes beyond the classical

ideal gas. Fundamental postulate in equilibrium thermodynamics2 assures that for a given

system there is a function called the entropy S defined only for equilibrium states which

depends on volume V , internal energy E and number of particles N , i.e, S = S(E, V,N).

Thus, an infinitesimal change dS between two equilibrium states can be written as

dS =

(
∂S

∂E

)
V,N

dE +

(
∂S

∂V

)
E,N

dV +

(
∂S

∂N

)
V,E

dN. (2)

Using the first law of thermodynamics dE = TdS−pdV we can relate the partial derivatives

that appear in Eq (2) with standard thermodynamic variables temperature T and pressure

p. A simple inspection points out that(
∂S

∂E

)
V,N

=
1

T(
∂S

∂V

)
E,N

=
p

T
. (3)

(4)

Such identification suggests that we must add to the First Law a suitable thermodynamic

variable that will play the role of a conjugate variable to the number of particles N and that

will allow the connection to (∂S/∂N)V,E, just like T is conjugated to the entropy S and p

is to the volume V . Thus, if we allow the exchange of particles, we can write the First Law
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as dE = Tds− pdV + µdN and hence

−T
(
∂S

∂N

)
V,E

= µ. (5)

Eq. (5) provides additional information on the nature of chemical potential complementing

Eqs. (1). This tells us that µ is a negative quantity if entropy increases with the number

of particles by keeping energy E and volume V constant. Though it is intuitive that S

increases as N increases, it is not the case under the restrictions of E and V constant. On

the other hand, Eq. (5) also admits the possibility that µ > 0, however, as we show below

for the ideal Fermi gas and the weakly interacting Bose gas in sections III- IV, respectively,

this is true only as a result of quantum effects.

A. The classical ideal gas

To determine µ as a function of (E, V,N) we shall make use of the fundamental equation

S = S(E, V,N) and Eq. (5). ESM ensures that the macroscopic variable entropy S is

related to a microscopic quantity Ω(E, V,N) which represents the number of microstates

available to the system consistent with the macroscopic restrictions of constant E, V and

N . Such connection is given by S = kB ln Ω(E, V,N) where kB is the Bolztmann’s constant.

With this considerations, Ω is given by

Ω(E, V,N) =
1

N !h3N

∫
· · ·
∫
δ(E − H)d3r1 d

3p3
1d

3r3N d
3p3N (6)

where H =
∑3N

i=1 p
2
i /2m is the Hamiltonian for a system of N free particles and 1/N ! corre-

sponds to the Gibb’s correction factor. Since H is r-independent and spherically symmetric

respect to momentum coordinates pi we can write Eq. (6) as

Ω(E, V,N) =
V N

N !h3N

2π3N/2

Γ(3N/2)
×

∫ ∞
0

dP P 3N−1δ(E − P 2/2m) (7)

where the change of variable P ≡
∑3N

i=1 p
2
i has been made and the hyper-volume element in

3N dimensions with coordinates pi given by dΠ = 2π3N/2P 3N−1dP, with P defined as before,

has been used. Then,

Ω(E, V,N) =
1

N !

V N

h3N
(2πm)3N/2 E3N/2−1

(3N/2− 1)!
. (8)
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In the limit where N � 1, Eq. (8) can be written as

Ω(E, V,N) =
1

N !

V N

h3N
(2πm)3N/2 E3N/2

(3N/2)!
, (9)

Thus, entropy S can be readily calculated. After using Stirling’s approximation one obtains

S = kBN

{
ln
V

N
+

3

2
ln

[
mE

3π~2N

]
+

5

2

}
. (10)

Substitution of (10) into (5) leads to the well known result for the chemical potential for the

ideal classical gas

µideal = −kBT ln

[
V

N

(
mkBT

2π~2

)3/2
]
, (11)

where the relation E = 3
2
NkBT has been used.

Eq. (11) has an interesting interpretation in terms of the average distance between

particles l ≡ (V/N)1/3 and the thermal-wavelength λT = h/
√

2πmkBT (see section III for

a larger discussion). As it can be seen from Eq. (11), µ = −kBT ln [l3/λ3
T ] from which

a physical interpretation can be easily harnessed. The sign of the chemical potential is

determined then by the ratio l/λT . In the high-temperature limit, when the quantum effects

are small and the wave nature of particles is negligible in comparison to l, i.e, λT � l, µ

is negative and the system can be regarded as formed of idealized punctual particles that

can be distinguished, in principle, one from each other. This picture corresponds to the

ideal classical gas. This interpretation opens up the possibility that in the quantum regime,

λT ∼ l, µ could acquire positive values.

We can gain additional information if we consider the discrete version of Eq (5), namely

µ = −T (∆S)E,V (12)

where

(∆S)E,V = kB ln
Ω(E, V,N + 1)

Ω(E, V,N)
. (13)

Notice that Eq(13) gives the sign of the chemical potential when one particle is exactly

added to the system keeping E and V constant. Substitution of Eq (8) into Eq (13) yields

Ω(E, V,N + 1)

Ω(E, V,N)
=

V

(N + 1)

(3
2
N − 1)!

(3
2
N + 1

2
)!

( m

2π~2

)3/2

E3/2. (14)
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For N � 1,

Ω(E, V,N + 1)

Ω(E, V,N)
' 2

3

V

N
e1/2

(
mE

3π~2N

)3/2

, (15)

where Stirling’s approximation has been used. In this representation, µ goes essentially

as the logarithm of the ratio between the energy per particle E/N and the energy ε =

~2/2m(V/N)2/3 of a quantum particle confined in a box of volume V . The condition E/N �

ε guarantees the classical character of the system assigning a negative value to the chemical

potential.

B. The effects of interactions

It has been shown in previous section that chemical potential for the ideal classical gas is a

negative quantity for the whole temperature region where quantum effects can be neglected.

In order to enhance our intuition on the nature of chemical potential we shall address the

calculation of µ in the case of a classical gas with pairwise interactions between particles.

For a system of N particles, the total partition function ZN can be written as6–8

ZN =
1

N !

(
mkBT

2π~2

)3N/2

QN , (16)

where

QN =

∫
e−β(v1,2+v1,3+...+vN−1,N )d3r1 . . . d

3rN (17)

is known as the configurational integral. In Eq. (17) vi,j ≡ v(|ri − rj|) is the interaction

energy between the i-th and j-th particles and β = (kBT )−1 as usual.

A simple method to evaluate QN has been given by van Kampen in Ref.4. In such work, it

is suggested that the average of e−βv1,2e−βv1,3 · · · e−βvN−1,N over all possible configurations of

particle’s positions can be identified exactly as the ratio QN/V
N . Then, the configurational

partition function QN can be expressed as4

QN = V N exp

{
N

∞∑
k=1

(
N

V

)k
Bk

k + 1

}
, (18)

where the coefficients Bk are given by

Bk ≡
V k

k!

∑
{k}

∫
· · ·
∫ ∏

i<j

(
e−βvi,j − 1

)
dr1 · · · drk, (19)
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and the sum is taken over all irreducible terms that involve k-particle position coordinates

(see Appendix for more details). The total partition function ZN is then given by

ZN =
V N

N !

(
mkBT

2π~2

)3N/2

exp

{
N

∞∑
k=1

(
N

V

)k
Bk

k + 1

}
, (20)

and from this, the Helmholtz free energy F by

F = −NkBT ln

[
V

N

(
mkBT

2π~2

)3/2
]
− NkBT

[
1 +

∞∑
k=1

(
N

V

)k
Bk

k + 1

]
. (21)

The chemical potential µ can be obtained readily as

µ = µideal − kBT
∞∑
k=1

(
N

V

)k
Bk. (22)

Eq. (22) gives µ for the classical interacting gas as a series of powers in the particle density

(N/V )k. The physical implications are clear, interactions shift the value of the chemical

potential from the ideal case. If there is no interactions at all, then Bk = 0 for all k and

µ = µideal. In spite of the generality of expression (22), in practice, calculation of Bk for

k > 2 is rather cumbersome. However, for enough dilute systems, i.e, N/V � 1, we may

consider only the first term of Eq. (22) as a valid approximation. Thus, at first order in N/V

we have µ = µideal − kBT (N/V )B1, where B1 depends on the specific interatomic potential

between particles. In order to obtain quantitative results about the effects of interactions

on the chemical potential we consider the van der Waals gas as a specific example.

Let us consider, for simplicity, the commonly-used pairwise interaction potential

v(r) =

∞ for r < d

−v0(d/r)6 for r ≥ d,
(23)

that approximates the semi-empirical Lennard-Jones potential v(r) = v0 [(d/r)12 − 2(d/r)6] ,

v0 is the minimum interaction energy between a pair of particles and d their separation at

which such energy takes place. For this interaction model, B1 can be evaluated exactly

as follows. By taking advantage of the spherical symmetry of the problem we can write

B1 =
∫

(e−βv(r) − 1)dr = 4π
∫∞

0
r2(e−βv(r) − 1)dr. Then, by splitting the last integral into

one integral from 0 to d plus a second one from d to ∞ and using the fact that v(r) → ∞

for 0 < r < d, we get

B1 = 4π

[∫ ∞
d

(eβv0(d/r)6 − 1)r2dr − d3

3

]
. (24)
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The integral in Eq. (24) can be evaluated directly by using the Taylor series of the expo-

nential function. After integrating term by term we have

B1 =
4

3
πd3

[
∞∑
n=1

(βv0)n

(2n− 1)n!
− 1

]
. (25)

It is possible to go a step further in order to write Eq. (25) in terms of elementary functions,

certainly, the infinite sum can be written as
∑∞

n=1 x
n/(2n−1)n! = 1−ex+(πx)1/2Erfi(x1/2),

where Erfi(z) = −i Erf(iz) denotes the imaginary error function. A simple expression for

the correction of µideal due to interactions, defined as ∆µ ≡ µ − µideal, can be obtained

for temperatures such that kBT � v0, since only the first term in the series expansion in

expression (25) is needed, with this approximations and recalling that l = (V/N)1/3 we have

∆µ ' kBT
4

3
π

(
d

l

)3(
1− v0

kBT

)
> 0 (26)

in agreement with Monte Carlo calculations obtained previously by other authors15. For even

higher temperatures, v0/kBT ≈ 0, and then it is the hardcore repulsion of the inter-particle

interaction (23) what governs the dynamics of the gas. In this limit the system corresponds

to a hard-sphere gas thus giving ∆µ = kBT
4
3
π(d/l)315. For temperatures smaller than v0/kB,

∆µ becomes negative (see Fig. 1), but this should not be considered correct since at such

temperatures we are out of the classical regime and quantum corrections must be taken into

account. In terms of the parameters a and b of the standard van der Waals equation of state(
p+

N2

V 2
a

)
(V −Nb) = NkBT, (27)

the chemical potential for the van der Waals gas can be written as

µ = µideal − 2
N

V
(a− kBTb) (28)

where a = v0b = v0
2
3
πd3. Table I presents some standard values for the a and b values

for different gases17. The interested reader may find useful to see how the calculation just

presented works, by using other interaction potentials vi,j between particles.

A relation of ∆µ with the work W (r) required to bring an additional particle to the

system from infinity to position r, has been shown by Widom16 as

exp (−∆µ/kBT ) = 〈exp(−W (r)/kBT )〉, (29)
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TABLE I: Values of the van der Waals parameters a and b for some substances are given. With

these values the ratio v0/kBTR is computed, where TR denotes the room temperature.

Substance a b v0/kBTR

Helium 0.0346 0.0238 0.0603

Neon 0.208 0.0167

Hydrogen 0.2452 0.0265 0.384

Oxygen 1.382 0.0319 1.796

Water 5.537 0.0305 7.527

FIG. 1: Left panel shows the model potential given by expression (23) as an approximation to

the more realistic Lennard-Jones potential. In the right panel we present the change in chemical

potential (26) as function of the ratio of the energy that characterizes the interacting potential v0

to the thermal energy.

where 〈..〉 denotes the canonical-ensemble average. On the other hand, it seems intuitive to

expect W (r) to be larger for a gas with repulsive interactions than for the ideal gas, thus,

by using Widom’s equivalence Eq (29) we may conclude that repulsive interactions yields

∆µ > 0.
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III. CHEMICAL POTENTIAL II: QUANTUM IDEAL GASES

At low temperatures gases depart from their classical behavior since quantum properties

of matter emerge. One of the main properties washed away in the quantum regime is distin-

guishability. In the classical picture, we can in principle label and tag any of the particles,

but no longer in the quantum regime18. This property has profound consequences in the

number of different microstates available to the system. In general, classical systems will

have more microstates since permutations among particles result in different configurations

due to distinguishability. Quantum systems on the other hand display a smaller number of

different configurations. In addition to indistinguishability, quantum gases exhibit another

remarkable property. L. de Broglie suggested that any material particle with mass m and

velocity v should have a corresponding wavelength λ given by

λ =
h

p
=

2π~
mv

, (30)

where h is the Planck’s constant and p the momentum of the particle. Given the fact that a

particle with kinetic energy mv2/2 has an associated temperature T , it is possible to write

down an expression for a thermal de Broglie wavelength λT as

λT =
h√

2πmkBT
. (31)

Eq. (31) establishes indeed a criterion that determines whether the nature of a system of

particles can be considered as classical or quantum. Basically, the wavelength λT serves as

a length scale over which quantum effects appear. For high temperatures λT → 0 and then

the particles can be visualized as classical point-like particles with a definite momentum and

position. However, as temperature is lowered, λT starts to increase is a smooth way. There

exist then a characteristic temperature T ∗, such that the wavelength of particles is of the

same order of magnitude as the average distance l between any two particles (see Fig.2),

i.e.,

l ' λ∗. (32)

At this temperature T ∗, the system enters into the so called, degeneracy regime. In such

conditions the wave-like properties of matter drive the phenomenology of the system. Eq.

(32) is much more than a qualitative description, assembled together with Eqs. (30) and

(31), provide the correct order of magnitude for the critical temperature of condensa-
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tion Tc in ultracold alkali gases used in current experiments of Bose-Einstein Condensation18.

Indistinguishability of particles in the quantum regime requires the N -particle wave-

function Ψ(~r1, . . . , ~rN) of the system satisfies certain symmetry properties. These symmetry

requirements for the wave function of the N -particle system implies the existence of two

fundamental classes of quantum systems19. A system for which the total wave function is

symmetric with respect to the exchange on the positions of any two particles, i.e.

Ψ(~r1, ~r2, . . . , ~rN) = Ψ(~r2, ~r1, . . . , ~rN), (33)

and other system where the wave function is anti-symmetric with respect to this action, i.e,

Ψ(~r1, ~r2, . . . , ~rN) = −Ψ(~r2, ~r1, . . . , ~rN). (34)

The first case corresponds to a system formed by particles called bosons while the second to a

system formed by fermions. In addition, the expression (34) serve as the basis for the Pauli’s

exclusion principle: no two identical fermions can ocupy one and the same quantum state.

Both systems, Bose and Fermi gas, exhibit completely different macroscopic properties as

we shall show below.

The same symmetry considerations on the wave function has also a direct consequence

on the spin of the particles involved19. It can be shown that for a quantum system with

a symmetric wave function Ψ (bosons), in the sense described above, the particle’s spin s

can only have integer values, i.e., s = 0, 1, 2, . . .. For system with an antisymmetric wave

function (fermions), particles can only have a spin with positive semi-integer values, that is,

s = 1/2, 3/2, . . .. Such difference in spin values shall manifest in larger differences in their

macroscopic dynamics.

A. The Bose-Einstein Distribution

In this Section we shall review the thermodynamic consequences of this symmetry

condition for the chemical potential µ in an ideal Bose gas. If we denote by nk to the

number of bosons that populate a particular energy level k, then the symmetry principle

presented above implies nk = 0, 1, 2, . . .∞. A direct implication of this fact is that at zero

temperature, a system of Bose particles will have a macroscopic occupation of the lowest
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FIG. 2: In the high temperature limit a), quantum statistical correlations measured by the thermal

wavelength λ are much smaller than the average separation between atoms l. b) As temperature

is lowered, quantum effects start becoming important when relation (32) holds. At even lower

temperatures c) indistinguishability is dominant.

single-particle energy level. This was first recognized and discussed by Bose and Einstein

in 1925 and gave rise to a large interest that culminated in the experimental realization of

the first Bose-Einstein Condensate in 1995 by Ketterle et al20 and Weiman and Cornell21

with atoms of 26Na and 87Rb, respectively. The phase known as Bose-Einstein Condensate

(BEC) corresponds to the state where the number of particles in the lowest-energy level n0

is of the order of the total number N of particles.

We start our discussion by noticing that two distinct situations must be considered:

a case in which the number of bosons N is conserved at all temperatures and the case

in which is not. A well established principle in physics tells us that the number of the

fermions (baryons and leptons) involved in any physical process must be conserved22. Thus
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it is expected that composite atomic bosons, such as the trapped atoms used in the BEC

experiments also satisfies this principle. There are, however, many physical situations where

the number of bosons in the system is intrinsically not conserved. Collective phenomena

that emerge from interacting ordinary matter give rise to bosonic pseudo-particles (“quasi-

particles” or simply “excitations”), that are created from the system’s ground state by

simply raising the system’s temperature for instance. At equilibrium, quasi-particles are

created and annihilated with a very short life-time due to thermal fluctuations. This is the

main reason why they are not conserved. Interestingly, it is possible that systems composed

of quasi-particles can exhibit Bose-Einstein Condensation. Indeed, experimental evidence

of BEC of spin-excitations (magnon gas)25 and of particle-hole coupled to photons in an

optical cavity (exciton-polaritons)24,26–28 has been reported. The possibility of BEC in this

systems relies on the fact that the quasi-particle life-time is much larger than the relaxation-

time, thus the system can be described by statistical mechanics where particle number is

approximately conserved.

A important system composed by bosonic particles that are not conserved is electromag-

netic radiation in a cavity at thermodynamic equilibrium (black body radiation). From a

quantum perspective, electromagnetic radiation can be considered as an ideal gas composed

by photons that obey the rules of symmetry of the wave function Ψ. As in the case of

quasi-particles, the number N of photons is not conserved since they are continuously being

absorbed and emitted by the cavity’s walls. There is, however, a very recent work under

progress where an experimental setup has been achieved in order to produce an electromag-

netic radiation system with conserving number of particles30. In the next paragraphs we

shall address the behavior of the chemical potential for a system of bosons where the number

of particles is not conserved, as it occurs in the case of electromagnetic radiation confined

in a cavity. In order to explore the capabilities and strengths of the ESM approach we shall

partially follow the procedure suggested by Reif7. We will find this very instructive when

we extend this method to deal with quantum system with fractional statistics.

1. The photon gas

Let us consider a quantum ideal system composed of N bosons that can be distributed

along a set of {εk} energy levels. Due to the fact that we are dealing with bosons, each
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energy level εk might be populated with nk particles with nk = 0, 1, 2, . . .∞. The average

number of particles 〈nk〉 that occupies the single-particle energy level εk as a function of

temperature is given by the following general prescription

〈nk〉 =

∑
{nk} nke

−β
∑

j njεj∑
{nk} e

−β
∑

j njεj
, (35)

where two types of sums are defined at different levels. For a particular macrostate M , there

is a distribution of n1 particles in the energy level ε1, n2 particles in the energy level ε2 and

so on. The total energy E of this particular macrostate is given by

E =
∑
j

njεj (36)

where j = 1, 2, . . . ,∞ if there is any possibility that the system may be excited to higher

energy levels as desired. In practice the sum defined in Eq (36) ends at some finite point

beyond of which there is no possibility that any particle can occupy higher energy levels.

However this sum is defined only for a particular macrostate. To take into account all

different possible macrostates M consistent with the same total energy E one must to define

a second sum on a higher layer. The outer sum
∑
{nk} takes into account this fact and it

must be performed over all possible macrostates M availabe to the system. Thus in spite

its apparent simplicity Eq. (35) is in fact a sum over the possible distributions of particles

in the all possible energy levels. In order words, Eq (35) comprises a sum over the different

sets {n1, n2, n3, . . .} compatible with the restriction that for any of these distribution sets

it must occur that the total energy E of the system must be given by Eq (36).

The key element to perform the sum defined (35) is to define the partition function Z of

the system as

Z(V, T ) =
∑
{nk}

e−β
∑

j njεj (37)

and then split the sum in Z into the state k and the remaining ones. This can be written as

Z(V, T ) =
∑
{nk}

e−β(n1ε1+n2ε2+...+nkεk+......)

=
∑
nk

e−βnkεk
∑
nq 6=nk

e−β(n1ε1+n2ε2+...) (38)
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where the last sum explicitly excludes the term nkεk which has been separated and brought

up to the front of the sum. Then the quantity 〈nk〉 can be written as

〈nk〉 =

∑
nk
nke

−βnkεk
∑

nq 6=nk
e−β(n1ε1+n2ε2+...)∑

nk
e−βnkεk

∑
nq 6=nk

e−β(n1ε1+n2ε2+...)
(39)

where the numerator has only one sum that depends on nk. Up to this point these results

are completely general. They do not depend on the particular values that the numbers nj

can assume.

For bosons the numbers nj can assume any of the values 0, 1, 2, . . . N since there is no

restriction on the energy level occupancy. In the case of electromagnetic radiation and other

quasi-particle systems there is no constraint on the total number of particles N and thus the

sums over the states nq 6= nk in Eq (39) are identical and can be canceled out. This yields

to a simpler expression for the average occupancy, i.e,

〈nk〉 =

∑
nk
nke

−βnkεk∑
nk
e−βnkεk

. (40)

In order to carry out this calculation let us define the quantity z(V, T ) as

z(V, T ) =
∑
nk

e−βnkεk (41)

It is straightforward to see that in terms of z(V, T ) the average number 〈nk〉 of occupancy

can be written as

〈nk〉 = − 1

β

∂ ln z(V, T )

∂εk
(42)

Since the numbers nk can adopt any possible value between zero and infinity, the sum

expressed in z(V, T ) is indeed a geometric series which can be readily calculated as

z(V, T ) =
∞∑

nk=0

e−βnkεk =
1

1− e−βεk
, (43)

and thus

〈nk〉 =
1

eβεk − 1
. (44)

represents the average number of particles occupying the energy level εk in the case of

non conserving total number N of particles. We can apply this result to the photon

gas. In such case the energy of a photon with wave vector k in a given polarization
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is determined by εk = ~ωk = ~c|k|. Substitution of this in in Eq. (44) enables us

to recover the well known Planck distribution which gives the average distribution of

photons in the ωk mode. It is of paramount relevance to realize that in this case µ does

not appear explicitly during the calculation. We might say that chemical potential in

this case is zero. However, a stronger assertion can be made. Within canonical ensem-

bles in ESM there is no need of chemical potential if the number of particles is not conserved.

2. The ideal Bose gas

Let us now implement the above procedure for a system of bosons where the total number

N particles is conserved. In this category falls a vast set of system made of actual massive

boson particles. The only requisite is that the total number of particles N must be kept

fixed. In order to calculate the average number 〈nk〉 in this case we must return to general

expression for 〈nk〉 given in Eq (39). For the case where the number of particles is allowed

to fluctuate we noticed that the sums
∑

nq 6=nk
e−β(n1ε1+n2ε2+...) in the numerator and denom-

inator were indeed the same and thus they can be canceled out. For systems where there is

a restriction on the value of N this is not longer the case. To understand this we just must

realize that the restriction ∑
k

〈nk〉 = N (45)

constrains the sums given in Eq (39), to be performed over the remaining particles once

the energy level k has been occupied. This is, if from N particles one is occupying the

energy level k, then the remaining N − 1 particles have to be distributed necessarily over

the energy levels q with q 6= k. This simple and powerful idea is the core of the calculation

presented by Reif7. We shall use and extended this idea to calculate averaged occupancies

〈nk〉 beyond the BE and FD statistics.

For a system composed of bosons there is no restriction on the total number of particles

that can occupy a single-particle energy level εk. Consider for instance, the energy level εq

being occupied by one particle. Then, Eq. (45) implies than the remaining N − 1 particles

must distribute themselves into the energy levels k with k 6= q. In terms of Eq. (39) this
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also implies that the sum ∑
nq 6=nk

e−β(n1ε1+n2ε2+...) (46)

must be carried out not over the all the possible values of n1, n2, etc but only over those

that satisfy the fact that the total amount of particles available is now N − 1 for this case

and not N as it was at the beginning. Let us denote this new sum as

Z ′(N − 1) =
∑
nq 6=nk

e−β(n1ε1+n2ε2+...), (47)

where the prime ′ denotes the fact that the sum must be performed over all energy levels

different form q. The quantity N − 1 in parentheses indicates too that this sum is carried

out over N − 1 particles.

With these elements we are in position to calculate 〈nk〉 for a system composed of N

bosons with N fixed. For each value adopted by nk, the sum in Eq(47) has to be carried

out over the remaining particles. This yields to

〈nk〉 =

N∑
j=0

j e−jβεkZ ′(N − j)

N∑
j=0

e−jβεkZ ′(N − j)
. (48)

The evaluation of Eq (48) requires to compute Z ′(j) from j = 1 to N, which makes the

calculation rather cumbersome, see Ref.31 and7 for details. We shall detour this difficulty by

taking an alternative approach to that followed by Reif. Let us Zs(N) from the numerator

and denominator of Eq (48) to obtain

〈nk〉 =

N∑
j=0

j e−jβεk
Z ′(N − j)
Z ′(N)

N∑
j=0

e−jβεk
Z ′(N − j)
Z ′(N)

. (49)

Note that the ratio Z ′(N − j)/Z ′(N) can be written as the product of the ratios of partition

functions that differ only in one particle, i.e.,

Z ′(N − j)
Z ′(N)

=
Z ′(N − 1)

Z ′(N)
· Z ′(N − 2)

Z ′(N − 1)
· Z ′(N − j)

Z ′(N − j + 1)
. (50)
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We use now that the finite change of the Helmholtz free energy ∆F, when exactly just one

particle is added to an N -particle system corresponding to a chemical potential

µN = kBT ln
Z ′(N)

Z ′(N + 1)
. (51)

With these facts, expression (50) can be written as

Z ′(N − j)
Z ′(N)

= eβµN−1eβµN−2 · · · eβN−j . (52)

In the thermodynamic limit N →∞ we can write eβµN−1 = . . . = eβN−j ≈ eβµ, and therefore

〈nk〉 =

N∑
j=0

j e−jβ(εk−µ)

N∑
j=0

e−jβ(εk−µ)

. (53)

can be readily evaluated to give the average number of particles as a function of temperature

T and the chemical potential µ. The wanted relation reads

〈nk〉 =
1

eβ(εk−µ) − 1
, (54)

which is the well-known Bose-Einstein (BE) distribution for an ideal gas of integer spin

particles. In particular, the case considered here correspond to zero-spin particles. Note that

taking the limit N →∞ is a crucial step to obtain properly the Bose-Einstein distribution,

since our starting point is the canonical partition function of exactly N particles.

It is worth to notice that the chemical potential µ in this context arises as a consequence

of a physical restriction: the constancy of the total number of particles. From that con-

sideration it is not obvious or straightforward to see whether the chemical potential is a

positive or negative quantity. In order 〈nk〉 be a non-negative quantity it is required that

εj − µ ≤ 0 for all j. This implies that µ ≤ ε0, where ε0 is the single-particle ground-state

energy. Since in general, ε0 → 0 in the thermodynamic limit, µ ≤ 0 for all temperatures.

Note that the restriction imposed by Eq (45), gives an implicit definition of µ in terms of

the particle density n = N/V and temperature T . This is,

N =
∞∑
k=0

〈nk〉 =
∞∑
k=0

1

eβ(εk−µ) − 1
(55)
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where the sum is strictly over an infinite number of energy levels since any particle can be

occupy in principle any energy level accessible to the system.

To obtain the equation of state µ = µ(n, T ) implicitly defined in Eq (55) it is con-

venient to transform the sum into a integral using the density of states ρ(ε). Given the

relationship between the wave vector k of a free particle contained inside a box of volume

L3 (under periodic boundary conditions) given by quantum mechanics kx = 2πnx/L with

nx = 0,±1,±2, . . ., the sum
∑

k over the wave vectors can be written in terms of an integral

over the numbers nx, ny and nz. A change of variable enable us to write that∑
k

→
(
L

2π

)3 ∫
dk =

V

(2π)3

∫
dk (56)

which can be represented in terms of the density of states ρ(ε) as∑
k

→ V

∫
ρ(ε)dε (57)

where ρ(ε) is a function that depends on both the system itself and its dimensionality18. In

three dimensions,

ρ(ε) =
m2/3

√
2π2~3

ε1/2 (58)

with m the mass of the particles.

For free bosons in three dimensions, Equation (55) can thus be written as an integral

over the energy levels ε as

N =
V m3/2

√
2π2~3

∫ ∞
0

ε1/2dε

eβ(ε−µ) − 1
(59)

where ~ = h/2π and V the volume of the system. As usual β = (kBT )−1 and ε is the energy

of the system. The integral in Eq. (59) can be expressed in terms of more familiar functions

using a change of variable. For the sake of clarity we present this calculation in some detail.

A new variable x can be defined as x = βε. Then,∫ ∞
0

ε1/2dε

eβ(ε−µ) − 1
=

1

β3/2

∫ ∞
0

x1/2dx

ζex − 1
(60)

where ζ is defined as ζ ≡ e−βµ. The last term in Eq (60) can readily identified with a

particular type of special function. This is the Poly-logarithm function Lis(ζ) defined as

Lis(ζ) =
1

Γ(s)

∫ ∞
0

ts−1dt

ζ−1et − 1
. (61)
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For s = 3/2 and ζ → ζ−1 we have

Li3/2

(
1

ζ

)
=

1

Γ(3/2)

∫ ∞
0

t1/2dt

ζet − 1
(62)

which enable us to rewrite the last integral in Eq (60) as

1

β3/2

∫ ∞
0

x1/2dx

ζex − 1
=

1

β3/2
Li3/2

(
eβµ
)
. (63)

With this result the chemical potential µ can be written as an implicit function of temper-

ature T and particle density n = N/V as

n =
m3/2π1/2 (kBT )3/2

2
√

2π2~3
Li3/2

(
eβµ
)
. (64)

Equation (64) corresponds to the equation of state µ = µ(n, T ) for an ideal Bose gas.

This is completely equivalent to the standard equation of state for density n in terms of

volume V and pressure p as has been shown in standard thermodynamics textbooks. Both

µ = µ(n, T ) and n = n(T, p) contain the same information and thus can be used indistinctly

to obtain thermodynamic information of the system. In Fig. 3, the monotonic dependence

on temperature of the chemical potential is shown for a fixed value of the density.

As discussed in many textbooks6,8 a phase transitions occurs at a critical temperature Tc

when µ = 0. From Eq. (64) that temperature is given by

Tc =
2π

ζ(3/2)

~2

kBm
n2/3 (65)

marked with a dot in Fig. 3, its value in units of TF is given by Tc/TF =

[4/(3ζ(3/2)2
√

2)]2/3 ' 0.436. In expression (65) the quantity ζ(3/2) = Li3/2(1) is the

function zeta of Riemann. In Fig. 4, isothermal curves (light-color) of µ(n, T ) are shown.

The critical density nc at which BEC occurs is determined by µ(nc, T ) = 0, and is given by

nc = (mkBT/2π~2)2/2ζ(3/2).

The peculiarity that the single-particle ground state vanishes in the thermodynamic limit

can be used to discuss a thermodynamic similarity between the photon gas and the uniform

ideal Bose gas. Indeed, for temperatures smaller or equal to Tc the particles in the ground

state N0 (the condensate) do not contribute to the thermodynamics of the gas. Therefore

we can disregard the condensate even when the total N = N0 + Ne is fixed, where Ne

denotes the number of particles occupying the single-particle excited states. Of course, the
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FIG. 3: Chemical potential in units of EF (the Fermi energy of a spinless ideal Fermi gas) as func-

tion of temperature in units of TF = EF /kB, kB being the Boltzmann’s constant, for: i) the ideal

Fermi gas (continuous-blue line), ii) the ideal classical gas (red-dashed line), and iii) the ideal Bose

gas (magenta-dash-dotted line). The BEC critical temperature Tc/TF = [4/(3ζ(3/2)2
√

2)]2/3 '

0.436 is marked with a dot while the Fermi Energy with a square. The inset shows how the chemical

potential of the ideal quantum gas approaches the classical one at large temperatures.

situation described only makes sense for the ideal case and is presented here just for academic

purposes. Thus, the thermodynamic properties of the gas are dictated by the behavior of

Ne(T ), which grows with temperature as occurs with the photon gas in a thermal cavity.

The condensate plays the role of a particle source just as the walls of the cavity emits and

absorbs photons from the cavity. The quantitative difference between both systems are

the result form their different dispersion relations, εk = ~2k2
2m

for the uniform Bose gas and

εk = ~ck for the photons. To exemplify this, consider the temperature dependence of the

specific heat at constant volume CV , which for T ≤ Tc grows monotonically as T 3/2 for the

uniform Bose gas and as T 3 for photons. This analogy would lead one to conclude that a

photon gas behaves as a Bose gas with a infinite critical temperature. It is possible however

to reduce the critical temperature of the photon gas to finite temperatures. One just have

to manage to make the number of photons to be conserved at some critical temperature

and this seems to have been recently realized experimentally by Klaers et al. by using an
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ingeniously experimental setup30.

B. Fermi-Dirac Distribution

Regarding fermionic systems, the electron gas has been a paramount system in solid state

physics since the crucial observation of the fermionic character of the electron. Indeed, the

electron gas has played a fundamental role in the first stages of the theory of metals32 and

on the understanding of the stability of matter33. After some years of the experimental real-

ization of condensation in a degenerate Bose gas20,21, researchers started to turn their sight

to the Fermi gas. The first experimental realization of a degenerate Fermi gas was carried

out by de Marco and Jin34 exhibiting the consequences of Pauli’s exclusion principle. This

work has triggered a renewed interest on Fermi systems, not only to the understanding of

phenomena that emerge from strongly interacting fermion system in condensed matter, such

as superconductivity, fermionic superfluidity etc., but also, to test and probe the theoretical

predictions of quantum mechanics. In particular, the trapped ideal Fermi gas has been a

system under intense theoretical research in the latest years35–42. Many other experiments

have been developed to unveil the fermionic properties of matter43–46.

For particles obeying Pauli’s exclusion principle, the possible values of nj are restricted to

0 and 1. In addition, a system of fermions, like the electron gas, must satisfy that total num-

ber N of particles must be a constant, i.e., condition (45) must be satisfied. As mentioned

before, restriction on the total number of particles implies that if a particular energy level

is occupied by one particle, then the remaining N − 1 particles should distribute themselves

into different energy levels. With this as the key idea we proceed to the calculation of the

average number 〈nk〉 in the case of a Fermi-Dirac. We tackle this calculation in a different

way from what we did in the Bose-Einstein case. For the FD we shall follow closer the

procedure suggested in7.

In a similar way as we did in the BE case let us define the sum

Z ′(N) =
∑
nq 6=nk

en1ε1+n2ε2+... (66)

as the sum for N particles carried out over all energy levels different from εk. The average

number 〈nk〉 can thus be splitted into the k-contribution and the remaining terms different
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from k. This is,

〈nk〉 =

∑
nk
nke

−βnkεk
∑

nq 6=nk
e−β(n1ε1+n2ε2+...)∑

nk
e−βnkεk

∑
nq 6=nk

e−β(n1ε1+n2ε2+...)
. (67)

For a system of fermions, nk can only have two values, zero or one. In addition since the

number N of particles is fixed once a particular energy is populated with one particle, the

remaining ones must be occupied by N − 1 particles, Eq(66) together with Eq (67) can be

written for a fermion system as

〈nk〉 =
eβεkZ ′(N − 1)

Z ′(N) + eβεkZ ′(N − 1)
. (68)

In order to relate Z ′(N) with Z ′(N − 1) it is useful to consider the Taylor expansion of

the quantity logZ ′(N −∆N) . For ∆N � N ,

logZ ′(N −∆N) ' logZ ′(N)− ∂ logZ ′

∂N
∆N. (69)

If we define αN as

αN ≡
∂ logZ ′

∂N
, (70)

we can write Eq (69) as

logZ ′(N −∆N) ' logZ ′(N)− αN∆N, (71)

which yields to
Z ′(N −∆N)

Z ′(N)
= e−αN∆N . (72)

Let us remember that Z ′(N) is a sum defined over all states excepting the k one. One may

expect then that for N � 1 variations in the logarithm may be some kind of insensitive to

which particular state s has been omitted. Then, it may be valid that αN does not actually

depends on the state k chosen and thus we can simply write αN = α7. Inserting this in

Eq (72) and performing the sum in Eq (68) accordingly, we obtain for a fermi system the

well-known Fermi-Dirac Distribution,

〈nk〉 =
1

eβεk+α + 1
, (73)
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where αs is given formally by Eq (70). A direct interpretation for α can be given in terms

of the chemical potential µ by recalling that

µ =

(
∂F

∂N

)
T,V

. (74)

Since F = −kBT logZ, then α = −µ/kBT . The Fermi-Dirac Distribution can be written

then in a more usual form as

〈nk〉 =
1

eβ(εk−µ) + 1
, (75)

where µ is up to this point an undetermined quantity that can be obtained by imposing the

following condition

N =
∑
s

〈ns〉 =
∑
k

1

eβ(εk−µ) + 1
. (76)

Since both 〈nk〉 and N should be positive quantities the chemical potential µ must adjust

its value in agreement with the value of the energy levels εk in such a way that N > 0 and

〈nk〉 > 0 be fulfilled in any physical situation.

In the same spirit as we did for our calculation in the BE case, it is possible to go a step

forward to calculate explicitly the equation of state µ = µ(n, T ) for the ideal Fermi gas.

By using expression (58) for the density of states, Eq. (76) can be written as the following

integral

N =
V

Γ(3/2)

( m

2π~2

)3/2
∫ ∞

0

ε1/2dε

eβ(ε−µ) + 1
, (77)

and in terms of the particle density n and the polylogarithm function Lis(z) we have

n = −
(
mkBT

2π~2

)3/2

Li3/2(−eβµ), (78)

which gives, implicitly, the equation of state µ(n, T ). In the zero temperature limit, the FD

distribution (75) has a step-like shape θ(ε − µ), where θ(x) is the Heaviside step function

that takes the value 1 if x ≥ 0 and 0 otherwise, thus, the chemical potential µ(n, T = 0)

coincides with the so called Fermi energy EF = kBTF = ~2k2
F/2m whose dependence on n is

EF =
~2

2m

(
6π2n

)2/3
. (79)

Due to the exclusion principle only one fermion can be allocated in a single-particle energy

state (with no degeneration). Thus given N particles, the system’s ground state is obtained
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by filling the first N single-particle energy states. The Fermi energy corresponds exactly

to the last occupied state. For finite temperatures, but still much smaller than the Fermi

temperature, the Fermi-Dirac distribution is modified from its zero temperature step-shape

only around µF ∼ EF and the chemical potential can be computed by the use of the

Sommerfeld approximation (see Ref. [47] for details) giving the well known result

µF = EF

[
1− π2

12
(T/TF )2 + . . .

]
. (80)

The temperature T ∗ that separates the µ > 0 region from the µ < 0 one, can be computed

exactly and is given by T ∗ = [Γ(5/2)ζ(3/2)(1−
√

2/2)]−2/3 TF ' 0.989TF , where TF denotes

the Fermi temperature.

FIG. 4: Chemical potential µ in units of kBTc for the ideal Bose and Fermi gases as function

of the particle density n for various values of temperature. Tc corresponds to the Bose-Einstein

condensation critical temperature (65) of a boson gas with the arbitrary density n0. λ0 corresponds

to the thermal wavelength evaluated at T = Tc. Note that both cases converge to the same values

of the chemical potential for small enough density, this corresponds to the classical limit.

Observe that µ can be a positive quantity, even in the thermodynamic limit, in contrapo-

sition to the Bose and classical gas where it is always a negative quantity. This behavior is a

direct consequence of the quantum effects at low temperatures, in this case arises from the

exclusion principle. At zero temperature, we can straightforwardly use the discrete version
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of Eq. (1) to compute µ. This is so since ∆S = 0 when adding exactly one particle to the

system and therefore µ = ∆F = ∆U = EF > 0. In Fig. 3, µ exhibits a monotonic decreasing

dependence on temperature (blue-continuous line). Note that the transition to the classical

behavior can occurs at very high temperatures, as high as the Fermi temperature which for

a typical metal is of the order of 104 K. In Fig. 4 the dependence of µ on the particle density

is shown for various isotherms, for this we have chosen the scaling quantities µ0, n0 and T0

of a reference system consisting of N0 particles in the volume V and Fermi energy given by

(79). At low densities and finite temperatures µ is negative exhibiting the classical behavior.

IV. QUANTUM STATISTICS BEYOND BOSE-EINSTEIN AND FERMI-DIRAC

As reviewed in detail in previous sections, Bose-Einstein and Fermi-Dirac statistics de-

scribe quantum systems of particles with complete different macroscopic thermodynamic

effects. The essential difference between BE and FD systems is the Pauli exclusion principle

which hinders the occupancy of a particular energy level to the values 0 and 1. In view

of this, we address the question: Is there any intermediate case between the BE and FD

statistics? Recall that both can be viewed as extreme opposites of occupancy. Whereas

BE enables any number of particles from zero to ∞, FD blocks out any possibility beyond

single-occupancy. In this Section we explore the possibility of Intermediate Quantum Statis-

tics (IQS), i.e, statistics where any single-particle energy level can be occupied by at most j

particles, with j an integer number between zero and∞. This is the most general case with

BE and FD particular cases corresponding to j =∞ and j = 1, respectively.

Let us denote with IQSj, the IQS of order j, of a non-interacting quantum system of

particles where any single-particle energy level can be occupied, at most, by j particles. The

calculation of the average number of particles 〈nk〉j at the energy level k corresponding to

the statistics IQSj can be done in a straightforward manner by generalizing the procedure

used here to calculate the BE and FD ideal statistics. As an illustrative case let us consider

the calculation of 〈nk〉2 which is associated to a quantum system where the single-particle

energy level εk can be occupied by zero, one or two particles. In general, as we have reviewed

previously, the average number 〈nk〉 can be written as

〈nk〉 =

∑
nk
nke

−βnkεk
∑

nq 6=nk
e−β(n1ε1+n2ε2+...)∑

nk
e−βnkεk

∑
nq 6=nk

e−β(n1ε1+n2ε2+...)
. (81)
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where the notation is exactly the same as before. The key issue to proceed with the

calculation is to realize that the two sums on the numerator and denominator in Eq (81)

are interrelated due to the restriction N =
∑

k〈nk〉. If, for example, nk = 1 the sum∑
nq 6=nk

e−β(n1ε1+n2ε2+...) must be performed over the N − 1 remaining particles since N is a

fixed quantity.

For a system obeying the IQS2 statistics each energy level εk may be occupied by zero,

one or two particles. Then, taking into account this 〈nk〉2 can be written explicitly as

〈nk〉2 =
e−βεkZ ′(N − 1) + 2e−βεkZ(′)(N − 2)

Z ′(N) + e−βεkZ ′(N − 1) + e−2βεkZ ′(N − 2)
(82)

where

Z ′(N) =
∑
nq 6=nk

e−β(n1ε1+n2ε2+...) (83)

is a sum performed over N particles leaving apart the energy level εk. Accordingly, Z ′(N−1)

represents the same sum performed over N − 1 particles, Z ′(N − 2) a sum performed over

N − 2 particles and so on. In general, Z ′(N) and Z ′(N −∆N) are related at first order by

Z ′(N −∆N) = Z ′(N)e−α∆N . (84)

where α is the fugacity and is related to the chemical potential µ by α = −βµ. Then, 〈nk〉2
can be written as

〈nk〉2 =
e−β(εk−µ) + 2e−2β(εk−µ)

1 + e−β(εk−µ) + e−2β(εk−µ)
(85)

which represents the average occupancy for a quantum system with IQS2 statistics. It is

worth to notice that the case IQS1, which represents the well-known FD statistics, is included

in this expression. In such case the last terms in both the numerator and denominator are

dropped out obtaining for IQS1

〈nk〉1 =
e−β(εk−µ)

1 + e−β(εk−µ)
=

1

eβ(εk−µ) + 1
(86)

which is the Fermi-Dirac Statistics.

The procedure outlined above can be readily generalized to calculate the average occu-

pancy for a system with a IQSj statistics. In such case, the single-particle energy levels can

be occupied by zero, one, two up to j particles simultaneously. This is the most general case
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of a intermediate statistics between the Fermi-Dirac and Bose-Einstein cases. Please note

that whereas the FD statistics corresponds to IQS1, the BE statistics lies on the opposite

extreme where the occupancy j tends to infinity. The general expression for the average

occupancy 〈nk〉j in the IQSj case reads as

〈nk〉j =

∑j
r=0 re

−rβεkZ ′(N − r)∑j
r=0 e

−rβεkZ ′(N − r)
(87)

which can be calculated explicitly as

〈nk〉j =
e(1+j)(α+βεk) + j − (1 + j) e(α+βεk)

[e(α+βεk) − 1] [e(1+j)(α+βεk) − 1]
(88)

where j can run from zero to infinity. In order to check out that this expression is correct

let us calculate some particular cases. For j = 0 we obtain the trivial limit case with no

statistics at all. If no particles are allowed to occupy any energy level then there is no

average occupancy. For j = 1 we recover the FD statistics since the expression for IQS1

obtained directly from the substitution of j = 1 in Eq (88)

〈nk〉1 =
e2(α+βεk) + 1− 2e(α+βεk)

[e(α+βεk) − 1] [e2(α+βεk) − 1]
(89)

is completely equivalent to Eq (86). The BE statistics can be also reproduced from Eq (88)

if we consider, as we did previously in the standard derivation of the Bose-Einstein statistics

that the occupancy can run from zero to infinity. Then, the sums in Eq (87) must be carried

out from zero to infinity. When that consideration is taken properly, 〈nk〉j in the limit when

j →∞ reproduces the BE case since

〈nk〉BE =

∑∞
r=0 re

−rβεkZ(s)(N − r)∑∞
r=0 e

−rβεkZ(s)(N − r)
=

1

eα+βεk − 1
(90)

where α as usual is the fugacity.

The procedure outlined and described here to calculate the average occupancy 〈nk〉j in

a quantum system obeying a IQS of order j is based on a procedure suggested by Reif7

for the calculation of BE, FD and Planck distributions exclusively. The generalization

provided here shows that the chemical potential µ and its associated quantity the fugacity

α are physical quantities related not only to the BE and FD statistics but to all types of

statistics that preserve the total number of particles. The methodology proposed here can

be straightforwardly explored with undergraduate and graduate students in order to clarify
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how the concept of chemical potential arises and what is its role in the development of the

standard FD and BE statistics. As an interesting issue to explore in this direction, it is

worth to underline that once the restriction of the preservation of the number N of particles

is imposed this automatically restricts the summations implied in Z ′(N), Z ′(N − 1), . . .. All

these sums are related and the connection factor is the fugacity α of the system. If these

facts are not properly taken into account, all the sums defined by Z ′(N), Z ′(N − 1), . . .

may be wrongly taken as the same. This misconception will bring the cancelation of the

connection factor implied.

To finalize this section we would like to make some comments on different approaches that

have been proposed to deal with quasi-particles that are neither bosons or fermions. One of

them is the concept of particles with fractional statistics also known as “anyons” introduced

by Leinaas and Myrheim48 and Wilczek49 in two dimensional systems and that has found

application in the theory of the fractional quantum Hall effect and anyon superconductivity.

A completely new concept without reference to dimensionality was developed by Haldane50

based on the idea that the dimension D of the Hilbert space of single “particles” (in general

quasi-particles that result from topological excitations in condensed matter) changes as

particles are added to the system according to ∆D = −g∆N . In other words, quantum

correlations between “particles” are introduced by making the available states to depend on

which states have been already occupied. The Bose statistics is recovered by setting g = 0

and Fermi if g = 151.

V. WEAKLY INTERACTING QUANTUM GASES

Let us finalize this brief review on the role of chemical potential in classical and quantum

gases by briefly addressing the case of weakly interacting quantum gases. This case turns out

to be of great relevance since it is the standard theoretical model to analyze Bose-Einstein

Condensation in alkali atoms under magnetic and optical traps. The interacting Fermi gas ,

on the other hand, lies at the foundation of the superconductivity and fermionic-superfluidity

theory when the effective interaction between fermions is attractive.
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A. The Bose Gas

In order to describe the dynamics of a weakly interacting Bose gas it is customary to

start with the general Hamiltonian operator Ĥ given by

Ĥ =

∫
d~r Ψ̂†

(
− ~2

2m
+ Vext(~r)

)
Ψ̂ +

1

2

∫ ∫
d~rd~r′ Ψ̂†(~r)Ψ̂†(~r′)U(~r − ~r′)Ψ̂(~r)Ψ̂(~r′) (91)

where Ψ̂(~r) and Ψ̂†(~r) are the field operators of annihilation and creation of particles at

position ~r and U(~r − ~r′) is the interacting potential between two particles. In general, the

experimental situations involve an external potential Vext(~r). In the case of bosons, the field

operators satisfy a particular set of commutation rules given by[
Ψ̂(~r1), Ψ̂†(~r2)

]
= δ3(~r1 − ~r2) (92)

and [
Ψ̂(~r1), Ψ̂(~r2)

]
=
[
Ψ̂†(~r1), Ψ̂†(~r2)

]
= 0. (93)

The complete solution of Eq. (91) for any arbitrary potential U(~r− ~r′) is a formidable task

beyond our current capabilities, however, for some particular situations it is possible to make

a step further to approximate the potential U (~r − ~r′) as a contact potential represented by

a Dirac delta function

U (~r − ~r′) = U0δ
3 (r − r′) , (94)

where U0 is the strength of the interaction given by U0 = 4πas/m with as the scattering

length and m the mass of the particle. This has proved to be particularly accurate to

describe interactions in Bose gases composed of alkali atoms like 23Na, 87Rb, 7Li at very low

densities and temperatures. In such systems, the interaction occurs via a s-wave quantum

scattering process with as the relevant parameter that characterizes the interaction between

atoms.

With these considerations it is possible to rewrite Eq (91) as

Ĥ =
∑
q>0

ε0q â
†
qâq +

U0

2V

∑
p>0,q>0,r>0

â†p+râ
†
q−râpâq, (95)

which is a second-quantization representation52 in the momentum space q for the Hamilto-

nian of the weakly interacting gas. The operators â†q and âq are creation and annihilation

31



operator in the momentum space. The Hamiltonian in Eq. (95) can be split up into the zero

momentum state q = 0 and states with q 6= 0. Neglecting terms of the order N−1 which

vanish in the thermodynamic limit, Eq. (95) is written as,

H =
N2

0U0

2V
+
∑
q 6=0

(
ε0q + 2n0U0

)
â†qâq +

U0

V

∑
p,q

â†pâpâ
†
qâq, (96)

where n0 = N0Ψ0
2 is the density of the condensate and Ψ0 is the corresponding wave func-

tion. This Hamiltonian can be expanded around an equilibrium occupation distribution fq

which for bosons is the Bose-Einstein distribution function5. To first order, the Hamiltonian

is

H =
N2

0U0

2V
+
∑
q 6=0

(
ε0q + 2nU0

)
â†qâq −

U0

V

∑
p,q

fpfq, (97)

where n = n0 + n1 is the total particle density of the system and n1 =
∑

q>0NqΨ
2
q is the

density of uncondensed particles which is a sum over all the non zero momentum states. The

Hamiltonian in Eq (97) is known as the Hartree-Fock (HF) approximation for the weakly

interacting Bose gas. The second term of Eq (97) shows the intrinsic nature of the Hartree-

Fock approximation as a mean field theory. The energy ε0q+2nU0 to add or remove a particle

to a state with non zero momentum is an average over all the pairwise interactions between

particles.

The equations for the wave functions of the condensate Ψ0(~r) and the uncondensed phase

Ψk(~r) can be obtained from the Heisenberg Equation −i/~ [H,Ψ] = ∂tΨ with H given by

Hartree-Fock approximation in Eq (97) as

− ~2

2m
∇2Ψ0 + 2n1U0Ψ0 + n0U0Ψ0 + VextΨ0 = ε0Ψ0

− ~2

2m
∇2Ψq + 2U0 [n1 + n0] Ψq + VextΨq = εqΨq

(98)

with the last equation valid for q 6= 0. Since N0 and Nk for k > 0 are assumed to obey

a Bose-Einstein statistics, Eqs. (98) enable us to obtain the thermodynamic framework of

the interacting Bose gas in the HF approximation. These equations determine the chemical

potential µ in terms of the total particle density n and the temperature T as

nλ3
T = g3/2 [β (µ− 2nU0)] (99)

for T > Tc and

n = n0 +
1

λ3
T

g3/2 (−βn0U0) (100)
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with µ = U0(2n− n0) for T < Tc, with

gv(α) =
1

Γ(v)

∫ ∞
0

xv−1

ex−α − 1
dx (101)

is the Bose integral, and λT is the thermal de Broglie wavelength (31). For a system of units

where as = m = ~ = kB = 1, Eqs. (99) can be written in dimensionless form as,

n =

(
T

2π

)3/2

g3/2

[
µ− 8πn

T

]
(102)

for T > Tc and

n = n0 +

(
T

2π

)3/2

g3/2

(
−4πn

T

)
(103)

with µ = 4π (2n− n0) for T < Tc. Here the strength of the interaction U0 has been replaced

by its dimensionless 4π value.

Eqs. (102) and (103) contain all the relevant thermodynamic information for the weakly

interacting Bose gas in the HF approximation and it is possible to solve them for µ in terms

of the total particle density n and temperature T in order to obtain the isotherms of the

equation of state µ = µ(n, T ) for a gas confined in a box of volume V . Recently one of us has

address this issue53 for different values of the gas parameter γ = as
3n obtaining isotherms

for the weakly interacting Bose gas in the HF approximation (Fig. 5). The results show

that the HF approximation while a valid theory of the interacting gas near zero temperature

fails to predict and adequate physical behavior near the transition. Indeed, in the vicinity

of the critical density nc, the HF formalism predicts a non single-valued profile for µ(n) a

feature forbidden by fundamental thermodynamic principles.

B. Interacting Fermi gas

The corresponding Hamiltonian for fermions with two spin states σ =↑, ↓, as naturally

occurs in several condensed matter systems, may be written as

Ĥ =
∑
σ

∫
dr Ψ̂†σ(r)

(
−~2∇2

2m
+ Vext(σ, r)− µσ

)
Ψ̂σ(r)

+

∫
drdr′ Ψ̂†↑(r)Ψ̂

†
↓(r
′)U(r− r′)Ψ̂↓(r)Ψ̂↑(r

′) (104)
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FIG. 5: Chemical potential µ as function of total density n in the Hartree-Fock approximation

for two fixed temperatures kBT = 0.01 and kBT = 0.1 in units where m = ~ = as = 1. For

temperatures T above the critical temperature Tc, i.e, densities n below the critical density nc

the HF approximation gives correctly the behavior of the chemical potential for which µ → −∞.

However, for T < Tc or equivalently for n > nc, the HF approximation yields to a chemical

potential with a non single-value behavior. This is unacceptable based on fundamental principles

of thermodynamics.

where the field operators obey the fermionic anticommutation relations {Ψ̂σ(r), Ψ̂†σ′(r
′)} ≡

Ψ̂σ(r)Ψ̂†σ′(r
′) + Ψ̂†σ′(r

′)Ψ̂σ(r) = δσ,σ′δ(r − r′). The density of fermions in each spin state

n↑,↓ fixes the energy scale EF of the noninteracting fermion given by expression (79) with

n = 1
2
n↑ = 1

2
n↓.

Two different aspects of the interacting Fermi gas are obtained depending on whether

the interaction between fermions is attractive or repulsive. At zero temperature cor-

rections to the ideal case value of the chemical potential can be calculated in terms

of the scattering length as which measures the interaction strength. In the dilute limit

we have kFas � 1, where the Fermi wavevector kF depends on the particle density as in (79).
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In the repulsive case there is no change in the intuition we have developed from the

interacting classical gas. So one would expect the chemical potential to rise above the value

of the noninteracting case. This is clear from the Landau theory of the Fermi liquid54. A

calculation due to Galitskii (see Ref. [52] pp. 147) gives that for kFa sufficiently small, the

chemical potential can be written as

µ =
~2k2

F

2m

[
1 +

4

3π
kFas +

4

15π2
(11− 2 ln 2)(kFas)

2

]
(105)

exhibiting that repulsive interaction leads to an increase of the chemical potential as it occurs

in the classical case. There is a particular interest in the case when attractive interactions

between fermions of different spin-polarization are considered. This is, for example, the

case in superconductors or in ultracold Fermi gases manipulated through magnetic fields,

where the possibility of Cooper pairing is present. The formation of Cooper pairs, even for a

extremely weak attraction, makes the Fermi sea unstable58 leading to a ground state different

from the Fermi liquid one called the Bardeen-Cooper-Schrieffer (BCS) ground-state. This

microscopic mechanism developed further by Bardeen, Cooper and Schrieffer59 serves as the

basis for the explanation of conventional superconductivity.

In the weak coupling limit, the chemical potential at zero temperature does not deviate

significantly from the the noninteracting case value EF . This picture changes if the strength

of the attractive potential is increased and µ is computed in a self-consistent theory called

the BCS-BEC crossover. Such a theory, introduced by Eagles60 and Leggett61, extends the

BCS one, where now the chemical potential changes due to the formation of tightly bound

fermion pairs. The BCS-BEC crossover has been developed and widely applied, first in

the context of high-Tc superconductivity and most recently in the formation of fermionic

molecules in ultracold Fermi gases. We restrict our discussion to the case of zero temperature

giving references for the finite temperature case.

The Hamiltonian (104) can be written in momentum space as

Ĥ =
∑
k,σ

(εk − µ)c†k,σck,σ −
∑
k,k′,q

Vk,k′c
†
k+q/2,↑c

†
−k+q/2,↓ck+q/2,↓c−k+q/2,↑, (106)

where Vk,k′ is the two-body attractive interaction. In a self-consistent mean-field theory,

the order parameter ∆k =
∑

k′ Vk,k′〈c
†
k,↑c

†
−k,↓〉 called the ”gap” obeys the well known gap

equation

∆k =
∑
k′

Vk,k′
∆k′

2(εk − µ)
(1− 2nk′) (107)
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where

nk =
1

2

{
1− (εk − µ)

[(εk − µ)2 + ∆2
k]

1/2

}
, (108)

gives the quasi-particle density with wavevector k. The simultaneous solution of these

equations give µ and ∆ as function of the strength of the interfermionic interaction.

The BEC-BCS crossover has implications on the behavior of µ as a function of the

interaction strength56. In the weak coupling regime, µ = EF and ordinary BCS theory

applies. At sufficiently strong coupling, µ starts a monotonous decreasing behavior with

increasing the attraction strength, eventually it crosses the zero value and then becomes

negative in the Bose regime. With the appearance of tightly-bound pairs but µ still positive,

the system has a remnant of the Fermi surface, and we say that the many-body system

preserves a fermionic character. For negative µ, however, no trace of a Fermi surface is left

and the system is considered rather bosonic.

VI. CONCLUSIONS AND FINAL REMARKS

The concept of chemical potential in the context of classical and quantum gases has

been revisited. For the classical gas, we started on giving a physical argument on why one

should expect µ < 0 and then we considered the effects of the inter-particle interactions for

the particular case of the van der Waals gas. Based on a equivalence due to Widom that

relates the work necessary to bring an extra particle from infinity to a given position in the

system, with the difference in the chemical potential respect to the perfect gas, we give a

physical argument on what to expect when interactions are considered. Thus, in the case

of a pure repulsive interaction of the hard-sphere type of radius d, the chemical potential is

shifted above the ideal gas value by the amount 4
3
π(d/l)3kBT. This result is valid only in

the low density limit, i.e., d � l. For this case it is intuitively clear, that in the situation

just described, it must be spent more energy in bringing an extra particle to the system

than when no interactions are present at all and that this amount of energy increases as

the density does. Thus an infinite amount of energy will be required to add a particle

to a high dense classical gas. As the reader can now expect, attractive interactions shifts

the chemical potential below the value of the non-interacting case. This is the case when

considering the attractive tail in the model potential (23).
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For the ideal quantum gases, we present a pedagogical way to obtain the Bose-Einstein

and Fermi-Dirac distributions starting from a canonical-ensemble calculation. In the case

of bosons, we discussed the implications on the chemical potential when considering a

system, both, with conserving and non-conserving number of particles. In the later case,

no reference to µ is needed, however, µ appears naturally once the number of bosons is

required to be conserved. In this case µ(T ) decreases monotonically with temperature lying

below, but asymptotically approaching, to the classical curve (see Fig. 3). In contrast,

for fermions it was shown that µ acquire positive values due to the statistical correlations

induced by Pauli’s exclusion principle. In addition, µ(T ) decreases monotonically from the

Fermi energy lying above, but asymptotically approaching, to the classical curve (see Fig.

3). On the light of these observations, we can use the ideas exposed for the interacting

classical gas. Indeed, if we consider the quantum gas as classical, with quantum correlations

given by a statistical interparticle potential vstat,ij
6,62, then, due to the attractive/repulsive

nature of vstat,ij for the Bose/Fermi gas, their respective chemical potentials vary with

temperature below/above the classical one.

We have also briefly discussed the consequences of considering an extension of the ex-

clusion principle when a single-particle energy level can be occupied at most for j particles.

Finally, we have presented a discussion on the behavior of µ for the case of weakly inter-

acting quantum gases. For the Bose gas, µ(T, n) gives important information on the nature

of the BEC phase transition. In the case of the attractively interacting Fermi gas, µ gives

important information on the nature of the system as the interaction strength is varied,

going from loosely bound pairs (Cooper pairs) in the weak coupling to bosonic thightly

bound-pairs in the strong interaction limit.

VII. APPENDIX

The basic idea to evaluate the configurational integral QN given by Eq. (17), is to com-

pute the statistical average of e−βv1,2e−βv1,3 · · · e−βvN−1,N over all possible configurations of

the particles positions denoted with QN/V
N = e−βv1,2e−βv1,3 · · · e−βvN−1,N . van Kampen’s ap-

proach is based on a factorization of D into terms Dk that takes into account the correlations
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of k ≥ 2 particles, i.e.,

QN/V
N =

N∏
k=2

(dk)
(N
k) , (109)

where
(
N
k

)
gives the number of combinations of k particles taken from the total N, and

dk =
e−βv1,2e−βv1,3 · · · e−βvk−1,k

D
, (110)

with D is the immediate lower approximation for the same numerator.

For k = 2, d2 = e−βv1,2 since D = 1 in this case. Thus the first factor in Eq. (109) is

given by

e−βv1,2
N(N−1)/2

=

[
V −1

∫
dr1V

−1

∫
dr2 e

−βv1,2
]N(N−1)/2

. (111)

In order to take the thermodynamic limit N, V → ∞ with N/V constant, consider the

following identity[∫
dr1

V

∫
dr2

V
e−βv1,2

](N−1)/2

=

[
1 +

1

N

N

V

∫
dr
(
e−βv(r) − 1

)](N−1)/2

, (112)

thus giving as result d
(N
2 )

2 = exp
{
N2

2V
B1

}
with B1 ≡

∫
dr
(
e−βv(r) − 1

)
. For dilute enough

systems where only correlations of two particles are important this approximation should

work fine.

The calculation of the general factor (dk)
(N
k) is more involved and we present only a sketch

of it. By writing e−βvi,j = 1 + fi,j Eq. (110) can be rewritten as

dk =
1 + f1,2 + . . .+ f1,2f1,3 · · · fk−1,k

D
. (113)

van Kampen argues that the class of terms in the numerator of (114) that involve less than

k particles and those that involve k particles but are reducible, are also present in D, such

that the numerator can be written as (1 +
∑
{k} f1,2f1,3 · · ·+O(V −k))D, where the summa-

tion extends over all irreducible terms that involve 2, . . . , k particles. A term of the form∫
· · ·
∫ ∏

i<j gi,j dr1 · · · drk, with gi,j an arbitrary function of |ri−rj|, is said to be irreducible

if cannot be factorized into products of integrals of gi,j involving less than k particle-position

coordinates. For instance, it is straightforward to check that
∫∫∫

dr1dr2dr3 g1,2g1,3g2,3 is ir-

reducible while the integral
∫∫∫

dr1dr2dr3 g1,2g1,3 = V
[∫
drg(r)

]2
is not, here we have used

the identity
∫
dr = V.
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Thus, we have

dk = 1 +
(k − 1)!

V k−1
Bk−1 +O(V −k), (114)

where Bk is given by (19) and we have recognized
∑
{k} f1,2f1,3 · · · with the usual irreducible

cluster integral6–8 (k−1)!
V k−1 Bk−1. In the thermodynamic limit the factor (dk)

(N
k) can then be

written as

exp

{
Nk

V k−1

Bk−1

k

}
and by combining this result with the result for k = 2 we finally get the desired result given

by expression (18).
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