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We adapt the Boson-Fermion superconductivity model to include layered systems such as
underdoped cuprate superconductors. These systems are represented by an infinite layered
structure containing a mixture of paired and unpaired fermions. The former, which stand for
the superconducting carriers, are considered as noninteracting zero spin composite-bosons with
a linear energy-momentum dispersion relation in the CuO2 planes where superconduction is
predominant, coexisting with the unpaired fermions in a pattern of stacked slabs. The inter-slab,
penetrable, infinite planes are generated by a Dirac comb potential, while paired and unpaired
electrons (or holes) are free to move parallel to the planes. Composite-bosons condense at a critical
temperature at which they exhibit a jump in their specific heat. These two values are assumed to
be equal to the superconducting critical temperature Tc and the specific heat jump reported for
YBa2Cu3O6.80 to fix our model parameters namely, the plane impenetrability and the fraction of
superconducting charge carriers. We then calculate the isochoric and isobaric electronic specific
heats for temperatures lower than Tc of both, the composite-bosons and the unpaired fermions,
which matches the latest experimental curves. From the latter, we extract the linear coefficient
(γn) at Tc, as well as the quadratic (αT 2) term for low temperatures. We also calculate the lattice
specific heat from the ARPES phonon spectrum, and add it to the electronic part, reproducing the
experimental total specific heat at and below Tc within a 5% error range, from which the cubic
(ßT 3) term for low temperatures is obtained. In addition, we show that this model reproduces the
cuprates mass anisotropies.

keywords: Underdoped cuprate superconductors, critical temperature, specific heat, Bose-Einstein
condensation.
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I. INTRODUCTION

Since the discovery of cuprate High Temperature Superconductors (HTSC)[1] in 1986 there has been an extraordi-
nary theoretical effort to explain the nature of their microscopic behavior as they are not completely described by the
BCS theory [2]. However, very few of these theories consider comparison with specific heat data (or other thermody-
namic properties). The HTSC cuprates were the most frequently studied both experimentally and theoretically until
Fe based superconductors showed up [3–5]. More recently, the appearance of H2S at high pressures [6, 7] beat down
the record of higher Tc held by the cuprates. But, as can be seen in the many publications related to these newer
materials (Fe-based and H2S), the scenario has become even more entangled.

High Tc cuprate superconductors have peculiarities which represent a benchmark in our current understanding of
superconductivity. It is widely accepted that the Cooper pairs, which are responsible for the superconductivity, move
in the copper oxide planes resembling a quasi-2D layered system [8], and have coherence lengths much smaller than
those in conventional superconductors. The phase diagram [9] of the YBa2Cu3Ox shows a dome in the superconducting
temperature as a function of the oxygen content x, either by introducing electrons or holes, giving the latter ones
the higher temperatures. Cooper pairs are pre-formed at a particular temperature T ∗ > Tc (pseudogap temperature)
above the superconducting dome in the underdoped region [9, 10] (where Tc is smaller than the higher Tc possible), and
they undergo a Bose-Einstein Condensation (BEC) as temperature is lowered [11, 12]. Among other characteristics,
cuprate superconductors have a d-wave gap symmetry component in addition to the s-wave component, however, the
exact percentage with which each type of symmetry contributes to the superconducting gap is still an experimentally
ongoing investigation (see for example Refs. [13–15] and references therein). In the development of this work, of
special interest for us are the following recently reported experimental results: the modification of the size of the
lattice with oxygen doping [16]; the notorious increase of the superconducting gap magnitude [17]; the dramatic drop
of the Fermi temperature TF when doping is diminished [18] and the effect of the orthorombic distortion on the s-wave
order parameter component of underdoped cuprates [19]. These features are of crucial importance in our results.

Experiments, reveal four key characteristics of specific heat as a function of temperature: a linear term γn in
the electronic component, which is believed to come from the normal state electronic specific heat Cen above Tc
(see Ref. [20] and references therein), and its superconducting counterpart that evolves as γ0 when the temperature
approaches zero. Secondly, there is a quadratic αT 2 term for zero magnetic field [21–23] below Tc (not exhibited in
conventional superconductors), which changes to a H1/2T component in the presence of an external magnetic field
[24] H, attributable to the superconducting part of the electronic specific heat Ces. The reported values for this two
constants depend strongly on the conditions of each experiment [21] and on the theoretical method used to relate
the different parts of the total specific heat. Thirdly, there is a “jump” in the constant pressure specific heat [25] Cp
at Tc (at zero magnetic field and evolving into a “peak” at finite magnetic field), ∆Cp/Tc, attributable to the Ces
component, indicating a second order phase transition which in turn becomes a smooth maximum as doping decreases
[26]. Finally, as the “upturn” in the specific heat at very low temperatures is suppressed, a cubic term ßT 3 is also
observed [27].

The lattice specific heat Cl of a cuprate, which is generally considered as not changing with the onset of supercon-
ductivity [21], turns out to give a crucial contribution to the total specific heat. Although a series of indirect methods
have been used to extract the electronic component of the total specific heat [20, 22, 23, 28], we use the Phonon
Density of States (PDOS) directly derived from Angle Resolved Photoemission Spectroscopy (ARPES) experiments
to calculate the lattice specific heat as shown in Refs. [10] and [29]. We obtain that the electronic specific heat
contributes less than 2% to the total.

In the framework of the most basic Boson-Fermion model of superconductivity [11, 30–32], we assume that Cooper
pairs are composite-spin-zero-bosons with either zero or nonzero center-of-mass momenta (CMM), coexisting with a
fermion fluid of the unpaired electrons. To include the effect of the layered structure of cuprates in the Boson-Fermion
model, we calculate the BEC critical temperature and the thermodynamic properties for a system of non-interacting
bosons immersed in a periodic multilayer array [33, 34], simulated by an external Dirac comb potential along the
perpendicular direction of the CuO2 planes, while the Cooper pairs are allowed to move freely within the planes, with
a linear energy-momentum dispersion relation coming from an electron-phonon interaction [32]. The inclusion of the
layered structure breaks the 3D s-wave symmetry via the appearance of a ∆k + [1− cos(kza)] term in the low energy
Cooper-pair dispersion relation. The fermion counterpart is treated in a similar way [35] as the boson gas, subject to
the same external potential. In this model, we assume that only a small fraction f of the initial N fermions available
for pairing participate in the superconductivity at temperature T = Tc and below, where the number of preformed
pairs is large enough to achieve coherence independently of the mechanism by which the pairs are formed. This latter
assumption is based on the analysis of Uemura’s plot (Fig. 2 of Ref [36]) that shows that critical temperatures for
cuprates are in the empirical range [37] of Tc ≈ (0.01 − 0.06)TF . However, we are aware that the number of pairs
could increase as the temperature is lowered below Tc, but not so much as to drastically modify the final results. At
this stage we assume that the number of pairs remains constant.
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This paper is organized as follows. In Sec. II we lay out the model from which we derive all the thermodynamic
properties for the mixture of composite-boson gas coexisting but non-interacting with the unpaired fermion gas
immersed in the layered system. This model depends on two physical parameters: the impenetrability P0 of the planes,
which is responsible for the mass anisotropy M/m observed in the cuprates, and the fraction f of superconducting
carriers able to condense.

The expressions for the isobaric electronic specific heat, i.e., the superconducting Cpes from the Cooper pairs and
the normal Cpen from the unpaired fermions are derived in Sec. III. The model parameters are unambiguously
determined by the phenomenological properties of YBa2Cu3O6.80, namely the experimental Tc and the magnitude of
jump ∆Cp/Tc, from which the observed T 2 behavior at low temperatures of Cpes and the linear dependence on T
of Cpen are directly obtained. Furthermore, we combine Cpes + Cpen to show that the total electronic specific heat
coincides with the experimental results [29]. Our electronic specific heat constants, γn(Tc) and α are found to be of
the same order of magnitude as the experimental values [38, 39].

In Sec. IV we calculate the specific heat for the lattice Cl using the phonon spectrum obtained by ARPES
experiments, and compare it to the one obtained using the PDOS from inelastic neutron scattering (INS) experiments
[40, 41]. At the end, we add these three specific heat contributions, Cpes + Cpen + Cl ≡ CTp , and compare the result

with raw data from the experiments. From CTp the cubic coefficient ß for low temperatures is extracted giving an
excellent agreement with experiments [21, 27, 39].

As a bonus, this model allows us to directly relate the plane impenetrability to the mass anisotropy observed in
the HTSC cuprates. This is derived in Sec. V, giving a prediction for M/m consistent with the values reported by
experiments [42–44]. Finally, in Sec. VI we present our conclusions.

II. LAYERED STRUCTURE OF UNDERDOPED YBa2Cu3Ox CUPRATES

We consider N electrons (or holes) of mass me confined in a periodic layered array along the z-direction, which
mimics the crystallographic structure of the cuprates, and free to move in the other two directions. The electrons
interact via a BCS-type potential, such that when their energies lie within a shell of width 2h̄ωD around the Fermi
energy EF of the system, where h̄ωD is the Debye energy, the electrons are able to form pairs in momentum space,
but only a fraction f of them will become pairs, leaving a set of pairable but unpaired electrons. In addition, there are
non-pairable electrons outside this shell. Based on this model, we will group the N electrons in two major components:
Cooper-pairs (boson gas) formed by a fraction f of half the total N electrons inside the pairing shell, and a group of
(1− f) electrons (fermion gas) consisting of the pairable plus the unpairable electrons [11].

A. Composite-bosons: Cooper pairs

We assume the boson-fermion model where the bosons are Cooper-like pairs that appear as resonances in two
electrons or two holes as proposed by Friedberg and Lee [30, 31]. In our model, there are NB = fN/2 composite-
bosons of mass m = 2me. The Hamiltonian is

H =
∑
k,s

εka
†
k,sak,s +

∑
K

εKb
†
KbK +H1, (1)

where a†k,s and b†K are fermion and composite-boson creation operators, respectively, s is the spin and

H1 =
G√
L3

[aK/2+k,saK/2−k,sb
†
Kv(k) + h.c.] (2)

is the interaction Hamiltonian that creates/destroys composite bosons from/into two fermions. Here, K = (Kx,Ky,Kz) ≡
k1 + k2 is the CMM of the pair, k ≡ (k1 − k2)/2 is the relative momentum, k1 and k2 the wave vectors of each
electron of the pair, and L3 is the volume. The form factor v(k) is normalized such that v(0) = 1, which defines the
coupling constant G. In our model, we assume the zeroth-order approximation [30, 31] so that we keep a mixture of
two independent particle systems in a layered structure. The solutions of the Schrödinger equation associated to the
Hamiltonian (1), without the H1 term, may be separated in the x− y and z−directions, so that the energy for each
boson particle is εK = εKx,y

+ εKz
, where εKx,y

≡ 2EF −∆K is the energy of the pair in the a − b crystallographic
plane, with ∆K the temperature independent binding energy.
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For K 6= 0, the energy from the Cooper equation may be expanded in a series of powers [32] where the linear term
predominates

εKx,y = e0 + C1(K2
x +K2

y)1/2, (3)

with e0 ≡ 2EF − ∆0 a constant depending on the BCS energy gap ∆0 = 2h̄ωD exp(−1/λ) at K = 0 and T = 0,
C1 = (2/π)h̄vF2D is the linear term coefficient in 2D, vF2D is the Fermi velocity also in 2D, λ ≡ g(EF )V is the
dimensionless coupling constant in terms of the electronic density of states at the Fermi sea g(EF ) and V , the
non-local interaction between fermions.

Along the z-direction we use the Kronig-Penney potential in the Dirac delta limit, following the scheme we pre-
viously developed for a boson gas inside a layered structure [33, 34]. The energies are implicitly obtained from the
transcendental equation

P0(a/λ0) sin(αKz
a)/αKz

a+ cos(αKz
a) = cos(Kza), (4)

with α2
Kz
≡ 2mεKz/h̄

2 and P0 = mΛλ0/h̄
2 is a dimensionless parameter which is a measure of the plane impenetra-

bility. The constant λ0 ≡ h/
√

2πmkBT0 is the de Broglie thermal wavelength of an ideal boson gas in an infinite box

at the BEC critical temperature T0 = 2πh̄2n
2/3
B /mkBζ(3/2)2/3 ' 3.31h̄2n

2/3
B /mkB , with nB ≡ NB/(L

3) the boson
particle number density and Λ is the strength of the delta potentials

∑∞
nz=−∞ Λδ(z − nza).

The thermodynamic properties of a boson gas can be derived from the grand potential [45]

Ω(T, L3, µ) = U − TS − µNB = Ω0 + kBT
∑
K6=0

ln
{

1−

exp[−β(e0 + C1(K2
x +K2

y)1/2 + εKz
− µ)]

}
, (5)

where U is the internal energy, S the entropy, µ the boson chemical potential, β ≡ 1/kBT , and the first term in the
rhs corresponds to the K = 0 ground state contribution Ω0 = kBT ln{1− exp[−β(ε0 + e0−µ)]}, with ε0 ≡ h̄2α0

2/2m
the solution of Ec. (4) for the ground state energy.

Expanding the logarithmic function, substituting sums by integrals in the thermodynamic limit, and evaluating the
x, y integrals one obtains

Ω
(
T, L3, µ

)
= kBT ln

{
1− exp[−β(ε0 + e0 − µ)

}
−

L3

(2π)
2

Γ(2)

C2
1

1

β3

∫ ∞
−∞

dKz g3(zb), (6)

where we have used the Bose functions [45] gσ(t) ≡
∑∞
l=1(t)l/lσ and defined zb ≡ exp[−β(εKz

+ e0 − µ)].

B. Normal state electrons

The unpaired electrons have the grand potential for an ideal Fermi gas immersed in a layered structure [35]

Ω(T, L3, µF ) = −kBT
∑
k=0

ln
{

1 + exp[−β(εk − µF )]
}
, (7)

where µF is the chemical potential of the electron gas and εk = h̄2k2x/2me + h̄2k2y/2me + εkz is the energy of each
electron free in the x− y directions and constrained by the permeable planes in z-direction. As we did in the case of
the boson gas, the energy εkz comes from the KP Eq. (4), where we replace Kz by kz and P0F = P0/2. Converting
sums to integrals and evaluating the x, y integrals we have

Ω
(
T, L3, µF

)
= −2

L3

(2π)
2

me

h̄2
1

β2

∫ ∞
−∞

dkzf2(ze), (8)

where we use of the Fermi-Dirac functions [45] fσ(t) ≡
∑∞
l=1(−1)l−1tl/lσ and ze ≡ exp[−β(εkz − µF )]. From Eq. (8)

each thermodynamic property for the fermion gas may be derived.
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FIG. 1. (Color online) Critical temperature as a function of P0 for different values of the fraction f of pairable fermions. Dashed
line is the experimental Tc = 88 K for YBa2Cu3O6.80 from Ref. [16].

C. Critical temperature

The critical temperature of the cuprate is extracted from the bosonic particle number derived from the grand
potential, Eq. (6), namely

NB =
1

exp
{
β(ε0 + e0 − µ)

}
− 1

+

L3

(2π)
2

1

C2
1β

2

∫ ∞
−∞

dKzg2(zb), (9)

where the first term on the rhs is the order parameter, i.e., the number NB0 of particles in the condensed state and
the second term is the number of particles in the excited states.

Setting T = Tc in Eq. (9) and taking the chemical potential µ0 = ε0 + e0 which corresponds to the ground state,
so NB0(Tc)/NB ' 0, we have

NB =
L3

(2π)
2

1

C2
1β

2

∫ ∞
−∞

dKzg2
{

exp[−β(εKz − ε0)]
}
, (10)

which must be solved numerically using the fact that in the YBa2Cu3Ox systems there are two copper-oxide regions
per unit cell where superconductivity takes place, so the parameter a is fixed to half the crystallographic constant c.

Here we point out the following fact: from the relation of the Fermi energy in terms of the superconducting carrier

density [45], EF = h̄2(3π2)2/3n
2/3
s /2m, for YBa2Cu3O6.80 with TF = 2025 K obtained by extrapolation of the TF

curve of Fig. 4 of Ref. [18], we obtain the carrier density as ns = 9.37×1026/m3. On the other hand, the BEC critical
temperature for an ideal Bose gas created from a fermion gas where all fermions are paired [46], is T0 = 0.218TF
with TF the Fermi temperature of the original Fermi gas, so T0 gives 441.5 K for this particular superconductor.
Introducing this value in the definition of T0 given in Sec. II A, one has nB = 1.658× 1026/m3 for the boson density
number, which is almost an order of magnitude smaller than the ns calculated above. However, as we mentioned
before, by analyzing the Uemura data in Fig. 2 of Ref. [36] and localizing the diagonal lines labeled as T = TF
and T = T0 (labeled as TB), one would expect that the actual number of superconducting carriers for the cuprates
(which we will call nb) would be about two orders of magnitude smaller than the ns calculated above. Therefore, we
assume that only a fraction f of the maximum possible value nB is participating in the boson gas responsible for the
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superconductivity, hence nb = fnB , and we expect this fraction to be f < 0.01, as shown in Fig. 1, consistent with
the analysis of Refs. [21] and [37].

Therefore, the BEC critical temperature for a fraction f of NB bosons is

T0f =
2πh̄2n

2/3
B

mkBζ(3/2)2/3
= T0f

2/3, (11)

the quotient of the fraction of an ideal gas BEC temperature in terms of its TF is

T0f
TF

=
2πf2/3

(6π2)2/3ζ(3/2)2/3
= 0.218f2/3, (12)

and the thermal wavelenght is λ0f = h/
√

2πmkBT0f = λ0/f
1/3. For f = 1 we recover the case where all pairable

fermions participate in the boson gas.
Additional experimental parameters of YBa2Cu3O6.80 that we use in our calculations are: the critical temperature

[16] Tcexp = 88 K; the superconducting parameter [17] ∆0 = 50 meV; the crystallographic [16] c = 11.71 Å, giving

a = c/2 = 5.855 Å and a/λ0 = 0.233. Finally, we take the height of the jump ∆C/Tc ' 20 mJ/mol K2 from the
data published in Ref. [39]. In addition, we use the relation for the Fermi energy EF3D = [(3π2)2/3/2π]EF2D for a
3D system in terms of the Fermi energy for a 2D system EF2D = 1

2mev
2
F2D.

In Fig. 1 we show the critical temperature as a function of the parameter P0 for several values of f . The dashed
line represents the experimental critical temperature for YBa2Cu3O6.80. As can be seen from this figure, there is only
a narrow interval of values of f ∈ [0.005, 0.05], that fits the experimental condition [39] Tc = 88 K, which in turn
determines a set of values of P0. This is consistent with our previous assumption that only a small percentage of
the initially pairable fermions actually form pairs. In order to narrow down the range of both values, we obtain the
magnitude of the jump in the electronic specific heat from experiments as shown in the next section.

III. ELECTRONIC SPECIFIC HEAT

The cuprate total electronic specific heat at constant pressure Cpe is the specific heat of the gas of Cooper-pairs
plus the specific heat of the gas of electrons, Cpe = Cpes + Cpen, each of which is calculated in this section.

A. Superconducting electronic specific heat

The superconducting electronic specific heat at constant volume CV es for the Cooper pairs gas is CV es =
[
T ∂S
∂T

]
N,L3 .

Hence, taking the fraction f , we have

CV es
NBkB

=
L3

fNB (2π)
2
C2

1

[
2

β

∫ ∞
−∞

adKzg2(zb)
[
2εKz

− ε0 + e0 − µ+ T
dµ

dT

]
−∫ ∞

−∞
adKz(εKz

− ε0) ln{1− zb}
[
εKz

+ e0 − µ+ T
dµ

dT

]
+

6

β2

∫ ∞
−∞

adKzg3(zb)

]
, (13)

where µ and its derivative are implicitly obtained from the number equation for T ≥ Tc

NB =
L3

(2π)
2

Γ(2)

C2
1

1

β2

∫ ∞
−∞

dKzg2(zb). (14)

The corresponding specific heat at constant pressure is derived from the relation Cpes = CV es + TL3κT
[
∂P
∂T

]2
N,L3 ,

with κT the isothermal compressibility. After some algebra, we find

Cpes
NBkB

=
CV es
NBkB

−

(∫∞
−∞ dKz ln

{
1− zb

}∫∞
−∞ dKzg2(zb)

)[
L3

f (2π)
2

1

C2
1β

2

(
3

∫ ∞
−∞

dKzg3(zb) + β

∫ ∞
−∞

dKzg2(zb)
)]2

. (15)

In Fig. 2 we show the magnitude of the height of the difference between the constant pressure specific heat above
and below Tc divided by Tc, ∆Cpes/Tc, as a function of P0 together with the fraction of Cooper-pairs f . The horizontal
dashed line represents the experimental result [39] |∆Cpes/Tc|exp = 20 mJ/mole K2, and the points where the curves
cross this line are the values of P0 = 501 and f = 0.0148 that fulfill the conditions for YBa2Cu3O6.80. With these
two parameters we are able to calculate all the thermodynamic properties for T ≤ Tc.
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FIG. 2. (Color online) Jump height of the specific heat and f as a function of P0. Dashed line is the experimental ∆Cp/Tc =
20 mJ/mole K2 from Ref. [39].

B. Normal electronic specific heat

The specific heat at constant volume of the unpaired electrons is obtained from Eq. (8)

CV en
NkB

=
1

(1− f)

L3

N (2π)
2

me

h̄2

[
1

β

∫ ∞
−∞

dkzf2(ze)

+2

∫ ∞
−∞

dkz ln{1 + ze}
[
2εkz − µF + T

dµF
dT

]
+ 2

∫ ∞
−∞

dkz
εkz{εkz − µF + T dµF

dT }
exp[β(εkz − µF )] + 1

]
. (16)

Again, the chemical potential µF and its derivative are extracted from the corresponding number equation

N =
1

(1− f)

2L3

(2π)
2

me

h̄2
1

β

∫ ∞
−∞

dkz ln{1 + ze}. (17)

Using the relation for the specific heat at constant pressure, we finally obtain

Cpen
NkB

=
CV en
NkB

+
2L3

(1− f)N (2π)
2

me

h̄2
β

( ∫∞
−∞

dkz
exp[β(εkz−µF )]+1

(
∫∞
−∞ dkz ln{1 + ze})2

)

×
[ ∫ ∞
−∞

dkz ln{1 + ze}
[
εkz − µF + T

dµF
dT

]
+

2

β

∫ ∞
−∞

dkzf2(ze)

]2
. (18)

C. Total electronic specific heat

In Fig.3 we show the total Cpe (continuous line), together with the Cooper-pairs (dash-dot line) and fermions
(dashed line) specific heats. We include two experimental curves for YBa2Cu3O6.70 (triangles) and YBa2Cu3O6.90

(diamonds) from Fig. 5 of Ref. [29], where the authors present exclusively the electronic part after successfully
extracting the phonon contribution.

We obtain the parameter γn(Tc) ≡ Cpen(Tc)/Tc = 45 mJ/mol K2 from the linear behavior of the normal electronic
specific heat calculated data and the quadratic term coefficient from the superconducting electronic specific heat
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FIG. 3. (Color online) The Cooper pair and the fermionic contributions to constant pressure electronic specific heat for
YBa2Cu3O6.80, using P0 = 501 and f = 0.0148, compared to the experimental data of Meingast, et. al. for two different
doping values [29].

α = 0.038 mJ/mol K3, which comes from the Cooper pairs. Experimental data for γn(Tc) yields, for example, 32
mJ/mol K2 for x = 0.95 from Ref. [38], while for α we find 0.064 mJ/mol K3 for x = 0.80 from Ref. [39], both in the
same order of magnitude as our results.

There is a non-zero value for γ0, at T = 0, as stated in Refs. [20, 47, and 48] for oxygen content x > 0.6, which is
different from the extrapolation of γn(Tc) when T → 0, suggesting that the pairing mechanism continues to take place.
However, in our model we are unable to determine γ0 because we do not include the rate at which pairs continue
to form for temperatures below Tc towards T = 0. Furthermore, above Tc paired fermions may decouple through
complex mechanisms that we have not considered in this analysis.

Other thermodynamic properties, such as the entropy as well as the Helmholtz free energy of the boson-fermion
mixture inside a layered system will be published elsewhere.

IV. TOTAL SPECIFIC HEAT

The total specific heat of YBa2Cu3O6.80 is the electronic plus the lattice specific heat, i.e., CTp = Cl +Cpes +Cpen.
In this section we obtain the lattice specific heat Cl and add it to the electronic contribution, showing that our
resulting curves for CTp and CTp /T lie very close to the raw data reported by some experiments.

A. Lattice specific heat

The total internal energy of a crystal is given by [49]

U =

∫
h̄ωG(ω)dω

(exp[h̄ω/kBT ]− 1)
, (19)

where ω is the vibrational mode frequency, G(ω) is the PDOS and h̄ω is the energy of each mode. The constant
volume specific heat for the lattice is then given by

CV l = kB

∫
(h̄ω/kBT )

2
exp[h̄ω/kBT ]G(ω)dω

(exp[h̄ω/kBT ]− 1)
2 . (20)
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FIG. 4. (Color online) Lattice specific heat for different doping values obtained using Eq. 20 together with the experimental
total specific heat from Refs. [29] and [52].

We use a phenomenological procedure to calculate the lattice specific heat of the layered cuprate. Specifically, we
take the experimental results for the PDOS and introduce it in the theoretical expressions given above. We analyze
the results of three different experiments: two from INS[40, 41], while the third one is based on a more recent ARPES
technique [29].

Although our lattice specific heat has been calculated at constant volume, a simple calculation of the difference
between Cpl − CV l = TBVmolτ

2 shows that it is smaller than 1 Joule/mol K at T = Tc, where τ is the volumetric
thermal expansion coefficient taken from Ref. [50], B is the bulk modulus from Ref. [51] and Vmol is the molar volume.
Note that this approach already takes into account the anharmonic terms in the lattice component, at least up to the
temperature interval considered. Therefore we will refer to the lattice specific heat using only the l subindex.

We obtain the results drawn in Fig. 4 by using the PDOS from the INS data for YBa2Cu3Ox with x = 7 (short
dash line) and x = 6.53 (dash-dot-dot line) from the curves of Ref. [40], and for x = 7 from [41] (dash-dot line), and
introduce each one in Eq. (20) to perform the integrals numerically. The difference between the first two curves and
the third one is small in the 20 K < T < 80 K interval and for T > 80 K it widens progressively. In the same Fig.
4, we plot our calculation of the lattice specific heat (solid line) using the results from ARPES[29] for x = 7 together
with the curves adapted for the total “raw data” experimental specific heat for x = 6.67 from Ref. [52] (diamonds)
and for x = 6.70 from Ref. [29] (triangles). We find that our calculated Cl (solid line) using the ARPES density
of state is close to the experimental total specific heat CTp , however, there is a significant difference using INS data
(around the 30 %).

Three remarks are in order: first, the difference between the lattice specific heat using ARPES and INS around
the transition point Tc is at least 30% (it diminishes as T lowers), which shows that the use of the latter is somehow
obsolete and should be discarded, as stated in Ref. [10]. Second, the difference in the lattice specific heat between two
near doping values is in general small, and allows us to safely use the x = 7 PDOS from ARPES for other dopings,
such as x = 6.80. Finally, in the curves of the experimental CTp shown in Fig. 4, the jump height is barely noticed,
which is another signal that the lattice component is dominant. For completeness, we calculated the lattice specific
heat for the YBa2Cu3O6 non-superconducting compound using the PDOS from INS (not shown in the graphic) which
lies very close to the other doping curves obtained also from INS. Above Tc the lattice specific heat we obtain is still
very close to the experimental CTp at least for up to T = 200 K (not shown).

In summary, the fact that the lattice specific heat Cl and the total experimental specific heat CTp are very close
leads to the conclusion that the contribution from the electronic components is very small, as will be shown in the
next subsection.
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B. Total specific heat of YBa2Cu3O6.80

FIG. 5. (Color online) Total calculated constant pressure specific heat with the results from Refs. [29] and [52]. The contribution
of the electronic component shown separately.

The total specific heat CTp is the sum of all three components: the electronic specific heat we calculated for both
composite-bosons and unpaired electrons with the parameters P0 = 501 and f = 0.0148, in addition to the lattice
specific heat from ARPES. In Figs. 5 and 6 we plot the total specific heat together with the electronic part (normal
plus superconducting) to emphasize the size of its contribution.
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FIG. 6. (Color on line) Total calculated constant pressure specific heat over temperature with the results from Refs. [29] and
[52]. The contribution of the electronic component shown separately.

In these figures we observe that the total experimental specific heat curves for both, CTp and CTp /T , are satisfactorily
reproduced by adding the three analyzed components. The minor difference between the experimental shape of the
curve and ours for CTp /T at and below Tc observed in Fig. 6 may be due to the interactions among the particles and
from the dynamical formation of Cooper-pairs for T < Tc.

Accordingly, we claim that the contribution of the electronic specific heat to the total is less than the 5%, as
suggested in Refs. [29] and [28].

Finally, by plotting our total specific heat CTp /T vs T 2 (not shown), we reproduce the ßT 3 term observed in
experiments [21, 22] for T < 5 K. This behavior is expected if the Debye model is used, but it is not trivial for any
other lattice model. We find ß = 0.362 mJ/mol K4 compared to 0.333 for x = 6.80 reported in Ref. [39], 0.305 for
x = 7 in Ref. [21] and 0.392 for x = 6.50 in Ref. [27].

V. MASS ANISOTROPY

Using the equations derived in Sec. II A we can make a direct connection between one of the observed features of
cuprate superconductors and our model: the mass anisotropy.

From Eq. (4) we note that when P0 → 0, the energy goes to the free-particle energy εKz
→ h̄2K2

z/2m in the z
direction [34]. Also, when the particle energies are small, εKz

<< h̄2/2ma2, one can expand the first term of Eq. (4)
around ε0, so

εKz
∼= ε0 +

h̄2

Ma2
(1− cosKza), (21)

where ε0 satisfies P0(a/λ0) sin(α0a)/α0a+ cos(α0a) = 1, and M is the effective mass. This last equation is the most
commonly used for quasi-bidimensional models of superconductors [53], but it is a model that is constrained only to
the first energy band and for zero ground state energy, i.e., ε0 = 0 when Kz = 0, which is not the general case for
layered systems [34].

Writing explicitly the effective mass M in Eq. (21) we have

M/m = |[sin(α0a)− (P0(a/λ0) + 1) cos(α0a)/(α0a)]/(α0a)|. (22)

Introducing the values for P0, f, a/λ0 and ε0 previously obtained we get M/m = 12.3. Experimental reports give
5.3 for x = 7 from Refs. [43 and 44], 7.0 for x = 6.92 from [43] and 10.8 for x = 6.80 from [42], showing an increasing
value dependence as doping lowers, which sets our result within the expected range.

VI. CONCLUSIONS

While most procedures take the experimental curves of the total specific heat and subtract components, we qualita-
tively and quantitatively construct the total constant pressure specific heat for the YBa2Cu3Ox underdoped cuprates
from a simple, first principles model: the Boson-Fermion theory of superconductivity applied to layered systems. The
model assumes the Cooper pairs as a composite-boson gas coexisting with an unpaired electrons (or holes) fermion
gas. Both gases are constrained in a stacked slabs structure modeled by a Dirac comb potential in the perpendicular
direction to the CuO2 planes. Although no residual interactions among Cooper pairs and unpaired fermions are
considered, the model reproduces qualitatively and quantitatively the experimental curves of the electronic part and
the total specific heat.

For a specific underdoped cuprate we take the CuO2 plane separation as our a constant. In addition, we use the
experimental critical temperature and the electronic specific heat jump to set our phenomenological parameters: the
planes impenetrability P0 and the fraction f of fermions that turn into Cooper pairs.

The total specific heat is calculated by adding the specific heats coming from the composite-bosons (superconducting
electronic specific heat), unpaired fermions (normal electronic specific heat) and the lattice calculated from the
ARPES PDOS. The resulting curves for YBa2Cu3O6.80 are compared to the experimental results, giving a remarkable
agreement within a 5% error range for temperatures below Tc. Based on this agreement with the experiment, one can
infer that the layered structure plays a predominant role over the interactions among the particles involved.

We derive the linear dependence on temperature γnT and the quadratic one αT 2 for the electronic specific heat,
obtaining γn(Tc) = 45 mJ/mol K2 and α = 0.038 mJ/mol K3 for T < Tc, in agreement with the experimental
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data reported for similar cuprates, which is an additional check of consistency for our model. We show that the
correspondence relating the normal electronic specific heat with the unpaired fermions, and the superconducting term
with the Cooper pairs, is a valid assumption. These results make plausible the assumptions that not all pairable
fermions in the Fermi sea are paired, even at temperatures near zero, and that the jump in the specific heat is a
direct consequence of the condensation of the Cooper pairs with a linear dispersion relation instead of a quadratic
one. We also confirm that the lattice specific heat from the phonon density of states by ARPES measurements is
better than that obtained from INS experiments. It can also be seen that the calculated total specific heat shows
the same temperature cubic behavior for T < 5 K as shown experimentally, with a coefficient ß = 0.362 mJ/mol K4.
Additionally, we find that the electronic specific heat (normal plus superconducting ) has a contribution < 5% of the
total at the transition temperature. Finally, another direct outcome is the reproduction of the high mass anisotropy
of the cuprates as a direct consequence of the interlayer tunneling, giving M/m = 12.3 for the compound analyzed.

The present method may be applied to other HTSC cuprates and to some iron-based superconductors, which will
be done in a future publication.
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