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By studying a system of Brownian particles, that interact among themselves only through a local
velocity-alignment force that does not affect their speed, we show that self-propulsion is not a neces-
sary feature for the flocking transition to take place as long as underdamped particle dynamics can
be guaranteed. Moreover, the system transits from stationary phases close to thermal equilibrium,
with no net flux of particles, to far-from-equilibrium ones exhibiting collective motion, phase co-
existence, long-range order and giant number fluctuations, features typically associated to ordered
phases of models where self-propelled particles with overdamped dynamics are considered.

PACS numbers: 87.10.-e, 05.70.Fh, 05.40.-a, 05.70.Ln

Collective motion is an ubiquitous phenomenon in bio-
logical groups such as flocks of birds, schools of fishes,
swarms of insects, etc. The study of these far-from-
equilibrium systems has attracted great interest over the
last few decades, as the spontaneous emergence of such
ordered phases and coordinated behavior, arising from
local interactions, cannot be accounted for by the stan-
dard theorems of equilibrium statistical mechanics [1].

Introduced twenty years ago, the seminal model by
Vicsek et al. (VM) [2] provided a simple approach to
study the transition to collective motion, in a non-
equilibrium situation, considering two basic ingredi-
ents: self-propelled particles (SPP) and a local velocity-
alignment interaction among them. Discrete in nature,
particles instantaneously orient their motion along the
average direction of motion of their neighbors within a
radius R, while stochastic perturbations are considered
by adding a random angle (“noise”) to this direction. In
two dimensions, a complete phase diagram for the VM
has recently been presented and explained in terms of a
liquid-gas transition [3], ultimately proving the discon-
tinuous character of the transition to collective motion
in this model [4]. In [3], three distinct phases have been
identified: a disordered gas at high noise and low den-
sity, an intermediate (coexistence) region where a smec-
tic arrangement of ordered bands travel in a disordered
background, and a homogeneous polar liquid at low noise
and high density (also known as the “Toner-Tu” phase)
[5]. The latter is characterized by collective motion with
long-range order and giant number fluctuations [3, 4], the
hallmark of a non-equilibrium dynamics. This is the rea-
son why the VM can be considered as a paradigm of non-
equilibrium phase transitions, as such ordered phases are
forbidden in equilibrium (for Heisenberg-like models) by
the Mermin-Wagner-Hohenberg theorem (MWHT) [6].

The VM has inspired many different models over the
years [7–9], where self-propulsion has been kept as an

essential ingredient for the transition to collective mo-
tion to take place, in combination with interactions of
the “social” type among the particles such as velocity-
alignment. This has led to the development of sophisti-
cated nonlinear friction terms [10, 11], a bias that may
be justified by arguing that the concept of self-propelled
(or active Brownian) particles captures the natural abil-
ity (seen in biological and in man-made systems) for the
agents to develop motion by themselves [12, 13] and, ad-
ditionally, that it is an important ingredient for pattern
formation in models of collective motion [14].

In this Letter, we study the emergence of collective mo-
tion in a two-dimensional system of N passive Brownian
particles that interact among themselves only through a
local velocity-aligning force, that affects only the parti-
cles’ direction of motion, avoiding any propelling effect
from it. We show that the symmetry breaking of the dis-
ordered phase corresponds to the breakdown of a close-
to-equilibrium state for a particular value of the ratio be-
tween two characteristic time-scales in the system: one
related to the mean collision time of Brownian particles
immersed in a thermal bath, and the other to the rate of
alignment among particles. Our results show that self-
propulsion is not a necessary feature for the development
of collective motion with true long-range order, whenever
underdamped particles, for which inertial motion cannot
be neglected, are considered. Through a standard nu-
merical analysis, the far-from-equilibrium nature of these
states is established, as they exhibit the typical features
associated with this kind of phases.

Our model is described in terms of generic stochastic
differential equations for Brownian particles restricted to
move within a box of linear size L with periodic boundary
conditions, i.e.,

m
dvi
dt

= F i − γvi + ξi, (1)

where vi = dxi/dt and m is the mass of the particles.
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The last two terms on the right hand side correspond
to the linear-dissipative and fluctuating forces that ap-
pear in the Langevin description of Brownian motion,
respectively. The components of the vector ξi are un-
correlated Gaussian white noises with zero mean and,
assuming the fluctuation-dissipation relation (FDR) to
be valid, with autocorrelation function 〈ξi,µ(t)ξj,ν(t′)〉 =
2γkBTδi,jδµ,νδ(t − t′), where ξi,η is the η-th Cartesian
component of ξi, kB is the Boltzmann constant, T the
temperature of the bath, whereas δu,w and δ(τ) are the
Kronecker’s and Dirac’s delta functions, respectively.

The alignment action is implemented through the force
F i = Γ [f i − v̂i (f i · v̂i)], that corresponds to the two-
dimensional form of Γ [v̂i × (f i × v̂i)], with v̂i being the
unitary vector in the direction of vi and vi = |vi|, while

f i = [NR(i)]
−1 ∑

j|xj∈ΩR(xi)
v̂j corresponds to the arith-

metic average of the direction of motion of the NR(i)
particles that surround the i-th particle within a neigh-
borhood ΩR(xi) of radius R. The coupling factor Γ is a
measure of how fast the velocity vector of a single par-
ticle aligns along the direction of f i. It is easy to check
its non-propelling character since F i · v̂i = 0. This align-
ment interaction corresponds to a simple finite-rate gen-
eralization of the one introduced in [2], although finite-
rate alignment interactions have been considered before
in some other forms [11, 13, 15].

It is instructive to rewrite (1) in polar coordinates, i.e.,

m
dvi
dt

=− γvi +
kBTγ

m

1

vi
+ ξvi , (2a)

mvi
dϕi
dt

=
Γ

NR(i)

∑
j|xj∈ΩR(xi)

sin[ϕj − ϕi] + ξϕi
, (2b)

where dxi/dt = viv̂i, vi = vie
iϕi , and ξvi and ξθi are

independent Gaussian white noises, both with autocor-
relation function 2kBTγδ(t − s) and computed from ξi
through the transformation ξvi = ξi,x cosϕi + ξi,y sinϕi
and ξϕi

= ξi,x sinϕi + ξi,y cosϕi [16]. The second term
in (2a) proportional to kBT , that comes from the Ito’s
calculus when switching to polar coordinates [16], makes
explicit that it is a “thermal propulsion” and not self-
propulsion that is acted upon the particle speed.

In its polar form (2), our model is suitable to be genera-
lized, as self-propulsion terms and active fluctuations [17]
can easily be considered. Moreover, in the overdamped-
alignment limit, i.e., when Γ → ∞, (2b) turns into the
instantaneous alignment rule of the VM and a perfectly
ordered phase is expected as it occurs in that model in
the absence of the non-thermal angular noise. Also, self-
propulsion can be incorporated into (2a) by replacing
the constant friction coefficient γ with a nonlinear speed-
dependent γ(vi), so that the new term −γ(vi)vi would
be able to keep particle speeds around a fixed value vsp

[13, 18]. In the overdamped-speed limit, i.e., when the
latter is characterized by dynamics faster than others in
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ṽ‖ -3 -2

-1 0 1 2 3

ṽ⊥
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10-6
10-5
10-4
10-3
10-2
0.1

1
10

ρ = 1
ρ = 2
ρ = 4
ρ = 8

-3 -2 -1 0 1 2 310-6
 10-5
10-4
10-3
10-2
0.1

1

-3 -2 -1 0 1 2 3

P(v~||)

v~||

P(v~⊥)

v~⊥

P(v~||)

P(v~⊥)

v~||

v~⊥

(c) (d)

FIG. 1: (Color online) Stationary probability distribution
P (ṽ‖, ṽ⊥) of the individual velocity of the particles, ṽi(=
vi/v0), projected along the direction of the mean velocity of
the group, ṽ‖, and in the transversal one, ṽ⊥, for a subcritical

Γ̃ = 1 in (a) and a supercritical Γ̃ = 8 in (b) for systems
with ρ = 1 and L = 96. The distributions in the vertical
planes correspond to the integral of P (ṽ‖, ṽ⊥) over ṽ‖ and
ṽ⊥, yielding P (ṽ⊥) and P (ṽ‖), respectively. In (c) and (d),
log-lin plots of P (ṽ‖) and P (ṽ⊥) for systems with L = 272
and ρ = 1, 2, 4, 8: in (c) for subcritical disordered states with

Γ̃ = 3, 2.9, 2.5, 2.28, respectively, and in (d) for ordered states
with 〈Λ〉 ≈ 0.46. The solid black curves correspond to the
equilibrium Maxwell-Boltzmann distribution.

the system, the speed of the particles can directly be set
to a constant vsp and (2a) disregarded.

We choose as time, speed and length scales the quan-
tities: τ0 = m/γ, v0 =

√
2kBT/m and r0 = v0τ0, respec-

tively. In this way, the number of independent parame-
ters in our model is reduced to three: the dimensionless
alignment-coupling constant Γ̃ = v−1

0 γ−1Γ, the dimen-
sionless interaction range R/r0, and the dimensionless
particle density ρ = N/L2 with L = L(R/r0). Without
loss of generality, we fix R/r0 = 1 further on. As well, our
numerical results were obtained by integrating equations
(1) using a modified velocity-Verlet algorithm [19] with
an integration time-step ∆t = 0.01. Uniform random
initial conditions where taken for the particle positions,
while initial velocities where drawn from the equilibrium
Maxwell-Boltzmann velocity distribution.

In the absence of interactions (Γ̃ = 0), the particle
dynamics is constrained by the FDR as in the stan-
dard description of Brownian motion, therefore, the
stationary-state distribution of the single-particle velo-
cities corresponds to that of equilibrium with the high-
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FIG. 2: (Color online) (a) Stationary order parameter 〈Λ〉
vs Γ̃ for systems with L = 96 and different density values.
The curve with plus symbols corresponds to the globally-
coupled (GC) case for a system with ρ = 1 and L = 320.
(b) Giant density fluctuations, σ(n) vs 〈n〉, for ordered phases
with bands (top: 0.2 < 〈Λ〉 < 0.5) and in the fluid phase
(bottom: 〈Λ〉 ≈ 0.8) of systems with L = 272. The dotted
lines have slopes 0.8, 0.9 and 1 from bottom to top. (c) In
the bottom row, log-log plots of 〈Λ〉 vs L for systems with

ρ = 1, 2, 4, 8 and Γ̃ = 18, 8, 5, 4 from left to right. The
log-log plots of the top row show the same data from which
Λ∞ = 0.669538, 0.698997, 0.689226, 0.706573 has been respec-
tively subtracted. The dashed lines correspond to power-law-
decay fits, with fitting error smaller than 2%.

est rotational symmetry. Interestingly, for smaller val-
ues than that of a threshold, Γ̃c, when the alignment
time-scale is larger than that related to the FDR, the
system remains in a close-to-equilibrium phase still char-
acterized by properties of thermal equilibrium with no
net transport, normal diffusion of individual particles
and Maxwellian probability densities of single-particle ve-
locities [Figs. 1(a) and 1(c)]. In particular, notice that
the stationary probability distributions P (ṽ‖) and P (ṽ⊥)
(broken curves with symbols) in Fig. 1(c), are indistin-
guishable form the equilibrium Maxwell-Boltzmann dis-
tribution for interactionless particles with a nominal tem-
perature T (solid black curves). In this case, thermal
fluctuations preclude the development of any correlations
among the particles’ velocities. Indeed, orientation cor-
relations that may emerge within the time between two
successive collisions, due to the alignment interaction, are
randomized by noise, thus preventing the spontaneous
breaking of a continuous symmetry as established by the
MWHT for equilibrium [20].

As Γ̃ increases above Γ̃c, alignment dynamics become
faster than those associated with the FDR, rectifying

FIG. 3: In the first and last rows, scatter plots of the local
oder parameter Λl versus the local density ρl computed in
boxes of size l = 14 for the systems of figure 1(b). The red
lines passing through the middle of the scattered black dots
are running averages in a local window in ρl. The horizontal
grey line corresponds to the stationary order parameter 〈Λ〉.
The third and fourth rows show snapshots of corresponding
density fields (the darker gray level represents higher particle
density), while their direction fields are shown in the second
and fifth rows, respectively. The underlying circular color key
shows the local direction of motion.

the thermal fluctuations into collectively directed mo-
tion, even though no self-propulsion is individually ex-
erted on the particles. This mechanism has no ana-
logue in models studied by equilibrium statistical me-
chanics, thus, it can be considered as the essential ingre-
dient that escapes from the scope of the MWHT. Conse-
quently, the system develops complex, self-induced, far-
from-equilibrium phases that exhibit net flux of parti-
cles and non-Maxwellian probability densities of single-
particle velocities [Fig. 1(b) and 1(d)].

We monitor the transition from the disordered gas
phase to out-of-equilibrium states through the accumu-

lated order parameter 〈Λ〉 = limT→∞ T −1
∫ T

0
Λ(t) dt,

that is calculated from the instantaneous Λ(t) =

|N−1
∑N
i=1 e

iϕi(t)| with ϕi(t) defined as before. The cri-

tical point Γ̃c that separates the disordered and ordered
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FIG. 4: (Color online) Left column, stationary order parame-

ter 〈Λ〉 vs Γ̃ for systems with increasing L (L = 24, 34, 48,
68, 96, 136, 192, 272). Middle column, plots of the Binder

cumulant G vs Γ̃ for the same systems on the left. As can be
appreciated, the curves 〈Λ〉 vs Γ̃ with largest L (red and black
curves) start to overlap the rest, while G starts to show a sin-
gularity around the critical point for some of the systems,
marked with short horizontal arrows. For these cases, the
stationary P (Λ) vs Λ, shown on the right column for systems

with L = 192 and for different values of Γ̃, shows a clear
bimodal shape (filled curves) around the critical point. All of
these facts evidence a discontinuous phase transition.

phases decreases with ρ, reaching the limit value Γ̃c ≈ 2
when ρ → ∞ and/or R → L, the latter corresponding
to the globally-coupled (GC) regime [Fig. 2(a)]. Surpris-
ingly, even though we only consider “thermal-propulsion”
and velocity alignment, without self-propulsion as ex-
plained before, our model exhibits true long-range order
as shown in Fig. 2(c), where the order parameter 〈Λ〉
slowly decays (algebraically) with L to a constant value
Λ∞ > 0 for all of the values of ρ considered.

Regarding the ordered phases of our model, we have
been able to identify at least two [Fig. 3] in analogy with
[3]: a coexistence region just above Γ̃c, where ordered
bands travel in a disordered background, and a homo-
geneous polar liquid at higher Γ̃ values, similar to the
“Toner-Tu” phase [5]. These ordered phases exhibit the
typical features of far-from-equilibrium ordered phases
present in models that consider SPP. To say, our model
shows giant number fluctuations, that is a signature of
fluctuating ordered active phases, characterized by σ(n),
corresponding to the square root of the variance of the
particles contained in square boxes of linear size l with
respect to the average value n = ρl2. For our model,

even though σ(n) scales like nα with α > 1
2 for both of

these phases, as illustrated in Fig. 2(b), they do not seem
to present the scaling exponents known by their counter-
parts in SPP models. For instance, in the coexistence re-
gion, where traveling ordered bands are observed, an ex-
ponent α = 1 is expected for clustered phases up to l < L
[21], while we record an exponent α ≈ 0.9 [top panel of
Fig. 2(b)]. This behavior may be attributed to finite-size-
effects [22], as it is up to L ≈ 200 that we start to clearly
observe these structures. Less trivial is the case for our
homogeneous fluid phase, where an exponent α = 4

5 is
expected for models that consider SPP [9]. In our case,
the scaling observed is clearly larger than that, up to
a threshold, beyond which density-fluctuations start to
scale with a slope below that value [bottom panel of Fig.
2(b)]. This threshold moves to higher values in 〈n〉 as ρ
increases. Therefore, our results may also hint that den-
sity fluctuations coming from an underdamped dynamics
(as the one considered here) are qualitatively different
from those found in SSP models with an overdamped dy-
namics. In fact, the ordered bands in the coexistence
phase of our model seem less sharp and dense than those
displayed, for instance, by the VM [3, 4]. Clearly, further
studies are required to elucidate this discrepancy.

Additionally, whenever interactions depend on the
distance, far-from-equilibrium ordered phases exhibit a
strong coupling between local density and local order
[4, 9]. This is illustrated in the top and bottom rows
of Fig. 3, for the coexistence and homogeneous phases
of our model, respectively, being more evident for di-
lute more-segregated systems. For these, particles tend
to concentrate in a few structures. This behavior de-
creases with ρ as the system becomes more homogeneous
in both phases. See, for example, that the snapshots
for the direction field (second and fifth rows) show less
white spots as ρ increases, meaning that, wherever there
is color, there are at least a few particles. In fact, as
ρ → ∞ or in the GC regime, this feature allows for the
analytical treatment of the model where the instability of
the disordered close-to-equilibrium state can be demon-
strated, and the relation of our model to the Kuramoto
model of synchronization is revealed [23].

Lastly, Fig. 4 shows results regarding the transition
to collective motion for our model. On the left column,
〈Λ〉 is plotted vs Γ̃ for systems with increasing size. No-
tice how the curves with largest L start to overlap the
rest. For ρ = 2, 4, their corresponding Binder cumulant
G = 1− 〈Λ4〉/(3〈Λ2〉2), in the middle column, starts to
show clear signs of discontinuity around the critical point,
while their stationary P (Λ) on the right becomes bimodal
through the transition point, confirming the phase segre-
gation. These facts evidence a discontinuous phase tran-
sition (see [3] and references therein). We must mention
that dilute systems show stronger fluctuations in Λ(t),
requiring longer integration times than systems with a
larger ρ (our runs for the largest dilute systems consid-
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ered about 108 integration steps).
In summary, our results show that local non-

Hamiltonian interactions that do not preserve momen-
tum (such as the alignment interaction typically used to
model flocking behavior), in combination with an un-
derdamped particle dynamics, are the only key ingredi-
ents for the Vicsek transition to take place. Thus, self-
propulsion is an unnecessary feature for systems to de-
velop long-range order, out of local interactions, as is ty-
pically assumed for active systems. Moreover, our model
shows all of the phenomenology of the VM class, in ad-
dition to the close-to-equilibrium character of the disor-
dered gas phase and the anomalous scaling of the density
fluctuations in the ordered ones. These features make
our model suitable for studying the passage from states
where entropy is maximized to stationary phases where
entropy is produced (this has already been done in the
GC regime of our model [24]). Finally, our model may
provide yet another tool, due to its lack of self-propulsion,
for the study of the development, stability and interac-
tion of the traveling ordered bands observed in the co-
existence phase, as well as for the study of giant density
fluctuations. We believe that all of these aspects might
be of interest beyond the field of active matter.
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