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We propose a comprehensive dynamical model for cooperative motion of self-propelled particles, e.g.,
flocking, by combining well-known elements such as velocity-alignment interactions, spatial interactions, and
angular noise into a unified Lagrangian treatment. Noise enters into our model in an especially realistic way:
it incorporates correlations, is highly nonlinear, and it leads to a unique collective behavior. Our results show
distinct stability regions and an apparent change in the nature of one class of noise-induced phase transitions,
with respect to the mean velocity of the group, as the range of the velocity-alignment interaction increases.
This phase-transition change comes accompanied with drastic modifications of the microscopic dynamics,
from nonintermittent to intermittent. Our results facilitate the understanding of the origin of the phase transi-
tions present in other treatments.
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I. INTRODUCTION

The study of the collective motion that emerges from
short-range interactions in systems of self-propelled particles
�SPPs� is of great interest nowadays due to potential appli-
cations in physics, engineering, and biology �1–3�. In nature,
the formation of bird flocks or animal herds implies the oc-
currence of a condensation in velocity space and a conden-
sation in position space: the constituents of the group move
with velocities similar to one another and additionally, tend
to form a spatially contiguous collection. Such behaviors
have been classified as velocity matching or alignment, flock
centering, and collision avoidance or separation �4�. The ad-
ditional element of noise is always present in realistic sys-
tems; nonetheless, the way it is introduced may have non-
trivial effects in the modeling of flocking phenomena �5,6�.
Models in the literature have concentrated in all or subsets of
these ingredients �7–17�. However, they have not studied the
effects of nonlinear correlated noise, which in the model pre-
sented in this article appears in a natural way.

The physics of dynamic phase transitions is ideally poised
to address cooperative phenomena; hence, the considerable
activity in this field in recent times �18�. One may argue that
flocking of real biological systems in nature occurs in con-
tinuous time, that alignment is highly important to the pro-
cess, and that complex nonlinear noise, even correlated, is an
essential ingredient of realistic systems. This argument is the
motivation for our study. Succinctly stated, in this article we
study the effects of alignment interactions, centering and cor-
related angular noise, in a Lagrangian �trajectory-based� de-
scription of flocking, meaning that dynamical equations of
motion are employed to compute the trajectories of the indi-
vidual particles. By doing so, we provide a rich description
of the different dynamics of the system, including the origin

of intermittent behavior displayed by the mean velocity of
the group.

This article is organized as follows. In Sec. II we intro-
duce the model of our study. We explain how noise enters
naturally nonlinear and correlated, as we describe how the
alignment interaction is implemented. In Sec. III we define
the quantities we use to characterize the system, and report
the results as we discuss the origin of the different dynamical
regimes observed. Finally, in Sec. IV we compare our results
in qualitative terms with some other models of interest and
report our conclusions.

II. MODEL

We study N interacting particles, each having position
vector xi and velocity vector vi=dxi /dt obeying

m
dvi

dt
+

K

N
�
j=1

N

�xi − x j�

= ��cos��i + �i�i + sin��i + �i�j −
vi

v0
� , �1�

where m and v0 are the mass and the preferred speed of each
particle, respectively, K is the coupling constant for the real-
space condensation interaction, and � is the amplitude of the
self-propulsion term with propulsive direction �i and noise
�i. This term derives from the assumption of constant �re-
sultant� propulsion force of Czirók et al. �11�, later general-
ized by Levine et al. �13� to incorporate in a straightforward
manner the alignment interaction by directing this force in
the motion’s mean direction �i of the neighbors of a given
particle i. We modify this term further in order to introduce
correlated angular noise. This is achieved by simply adding
the stochastic variable �i�t� to �i, as shown in Eq. �1�, much
in the spirit of �but not equivalent to� Ref. �7�.

In order to determine the mean direction �i of the neigh-
bors of a given particle i, the alignment interaction is imple-
mented by allowing particle i to interact only with its �
nearest neighbors at time t, thus, defining the set �i�t�
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= �vi1
�t� ,vi2

�t� , . . . ,vi�
�t�	 �vi��i� with the velocity vectors

of the neighbors. We identify � as the connectivity of the
particles, and consider it to be equal for all particles. In this
way, given that the individual velocities vi have a magnitude
vi and direction �i, the case �=0 corresponds to the absence
of alignment interactions, and �i=�i, otherwise

�i 
 arctan� vi sin �i + �
vj��i�t�

v j sin � j

vi cos �i + �
vj��i�t�

v j cos � j� . �2�

On the other hand, noise introduced through the stochastic
variable �i, as in Eq. �1�, is intrinsic to the decision mecha-
nism of each one of the self-propelled agents in that a given
agent receives a clear signal from its neighbors, however, it
may “decide” to move in a different direction �6�. For ex-
ample, this kind of noise may be thought as arising from the
limitations of a bird to follow a specific and precise flight-
path �due to fatigue, for example� or some other external
factors �wind currents, for instance�. In our model, noise ap-
pears naturally in a highly nonlinear form, requiring correla-
tions �that decay in time� to be considered for it to have a
nontrivial effect �19�, and differs fundamentally from previ-
ous studies �7–11,14,16,17,20�. In this work, the correlated
random sequences �i�t�, yet independent between different
agents, are obtained by correspondingly coupling the sto-
chastic equation,

�̇i� = − ��i� + �gi, �3�

to each one of the equations of motion of the group individu-
als. Here, gi�t� is a Gaussian white noise with mean value

gi�t��=0 and autocorrelation function 
gi�t�gj�t���
=2D	ij	�t− t��. Thus, the driven noise �i��t� is then exponen-
tially correlated noise �derived from the Orstein-Uhlenbeck
process� with properties 
�i��t��=0 and �
�i��t�� j��t��	
=D�	ij exp�−��t− t���. The curly brackets �¯	 denote aver-
aging over the distribution of initial �0� values, which are
equivalent for every particle, and taken from the distribution

P����0�� =
1

�2
D�
exp�−

�0�
2

2D�
� . �4�

Clearly, the correlation time for the colored noise is tc=�−1.
Notice that the noise sequence �i��t� has a Gaussian distribu-
tion �21�. However, in order to be able to compare our results
to some other models of interest, we would like for our cor-
related angular noise, �i�t�, to have an uniform distribution

P���� = � 1

2�
, if ��� � �

0, otherwise
� �5�

in the interval �−� ,��, where � �running from 0 to 
� de-
fines the maximum possible value for ��i�. By matching the
variance of the distribution P�� of Eq. �4� with that one of
the desired distribution P� of Eq. �5�, i.e., D�=�2 /3, with a
further transformation that preserves the area between them,
the correlated sequences of angular noise can be obtained
from

�i�t� = �3D�erf� �i��t�
�2D�

� , �6�

where erf�x� stands for the Gauss error function. For a given
�dimensionless� noise intensity � and correlation time tc, the
properties of our angular noise are


�i�t�� = 0, �7a�


�i�t�� j�t��� =
�2	ij

3
exp�−

�t − t��
tc

� , �7b�

which correspond to its mean value and autocorrelation func-
tion, respectively.

Throughout the rest of this paper, we will measure speed
in units of v0, time in units of t0=mv0 /�, and distance in
units of x0=mv0

2 /�. In this way, only three parameters re-
main independent: the dimensionless coupling parameter 

=mKv0

2 /�2, the connectivity �, and the intensity of the an-
gular noise �. All numerical results presented here were ob-
tained by integrating the set of Eqs. �1� and �2� with a modi-
fied version of the velocity-Verlet algorithm �22�.

III. DISCUSSION AND RESULTS

To characterize the system and its stationary states, we
monitored quantities such as the instantaneous position and
velocity of the center of mass, defined as XCM�t�
= 1

N�i=1
N xi�t� and VCM�t�= 1

N�i=1
N vi�t�, respectively. To quan-

tify the translational and rotational motions of the flock, as
order parameters, we measured the normalized mean velocity
and angular momentum of the group,

� = lim
T→�

1

T
�

0

T 1

v0
�VCM�t��dt , �8a�

� = lim
T→�

1

T
�

0

T 1

N
��

i=1

N
Li�t�

�x̃i�t���ṽi�t��
�dt , �8b�

where Li�t�= x̃i�t�� ṽi�t� corresponds to the angular mo-
menta of the individual particles with respect to the center of
mass, x̃i�t�=xi�t�−XCM�t�, and ṽi�t�=vi�t�−VCM�t�. We also
measured quantities regarding the spatial distribution of the
particles such as the instantaneous mean-square dispersions
in the directions parallel ���� and orthogonal ���� to the
direction of VCM �14�,

���t� =
1

N�VCM�t��2�i=1

N

�x̃i�t� · VCM�t��2, �9a�

���t� =
1

N�VCM�t��2�i=1

N

�x̃i�t� � VCM�t��2. �9b�

Depending on initial conditions, the values of the normal-
ized connectivity � /N and the noise intensity �, the system
may attain a translational state �TranS� where all of the par-
ticles move more or less in the same direction, shown in
Figs. 1�a� and 1�c�, with ��0. The curved shape of the
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group is principally due to correlations in the noise in com-
bination with the centering interaction, for it can be observed
even in the absence of any alignment interactions. The sys-
tem may also attain an oscillatory state �OscS� shown in
Figs. 1�b� and 1�f�, where particles circle around a center of
mass that diffuses with ��0.

Particular care was taken to obtain initial conditions for
the system either in the TranS or the OscS by setting �=0 at
the beginning. Then, in one case, the system was allowed to
relax to a stationary TranS under a global alignment interac-
tion condition � /N=N−1. In the other case, particles were
homogeneously placed on a ring with tangent velocity vec-
tors, and the system was allowed to relax to a stationary
OscS with � /N=0. At this point, time is set t=0 in all our
numerical simulations, and the parameters of the system are
correspondingly fixed for each one of the cases studied.

A. Mean velocity of the group

In the absence of alignment interactions �� /N=0�, the
normalized mean velocity of the group, �, undergoes a
noise-induced discontinuous phase transition from the TranS
to the OscS as shown in Fig. 2, where plots for � as a
function � are presented. Both the TranS and the OscS are
accessible and stable for subcritical values of the noise, as
can be appreciated in Figs. 2�a� and 2�b�, where initial con-
ditions were taken in the TranS and the OscS, respectively;
this kind of behavior resembles the model of Erdmann et al.
�14�. The critical point �c�0.548 of the phase transition for
the case shown in the figure shifts to lower values as one
increases tc due to stronger effects from the noise. In con-
trast, increasing the coupling parameter with the center of
mass, 
, enhances the stability of the TranS and �c shifts to

higher values. On the other hand, when a global alignment
interaction is considered, i.e., when �=N−1, the TranS so-
lution becomes the only available solution of the system as
the phase transition disappears. For this case, it can be ana-
lytically estimated that �� sin �

� ; we analyze this and some
other limit cases in the Appendix. Nevertheless, for local
alignment interactions with � /N�1, at least four regions
with different stability can be identified, depicted with roman
numerals in Fig. 2.

Region I �gray checked portions in Fig. 2 for the case
� /N=0.02� shows bistability similar to the case � /N=0,
where both states are accessible depending on initial condi-
tions. For larger values of �, we found a window of noise
values �region II� where the TranS is the only available
stable solution, whose size increases with the normalized
connectivity � /N. Indeed, the noise-induced fluctuations
make the OscS unstable inside this region even if initial con-
dition are taken in this state, consequently driving the system
to the TranS �see, for example, the event marked with the
downward arrow for the curve with �=1.45 in Fig. 3�a��.
Thus, the system exhibits a discontinuous phase transition in
� from region I to region II with critical point �ot; the values
of the critical points for the different cases are presented in
Table I.

Inside region II, the solution for the TranS starts to shows
disorder spikes as the system develops intermittent behavior
�some of these events are marked with upward arrows for the
curve �=1.611 in Fig. 3�a��. Increasing the connectivity
and/or the noise results in an increase in the amplitude of the
spikes and, in some cases, the system is able to even segre-
gate into clusters. See, for example, how for a fixed and the
same noise intensity, the laminar regime of the TranS shown
in Fig. 1�d� is interrupted by a segregation event shown in
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FIG. 1. �Color online� Snapshots of the configuration in position
space for the model given in Eqs. �1� and �2�, with 
=1 and tc

=10, for systems of N=100 particles. The small arrows represent
the velocity vectors vi for each one of them while the big �red�
arrows, across the figures, correspond to the way of increasing noise
intensity. In �a� and �b�, and �c� and �f�, the translational and oscil-
latory states are, respectively, shown in regions I and IV for differ-
ent connectivity values �see text for more details�. When the system
shows intermittent dynamics, �d� a laminar regime can be inter-
rupted by �e� a turbulence burst. In �d� and �e�, the value of �
considered was taken inside region II �see text�.
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FIG. 2. �Color online� Stationary order parameter �, given in
Eq. �8a�, as a function of the noise intensity �. Equations �1� and �2�
were numerically solved for systems of N=200 particles with 

=1 and tc=10. Initial conditions were taken in the TranS �a� and in
the OscS �b�. The changes of stability and the different kinds of
phase transitions are apparent as the connectivity � /N changes. See
text for more details
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Fig. 1�e�. These events are reminiscent of “turbulence bursts”
where the structure of the group is directionally inhomoge-
neous; however, if present, the clusters themselves may show
local order �see Fig. 1�e��. With a further increase in the
noise intensity, and for values up to � /N�0.2, a region with
mixed dynamics develops in a discontinuous manner �region
III�, depicted by the shadowed portions in Fig. 2 for the cases
� /N=0.02,0.1,0.2. As can be appreciated, the size of this
region increases with the normalized connectivity � /N.

Inside region III, the stronger turbulence bursts may cause
the system to suffer free transitions between the TranS to the
OscS, in the sense that the system may acquire any of the
two states regardless of initial conditions as shown in Fig.
3�b� for the curve with �=2.094. We must mention that tur-

bulence bursts in systems that present intermittent behavior
are known to occur at irregular time intervals showing a
power-law distribution �20,23,24� and, in our model, not all
of the turbulence bursts induce a transition between the
TranS and the OscS. What we observed from our numerical
results is that as the connectivity increases, the frequency of
these transitions also increases, while the plateaus where the
system spends some time in either of the two states become
smaller in the mean �see Fig. 3�d��. Moreover, the system
spends more time in the TranS at the beginning of region III,
while, with the increasing noise, it starts to spend more and
more time in the OscS as one approaches the end of this
region. This can be better appreciated looking at the prob-
ability distribution function �PDF� of � shown in Figs. 4�a�
and 4�b� for � /N=0.02,0.1. There, the bimodal filled curves
correspond to values of � inside region III, and corroborate
the coexistence of states and the bistability. The rightmost
peaks of the distributions correspond to the TranS, and their
amplitude diminishes with the increasing noise. The opposite
happens to the leftmost peaks that correspond to the OscS,
whose amplitude increases with the noise intensity. Nonethe-
less, this “transference of stability” between the translational

0
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(d)

µ/N = 0.02

µ/N = 0.2

µ/N = 0.3

FIG. 3. �Color online� Times series of the order parameter
��t�= �VCM�t�� /v0 for different values � /N and �. Typical cases
inside region III for different connectivities are shown in �d�, where
the curves are vertically displaced for better clarity. Note that the
time intervals between turbulence bursts, and between free transi-
tions to the translational and oscillatory states inside region III, are
in general larger than the time scale of the noise-induced fluctua-
tions for � /N�0.2. See the text for more details.

TABLE I. Approximate values of the critical points that separate
the different stability regions of the cases with finite � /N analyzed
in Fig. 2�a�.

� /N
�ot

�R.I→R.II�
�tb

�R.II→R.III�
�bo

�R.III→R.IV�
�to

�R.II→R.IV�

0.02 1.383 1.695 1.864

0.1 1.253 1.817 2.056

0.2 1.16 1.976 2.246

0.3 1.047 2.385
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η=1.818

η=1.895

FIG. 4. �Color online� Stationary probability distribution func-
tions of the order parameter � for selected cases of Fig. 2 with
finite � /N. In �a�–�c�, the filled curves correspond to values of �
inside region III, where the system shows bistability and free tran-
sitions between the TranS and the OscS through the bimodal distri-
bution of P���. This behavior is typical of first-order phase transi-
tions but only close to the critical point. In �d�, the filled curve
denotes the unimodal character of P��� in the transition from the
TranS to the OscS, typical of second-order phase transitions.
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and oscillatory states occurs in a continuous manner as
shown in Figs. 2�a� and 2�b�; the strong fluctuations for the
cases with � /N=0.02,0.1 are due to lack of better statistics
for the free transitions, requiring longer integration times
than those considered in this article.

It is not our intention to give a quantitative detailed analy-
sis of the distribution of the time intervals between the free
transitions inside region III here due to the cumbersome
computational requirements for these calculations. We will
leave this as an open question for future work.

The borders of region III are delimited by the critical
points �tb, for the phase transition that occurs from regions II
to III, and �bo for the one that occurs from regions III to IV.
The values of the critical points for the different cases pre-
sented in Fig. 2 are shown in Table I. In particular, the end of
region III corresponds to the case when the OscS becomes
the only stable solution of the system in region IV, in a
contrasting effect from the correlated angular noise in com-
parison to region II. These transitions from regions II to III
and III to IV may be considered discontinuous as the coex-
istence of states inside region III is reflected in the bimodal
distribution of P��� as explained before; see, for example,
Figs. 4�a�–4�c�. Nonetheless, this contrasts to what typical
first-order phase transitions show, where the bistability and
the coexistence of states can only be observed close to the
critical point and not for a continuous window of values of
the noise.

For connectivities � /N�0.3, a new kind of dynamics de-
velops as the frequency of the occurrence of turbulence
bursts and free transitions between the translational and
oscillatory states become indistinguishable from the time
scale of the fluctuations induced by noise. For this case, �
smoothes out completely and, as region III disappears, the
transition from the TranS in region II to the OscS in region
IV shows an apparent continuous nature with critical point
�to �see Fig. 2 and Table I�. The nature of this phase transi-
tion can be inferred from the one-peaked form of P��� at
criticality shown in Fig. 4�d�, and from the fact that ��t�
does not show clear plateaus that imply the coexistence of
states but only strong fluctuations �see the curve for �
=2.175 in Fig. 3�c�� as the system goes from the TranS to the
OscS. Looking at the angular momentum of the group can
provide a further insight �see next subsection�.

Numerical results for different values of 
 �not shown�
indicate that the system displays the same qualitative behav-
ior, and the same stability regions, just as in the case consid-
ered here with 
=1. Moreover, the critical points that sepa-
rate these regions behave similarly to the critical point �c for
the case � /N=0, i.e., they shift to higher values as 
 in-
creases while they shift to lower values as 
 decreases.
Nonetheless, it was also observed that lager values of the
connectivity � /N are required for the phase transition from
regions II to IV to become apparently continuous as 
 in-
creases.

B. Angular momentum

Figures 5�a� and 5�b� show plots of the angular momen-
tum � as a function of �, with initial conditions taken in the

TranS and the OscS, respectively. For � /N=0, � fluctuates
around zero for stationary translational states. On the other
hand, for stationary oscillatory states, particles oscillate
around the center of mass, on a limit cycle, much in the same
way as oscillatory states present in some other models
�12–15,17�. This can be appreciated in Fig. 6�a� from the two
peaks displayed by the stationary PDF, P��L�, of the magni-
tude of the individual angular momenta Li= �Li� of the par-
ticles for �=0.564.

Having in mind that the OscS is always a solution for the
system when � /N=0, becoming the only solution for �
��c, the value of the order parameter � will depend on
initial conditions for noise values ���0.867� to the left of
the dash-dot-dashed vertical line in Figs. 5�a� and 5�b�,
whenever a stationary oscillatory state is reached. This can
be understood from the fact that in this region and in the
absence of alignment interactions, the correlated angular
noise is not strong enough to randomly change the particles
direction of rotation. In particular, in Fig. 5�b�, initial condi-
tions for the OscS were taken on the limit cycle with half of
the particles rotating in the clockwise direction, and half in
opposite one, resulting in a �=0. Nonetheless, when initial
conditions are taken in the TranS, but for noise values �
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FIG. 5. �Color online� Stationary angular momentum �, given
in Eq. �8b�, as a function of � with N=200, 
=1, and tc=10, for
initial conditions taken in the TranS �a� and in the OscS �b�. For the
case � /N=0, the vertical dotted line corresponds to the critical
point �c of the phase transition in � from the TranS to the OscS
when initial conditions are taken in the TranS. Beyond that line the
only solution of the system is the OscS regardless of initial condi-
tions. On the other hand, beyond the vertical dash-dot-dashed line,
the correlated angular noise is strong enough to randomly change
the direction of rotation of the particles in the OscS. In contrast, in
between the two vertical lines and after the system reaches the
stationary OscS, particles rotating in either direction, clockwise or
counterclockwise, will remain rotating in such a way regardless of
the fluctuations induced by the noise. This is more evident in �a�
where � presents some bumps product of an asymmetric number of
particles rotating in both directions, due to the transition the system
undergoes from the TranS to the OscS. See text for more details on
the cases with finite connectivities.
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��c �to the right of the dotted vertical line in Fig. 5�a��, �
presents some bumps. Under these conditions, for values of
the noise ��c���0.867� between the dotted and dash-dot-
dashed vertical lines in Fig. 5�a�, the system undergoes a
transition to the OscS after spending a transient time in the
TranS �also reported in Ref. �14��. Thus, once the system
reaches a stationary OscS, the number of particles rotating in
each direction �clockwise and counterclockwise� may be
asymmetric deriving in a fixed ��0. In contrast, for noise
values ���0.867� to the right of the dash-dot-dashed verti-
cal line, where the correlated angular noise is strong enough
to randomly change the particles direction of rotation in the
OscS, ��0 regardless of initial conditions. However, for
finite connectivities �� /N�0�, � shows the different stabil-
ity regions identified before.

In region I, as the alignment interactions induce the ma-
jority of the particles to randomly select a direction of rota-
tion, ��1 for the OscS. This state has a limit-cycle quality

as P��L� shows in Fig. 6�b�. In region II only the TranS is
accessible, thus, the value of � is closer to zero.

Inside region III, and for connectivities up to � /N�0.2,
� shows a discontinuous peak as the majority of the particles
tend again to rotate in the same direction whenever the sys-
tem attains an OscS. This is corroborated by the tails of
P��L� in Fig. 6�c� for � /N=0.02; however, the direction of
rotation is selected randomly considering that every OscS
follows a free transition from the TranS. This type of OscS
resembles a limit-cycle one even though the tails in P��L�
are wider than in the previous cases due to particles that
transit close to the center of mass �see Fig. 1�b��. The pres-
ence of a discontinuous peak in � corresponds to cases
where P��� shows a bimodal distribution inside region III.
Nonetheless, with the increasing connectivity, the amplitude
of this peak decreases �see Fig. 5� along with the “limit-
cycle” quality of the OscS.

Of particular interest is the case with � /N=0.2 since, in-
side Region III, it presents the discontinuous peak in � along
with a bimodal distribution for P���; however, the distribu-
tion for P��L� looks rather symmetric throughout regions II
to IV as shown in Fig. 6�d�. We will use this fact to define a
crossover regime that separates the cases when the transition
from region II to IV presents the bistable region III, from
those when it seems continuous and region III is absent �see
next subsection�.

In region IV, the values of � are closer to zero as the
OscS becomes qualitatively disordered due to stronger noise,
while P��L� does not show any tails but a symmetrical dis-
tribution around zero, in particular for � /N�0.1. For � /N
�0.3, as region III disappears and the transition between the
TranS and the OscS becomes apparently continuous, the dis-
continuous peak in � also disappears, giving way to a
smooth dependence of � on � instead. In this case, the OscS
does not show any limit-cycle quality, looking rather disor-
dered, while P��L� is always symmetrical throughout the
transition, similar to the case for � /N=0.2. Thus, the appar-
ently continuous transition from the TranS to the OscS, for
connectivities � /N�0.3, may be considered an order-
disorder.

C. Size of the system, dispersions, and critical points

In addition, the values of tc used in this work correspond
to a regime where the size of the flock in position space, for
any given �, does not depend on tc anymore. In conse-
quence, the dependence of the critical points that separate the
different stability regions on tc becomes also constant for a
fixed values of 
 and � /N. This regime is defined by the
condition tc�1, and can be explained by looking at the be-
havior of dispersions �9c�, shown in Figs. 7�a�–7�c� as a
function of �. In particular, by looking at the maximum of
the transversal dispersion, ��

MAX, and its dependence on tc,
as shown in Fig. 7�d�, it becomes constant for tc�1. In the
same limit, ��

MAX does not change much with � /N but rather
lightly with N �see Fig. 7�e��. This means that the size of
the system depends mainly on the noise intensity � and the
correlation time tc, in the end becoming independent on tc
for tc�1. Thus, the critical points that separate the different
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FIG. 6. �Color online� Probability distribution functions of the
magnitude of the angular momentum of the individual particles Li

for systems with N=200. In �a�, for � /N=0, the two peaks away
from the center for the curve with �=0.564 indicate a limit-cycle
oscillatory state. That is also the case in �b�, for the different values
of � /N with a one-peaked P��L� away from the center. In �c� and
�d�, the filled curves correspond to values of � inside region III. In
�c� the tails in some of the distributions indicate the development of
limit-cycle-like oscillatory states. In contrast, in �d�, the tails of the
distributions decay faster from the center indicating the develop-
ment of qualitatively disorder oscillatory states.
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stability regions will mainly depend on the ratio � /N
since the mean range of the alignment interaction, 
ro��t�
= 1

N�i=1
N � 1

��xj��i�t�
�xi�t�−x j�t���, still depends on � and � /N

itself, as can be appreciated in Figs. 7�a�–7�c�, and not on tc
�in general, 
ro� is a function of all the parameters of the
system�. This is one of the main effects of the correlated
angular noise, and allows an increase in the normalized con-
nectivity � /N to translate into an effective increase in the
range of the alignment interaction, in position space, with
respect to the overall size of the group for any given value of
� as shown in Figs. 7�a�–7�c�.

We must remark that for cases with larger connectivities
� /N�0.2, when initial conditions are taken in the OscS and
for weak noises ���1�, the resulting stationary oscillatory
states can present the formation of clusters as shown in Fig.
8. This comes as a result of the short-range character of the
alignment interaction. Nonetheless, structures like these have
been obtained, providing each particle with a short-range re-
pulsive potential �15�. On the other hand, the clusters, when
present, seem to be very stable since the exchange of par-

ticles is not likely as they oscillate around the center of mass
in a limit-cycle fashion. The segregation of the system in this
way is the main cause that the dispersions parallel ���� and
orthogonal ����, given in Eqs. �9c�, are different in Figs.
7�b� and 7�c� for weak noise intensities. What happens is
that, since the particles are not homogeneously distributed in
a circular form around the center of mass, the center of mass
itself does not lie in the center of the circular formation but
closer to the largest cluster. In consequence, the center of
mass is able to perform a translational motion rather than a
diffusive one. This is shown in Fig. 8�b�, where the large
arrow points to the trajectory of the center of mass for a finite
time. The exchange of particles among the clusters is more
likely when noise increases, in the end leading to the destruc-
tion of these structures.

Finally, Figure 9 shows a plot of � /N vs N, and is in-
tended as a scaling analysis of the transition from regions II
to IV. One can observe that as the number of particles N in
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FIG. 7. �Color online� Above, �a�–�c�, mean-square dispersions,
given in Eqs. �9a� and �9b�, and the mean range of the alignment
interaction, 
r0� �see text for definition�, as a function of �, for
different connectivities, N=200 and tc=10. The curves with dashed
lines and solid symbols correspond to numerical results with initial
condition in the OscS, while the curves with solid lines and clear
symbols correspond to numerical results with initial condition in the
TranS. The different stability regions are identified with roman nu-
merals for the different cases. Below, behavior of the maximum
transversal dispersion, ��

MAX, as a function of �d� tc and �e� � /N.
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FIG. 8. �Color online� Snapshots of the configuration in position
space for the model given in Eqs. �1� and �2� with 
=1, tc=10, and
N=200. The small arrows represent the velocity vectors vi for each
one of the particles. These states were obtained from simulations
with initial conditions in the OscS. In �b� the large arrow points to
the trajectory of the center of mass �solid line� for a finite period of
time.
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FIG. 9. Plot � /N vs N where the solid line with grey circles
corresponds to the crossover regime that separates the cases where
the system exhibits a bistable region �region III� with free transi-
tions between the TranS and the Oscs �depicted with clear circles�,
from those where the transition from the TranS to the OscS is ap-
parently continuous �depicted with solid circles�. In all of the cases
tc=10 and 
=1.
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the system increases, the crossover regime �solid line with
grey circles� that separates the cases when the bistable region
III is absent, and the transition from the TranS to the OscS
seems to be continuous with a one-peaked P��� at criticality
�solid black circles above the line�, from those when a region
III is present and P��� is bimodal �clear circles below the
line�, moves from lower values of the connectivity � /N to
larger ones, finally stabilizing for N�200. As far as our nu-
merical results indicate, increasing N any further does not
change the position of the different stability regions for finite
values of � /N and tc�1.

IV. CONCLUSIONS

We have studied the mixed effects of correlated angular
noise, centering, and alignment interactions in a simple two-
dimensional �2D� Lagrangian model of N self-propelled par-
ticles. As a result, we have observed rich dynamics in the
collective behavior along with different stability regions as
the amplitude of the noise changes. Of particular interest is
the development of intermittent behavior as the presence of
alignment interactions induce turbulence bursts in the TranS
where the group is able to even segregate into clusters. Dur-
ing these events, the group may present local order but not
global, and for certain combinations of the parameters, they
allow the system to freely transit from the TranS to the OscS
and vice versa. This result is distinctive from other models
where the collective dynamics is condemned to live in mo-
notonous stable states. Indeed, a closer inspection of P���
shows the presence of a tail that deviates from a Gaussian
distribution and accounts for these turbulence bursts inside
region II, while this behavior is not observed in the case
� /N=0 �see Figs. 10�a�–10�c��. Moreover, increasing the
range of the alignment interaction �by increasing � /N� en-
hances this effect that finally leads to a fundamental change
in the dynamics of the system as the bistable region III dis-
appears, and the transition in � from the TranS of region II
to the OscS of region IV apparently changes its nature to
continuous �see Figs. 2�a� and 9�. This comes about from the
fact that for large enough connectivities �� /N�0.2� and
subcritical values of � closer to the end of region II, the
system becomes fully intermittent as P��� shows a non-
Gaussian asymmetrical form �see Fig. 10�d��, consequently
leading to the existence of region III and its further disap-
pearance when the connectivity increases. This strongly sug-
gests what seems to be a clear connection between the inter-
mittent behavior in the collective motion of the group and
the kind of phase transitions undergone by its mean velocity.

The kind of dynamics the system develops inside region
II resembles that in the model of Vicsek et al. �7�, where the
cluster formation has proven to play an essential role in the
development of intermittent dynamics �23,20�. This comes
accompanied by a continuous order-disorder phase transition
in the mean velocity of the group �10,25–28�. The intermit-
tent behavior shows up as, in the stationary ordered phase, a
laminar regime �where all the particles move in a rather or-
dered fashion� is interrupted by chaotic bursts of turbulence
where the system segregates in clusters that may present lo-
cal order, but not global, in a very similar way as our model

does. Moreover, the authors in Ref. �17� reported the cluster
formation in a Lagrangian model that considers alignment
forces, centering, and separation, but with white additive
noise. In fact, intermittent behavior can be observed in other
systems far from equilibrium including biological ones �see
references in �23��.

Finally, as our numerical simulations show, the different
dynamics displayed by our model seem to be robust even if
each particle is provided with a hard-core repulsive potential.
This case is analyzed in detail in �29�. On the other hand, the
nonlinear way angular noise enters in our model results in
the development of an effective individual mean speed that
depends on �, and in contrast to some other models where it
does not �13–17�. It can be shown that vi fluctuates around
the value

v0

� sin � since 
vi� depends only on the form of the
distribution of the noise. We believe our results may be rel-
evant in the theory of flocking and, in general, in the theory
of phase transitions in systems out of equilibrium.
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FIG. 10. �Color online� ��a�–�d�� Semi-log plots of the PDF of
� with N=200, tc=10, and 
=1, for different values � /N and �. In
�a�, the selected value of � lies in the subcritical region of the phase
transition from the TranS to the OscS. In �b�–�d�, the selected val-
ues of � lie inside region II. The dotted lines correspond to Gauss-
ian fits of the whole distribution in �a�, and of the crest of the
distributions in �b�–�d�.
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APPENDIX: LIMIT CASES

In this appendix we present the analysis of some limit
cases of our model, and of other well-known models, as we
compare them in the light of some analytical estimations.

First, let us consider the global alignment interaction limit
of model �1�, where the individual propulsive direction �i of
each particle, given in Eq. �2�, coincides with the direction
�CM of the center-of-mass velocity VCM, i.e., �i=�CM at all
times. This case can be solved exactly for the order param-
eter �, and may arise from taking �=N−1. The only solu-
tion that the system presents is that one for the TranS regard-
less of the initial conditions, and can be calculated by solving
the equation of motion for the center of mass. The latter is
obtained by summing Eqs. �1� and dividing by the number of
particles N,

m
dVCM

dt
= −

�

v0
VCM +

�

N
�
i=1

N

�cos��i + �i�i + sin��i + �i�j� ,

�A1�

where the effects of angular noise are captured in the expres-
sion cos��i+�i�i+sin��i+�i�j, with �i and �i defined as be-
fore.

We have then, Eq. �A1� is akin to the Langevin equation
m

dVCM

dt =− �
v0

VCM +��t�, where the random force � is defined
as the random quantity �

N�i=1
N �cos��i+�i�i+sin��i+�i�j�,

and can be interpreted as a directed random walk with per-
sistence �30�. Equation �A1� may be split into two coupled
equations for the magnitude VCM = �VCM� and the direction
�CM 
arctan��i

Nvy,i /�i
Nvx,i� of the center-of-mass velocity.

After taking an ensemble averages over different realizations
of the stochastic variables �i, the equations may be explicitly
written as

d
VCM�
dt

= −
�

mv0

VCM� +

�

mN
�
i=1

N


cos �̄i� , �A2a�

and

�VCM
d�CM

dt
� =

�

mN
�
i=1

N


sin �̄i� , �A2b�

respectively, where �̄i
�i−�CM +�i with a PDF P���̄�
equivalent for all of the particles.

In particular, for the global alignment interaction case,
equations �A2� may be solved straightforwardly since �i

=�CM at all times, and �̄i=�i �thus P���̄�= P����, the latter
corresponding to the distribution of the noise�. Then, the
rightmost terms reduce to 
cos �̄i�= 
cos �i� and 
sin �̄i�
= 
sin �i�.

By definition the probability distribution of the noise
P����, given in Eq. �5�, is the same for all the angles �i;
therefore, the quantities 
cos �i� and 
sin �i� do not depend
no the subindex i, and have the values 1

�sin � and 0, respec-
tively. The solution to Eq. �A2a� is then given by


VCM�t�� = 
VCM�0��e−�/mv0t +
v0

�
sin � �1 − e−�/mv0t� .

�A3�

Under the assumption that the system is ergodic, we will
replace the temporal average in Eq. �8a� by an ensemble
average in the stationary state 
VCM

st � which, from expression
�A3�, has the value v0

sin �
� . Finally, we get the following

exact result for the order parameter:

� =
1

�
sin � . �A4�

This expression is compared to results obtained from nu-
merical simulations in the inset of Fig. 11. The agreement
between theory and numerical data is extremely good, which
also validates the numerical integration scheme used in this
work. Notice how this solution only depends on the noise
intensity �.

0 π/2 π

η

0

0.2

0.4

0.6

0.8

1

Ψ
N = 4, L = 0.02

N = 40, L = 0.06325

N = 400, L = 0.2

N = 10000, L = 1

ρ = 4, N = 400

ρ = 10, N = 1000

ρ = 40, N = 4000

sin(η)/η (N→ ∞)

0 π/2 π0

0.5

1

FIG. 11. �Color online� Normalized magnitude of the mean ve-
locity of the group, in the steady state, given by the order parameter
� of Eq. �A5�, for the Vicsek et al. model, as a function of the noise
intensity � while the limit N→� is approached. Numerical �curves
with clear symbols� and analytical �dashed lines� results, the latter
corresponding to the expression of Eq. �A8� for different values of
N, are presented assuming a global alignment interaction and a
constant density �=103. On the other hand, when a local alignment
interaction is assumed, numerical results �curves with solid sym-
bols� are presented as N→� by making �→� for a fixed L=10.
The black solid curve corresponds to the analytical approximation
of Eq. �A9�. In all the simulations for the Vicsek et al. model only
the small velocity regime �26� was considered �v0=0.03� with r
=1. The inset shows numerical results �grey circles� for model �1�
with N=200, k=1, and tc=10, when a global alignment interaction
�� /N=N−1� is considered, against the analytical exact result �black
solid curve� of Eq. �A4�.
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It is interesting to note that the order parameter in the
Vicsek et al. model �7�, when a global alignment interaction
is considered in the thermodynamic limit, i.e., when N→�
for a constant density �=N /L2, shows exactly the same de-
pendence on � as that of Eq. �A4�. Indeed, in Ref. �7�, the
instantaneous order parameter ��t�
�VCM�t�� /v0 is also a
measure of the coherent behavior of the system and by defi-
nition given by

��t + �t� =
1

N���
i=1

N

sin �i�t + �t��2

+ ��
i=1

N

cos �i�t + �t��2�1/2

, �A5�

where the phases �i correspond to the directions of the indi-
vidual velocities of N particles contained in a box of size L
with periodic boundary conditions. The system considers lo-
cal alignment interactions �see below�, while the velocities vi
of the particles are determined simultaneously at each time
step. Then, their positions are updated through

xi�t + �t� = xi�t� + vi�t��t . �A6a�

Here, the velocity was constructed to have a fixed magnitude
v0 equal for all of the particles with �t=1. In this way, the
particles advance the same fixed distance in the direction of
the angle �i�t+�t� at each time step, the latter calculated
from

�i�t + �t� = 
�i�t��r + �i�t� , �A6b�

where 
�i�t��r denotes the mean direction of the velocities of
the particles �including particle i� that lie within a circle of
radius r surrounding a given particle, while �i is a random
angle taken from a flat distribution between �−� ,�� �here
defined in this way to be able to compare with our model�,
with � running from 0 to 
 �26�.

It is possible to give an expression for � only in terms of
the random quantities �i, i.e., by assuming a global align-
ment interaction such that 
�i�t��r=��t�, where ��t� is the
same for all of the particles and corresponds to the mean
direction of the whole group. This can be achieved by mak-
ing the range of the alignment interaction larger or, at least,
equal to the size of the system �r�L�. After taking the sine
and cosine of Eq. �A6b�, and summing over all particles, one
gets

�
i=1

N

sin �i�t + �t�

= sin ��t��
i=1

N

cos �i�t� + cos ��t��
i=1

N

sin �i�t� ,

and

�
i=1

N

cos �i�t + �t�

= cos ��t��
i=1

N

cos �i�t� − sin ��t��
i=1

N

sin �i�t� .

By substituting last expressions in Eq. �A5�, expanding the
squares, and simplifying terms one can write

��t + �t� =
1

N���
i=1

N

cos �i�t��2

+ ��
i=1

N

sin �i�t��2�1/2

.

�A7�

An evaluation of 
��t+�t�� in this form is difficult. Instead,
let us compute the quantity N2
�2�t+�t��,

N2
�2�t + �t�� =���
i=1

N

cos �i�t��2

+ ��
i=1

N

sin �i�t��2� .

Making use of the multinomial theorem �31�, after some al-
gebra one gets

N2
�2� = N + 2
sin2 �

�2 �
i=1

N−1

�
j�i

N

1 = N + N�N − 1�
sin2 �

�2 ,

and, thus,

�
�2� =� 1

N
+ �1 −

1

N
� sin2 �

�2 . �A8�

In the limit when N→�, and on the basis of some observa-
tions from our numerical results, one can write

� � �
�2� =
sin �

�
. �A9�

The last approximation corresponds to the asymptotic behav-
ior, in the steady state, for the order parameter of the Vicsek
et al. model �7� under the assumptions of a global alignment
interaction in the thermodynamic limit �N→��. Under the
same global alignment assumption, the expression of Eq.
�A9� has also been derived by approximating the system with
a directed random walk with persistence �32�.

Figure 11 shows plots of results obtained from numerical
simulations �curves with clear symbols� for the behavior of
���� against the analytical expression of Eq. �A8� �dashed
curves�, considering a constant density �=103, and system
sizes such that L�r as N tends to infinity. As apparent from
the figure, the order parameter approaches the expression of
Eq. �A9� from above, and the absence of the phase transition
is evident. For all the numerical simulations of the Vicsek et
al. model �7�, we have set �t=1, r=1, and v0=0.03, the
latter well inside the small velocity regime �v0�0.1� �26�.

In this regime, particles that were within the same inter-
action vicinity at time t will most likely remain within the
same interaction vicinity at time t+�t. Nonetheless, in the
computation of Eq. �A9� we have made no assumptions on
the particles speed v0 nor the linear size of the system L.
Moreover, the same expression has been obtained for the
vectorial network model �VNM� of Aldana et al. �33�, in Eq.
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�23b� of Ref. �6�, when only intrinsic �or angular� noise is
considered for an infinite network connectivity. This case
corresponds to the global alignment interaction limit in both:
our model, given in Eq. �1�, and the Vicsek et al. model. The
VNM of Aldana et al., as stated there, may be considered as
a mean-field approximation of the Vicsek et al. model in the
limit of extreme particle speeds �v0�1000 for simulation
purposes� �26�; indeed, when v0→�. One of the conditions
for the validity of this mean-field approximation is that spa-
tial correlations developed due to the motion of the particles,
and present in the small velocity regime, are destroyed at
every time step when the particles are allowed to move with
extreme speeds. However, as mentioned before, our calcula-
tion on the Vicsek et al. model does not assume a particular
regime for v0.

The common behavior displayed by ���� in these three
models is only due to the presence of the global alignment
interaction in combination with angular noise, which in fact
are the only features they share. This implies that the global
alignment interaction aids to the homogenization of the sys-
tems, as it dominates over any other characteristic dynamics
of a given particular model, inducing an effective mean field
for all of the interacting particles.

On the other hand, when local alignment interactions �r
�L� are assumed for the Vicsek et al. model, it is well

known that the critical point �c �that depends on �� moves to
higher values as the density is increased, finally reaching the
“infinite temperature” limit, i.e., �c→
 as �→�, where the
phase transition disappears �7�. For this case, and with fixed
L=10, our numerical simulations show that the order param-
eter approaches the expression given in Eq. �A9� from below
�curves with solid symbols in Fig. 11�. Notice how the criti-
cal point �c of the phase transition is shifted to higher values
with the increasing �. As density tends to infinity, an thus
N→�, in the thermodynamic limit, it is plausible to expect
the fulfillment of the condition for the global alignment in-
teraction �
�i�t��r=��t�� once more, thus, leading to the same
result as the one presented in Eq. �A9�.

This may be explained from the combination of two dif-
ferent effects. On the one hand, because of the presence of
noise in the system, particles move randomly with some cor-
relation due to the local alignment interactions. As density is
increased, this “random” motion makes the system spatially
more homogeneous, in contrast to the low-density case
where particles tend to form groups that move coherently in
random directions �23�. Then, the overlap of the interaction
vicinities of the different particles increases, and the system
becomes more coherent developing the effective mean-field
interaction previously discussed for the global alignment in-
teraction limit.

�1� C. M. Topaz and A. L. Bertozzi, SIAM J. Appl. Math. 65, 152
�2004�.

�2� J. K. Parrish and L. Edelstein-Keshet, Science 284, 99 �1999�;
J. K. Parrish, S. V. Viscido, and D. Grünbaum, Biol. Bull. 202,
296 �2002�.

�3� I. D. Couzin, J. Krause, N. R. Franks, and S. A. Levin, Nature
�London� 433, 513 �2005�; J. Buhl, D. J. Sumpter, I. D.
Couzin, J. Hale, E. Despland, E. Miller, and S. J. Simpson,
Science 312, 1402 �2006�.

�4� C. W. Reynolds, Comput. Graph. 21, 25 �1987�.
�5� M. Aldana, V. Dossetti, C. Huepe, V. M. Kenkre, and H. Lar-

ralde, Phys. Rev. Lett. 98, 095702 �2007�.
�6� J. A. Pimentel, M. Aldana, C. Huepe, and H. Larralde, Phys.

Rev. E 77, 061138 �2008�.
�7� T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet,

Phys. Rev. Lett. 75, 1226 �1995�.
�8� G. Grégoire, H. Chaté, and Y. Tu, Physica D 181, 157 �2003�.
�9� G. Grégoire and H. Chaté, Phys. Rev. Lett. 92, 025702 �2004�.

�10� F. Peruani, A. Deutsch, and M. Bär, Eur. Phys. J. Spec. Top.
157, 111 �2008�.

�11� A. Czirók, E. Ben-Jacob, I. Cohen, and T. Vicsek, Phys. Rev. E
54, 1791 �1996�.

�12� N. Shimoyama, K. Sugawara, T. Mizuguchi, Y. Hayakawa, and
M. Sano, Phys. Rev. Lett. 76, 3870 �1996�.

�13� H. Levine, W.-J. Rappel, and I. Cohen, Phys. Rev. E 63,
017101 �2000�.

�14� U. Erdmann, W. Ebeling, and A. S. Mikhailov, Phys. Rev. E
71, 051904 �2005�.

�15� M. R. D’Orsogna, Y. L. Chuang, A. L. Bertozzi, and L. S.
Chayes, Phys. Rev. Lett. 96, 104302 �2006�.

�16� S.-H. Lee, H. K. Pak, and T.-S. Chon, J. Theor. Biol. 240, 250
�2006�.

�17� P. Romanczuk, U. Erdmann, H. Engel, and L. Schimansky-
Geier, Eur. Phys. J. Spec. Top. 157, 61 �2008�.

�18� T. Feder, Phys. Today 60�10�, 28 �2007�.
�19� W. Horsthemke and R. Lefever, in Noise-Induced Transitions:

Theory and Applications in Physics, Chemistry, and Biology,
edited by H. Haken �Springer-Verlag, Berlin, 1984�, Vol. 15.

�20� H. Chaté, F. Ginelli, G. Grégoire, and F. Raynaud, Phys. Rev.
E 77, 046113 �2008�.

�21� R. F. Fox, I. R. Gatland, R. Roy, and G. Vemuri, Phys. Rev. A
38, 5938 �1988�.

�22� R. D. Groot and P. B. Warren, J. Chem. Phys. 107, 4423
�1997�.

�23� C. Huepe and M. Aldana, Phys. Rev. Lett. 92, 168701 �2004�.
�24� P. Berge, Y. Pomeau, and C. Vidal, Order Within Chaos: To-

wards a Deterministic Approach to Turbulence �Wiley, New
York, 1987�.

�25� J. Toner and Y. Tu, Phys. Rev. Lett. 75, 4326 �1995�.
�26� M. Nagy, I. Daruka, and T. Vicsek, Physica A 373, 445

�2007�.
�27� G. Baglietto and E. V. Albano, Phys. Rev. E 78, 021125

�2008�.
�28� The authors in �8,9,20� claim that the phase transition is dis-

continuous even in the presence of additive angular noise.
�29� V. Dossetti, F. J. Sevilla, and V. M. Kenkre �unpublished�.
�30� F. Peruani and L. G. Morelli, Phys. Rev. Lett. 99, 010602

�2007�.
�31� Handbook of Mathematical Functions: with Formulas,

Graphs, and Mathematical Tables, 9th ed., edited by M.
Abramowitz and I. A. Stegun �Dover, New York, 1972�.

�32� F. Peruani, Ph.D. thesis, Technischen Universität Berlin,
�2008�.

�33� M. Aldana and C. Huepe, J. Stat. Phys. 112, 135 �2003�.

PHASE TRANSITIONS INDUCED BY COMPLEX … PHYSICAL REVIEW E 79, 051115 �2009�

051115-11


