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A theoretical analysis of active motion on curved surfaces is presented in terms of a generalization
of the Telegrapher’s equation. Such generalized equation is explicitly derived as the polar approx-
imation of the hierarchy of equations obtained from the corresponding Fokker-Planck equation of
active particles diffusing on curved surfaces. The general solution to the generalized telegrapher’s
equation is given for a pulse with vanishing current as initial data. Expressions for the probability
density and the mean squared geodesic-displacement are given in the limit of weak curvature. As
an explicit example of the formulated theory, the case of active motion on the sphere is presented,
where oscillations observed in the mean squared geodesic-displacement are explained.
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I. INTRODUCTION

Active matter is the term coined to those systems com-
posed of self-propelled or active particles (capable of con-
verting the locally absorbed energy from their environ-
ment into motion), that find themselves in intrinsically
out-of-equilibrium conditions. On the one hand, there
have been a great of interest in the collective properties
that emerge in these out-of-equilibrium systems. For in-
stance, the coherent motion that emerge from alignment
interactions between self-propelled particles which give
rise to wonderful patterns observed in systems such as
flock of birds, groups of ants, bacterial colonies, schools
of fishes [1], even in aggregates of non-living matter like
thermal active colloids [2], among others. Interesting out-
of-equilibrium collective phenomena emerge even from
simple interaction rules, as those originally considered
by Vicsek et al. [3], and described theoretically by the
used of continuum field theories by Toner and Tu in the
90’s [4], ideas that still are being developed extensively
[5, 6]. Recent studies have considered the inclusion of
spatial and alignment interactions among active particles
[7], while the complete phase diagram of the Vicsek et al.

model has been recently interpreted in terms of a gas-
liquid transition [8]. Furthermore, in some cases it has
been pointed out that self-propulsion is not a necessary
intrinsic property to explain the emergence of collective
motion [9].

One of the topics that is being currently investigated,
is the one that considers the effects of spatial heterogene-
ity on the dynamics of active particles, as occurs when
the particle motion is limited by a curved surface, or
constrained to move on it. It turns out that the pro-
cesses of the last kind abound in biology. For instance,
the embryonic developmental processes can be thought
as a collective cellular movement controlled by a curved
surface, the embryonic sac; the cell movement on the de-
velopment of a corneal growing; the transport of blood
cell through the vascular system; the flocking birds that
migrates into different regions of the earth; etc. As a
consequence, the importance of the effects of geometric

and/or topological features of the embedding space on
the diffusion of active particles must be emphasized.

In a broad way, it is generally possible to distinguish
the local effects of the embedding manifold curvature
on the transport properties of active particles, from the
global ones due to the topology. This means, in particu-
lar, that the curvature effects will be revealed locally in
a neighborhood of a given point, specially, in the short-
time regime of the particle dynamics. Topological ef-
fects on the other hand, will be manifested in the oppo-
site limit, i.e. in the long-time regime. The effects of
curvature have been observed in the dynamics of single
self-propelled particles inside curved (convex and non-
convex) walls, where the probability density function de-
pends strongly on the curvature of the confining surface
[10–12]. In addition, the coupling of the geometric shape
of single obstacles or micro-components with an active
fluid, induces on them a characteristic dynamics of ac-
tive behavior exhibiting the importance of the geometric
aspects of the swimmers [14]. There is also interest in
the definition of the so-called swimming pressure where
the combined effects of interaction among self-propelled
particles and the walls shape of the container are impor-
tant [15, 16]. Meanwhile, a theoretical framework that
considers the effects of the curvature of a convex surface
on the dynamics of interacting active particles has been
proposed [13]. Further, it has been recently shown that
the collective motion of systems composed of interacting
polar active particles confined to ellipsoidal surfaces, ex-
hibit the formation of swirling patterns around surface
points of constant curvature, making clear the effects of
a curved substrate on collective motion [17]. Similarly,
it has been shown that active apolar fluids experience a
curvature-induced spontaneous active flow when confined
on a curved surface [18].

On the other hand, the effects of topology have been
pinpointed in different recent studies. In Ref. [19] the
emergence of out-of-equilibrium spatiotemporal patterns
has been analyzed as the consequence of the combination
of active matter and topological constraints. It turns
out that the topology of the sphere is determinant for
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the appearance of an oscillating dynamics in active ne-
matic films confined onto the sphere surface. Similarly,
the topology of the sphere plays a key roll on the emer-
gence of collective patterns of motion in a system of in-
teracting self-propelled particles confined to move on the
surface of the sphere [20, 21]. This has been explored
recently in Ref. [22] on the basis of a generalization of
the continuum Toner-Tu model for an active polar fluid
confined to an arbitrary curved surface, where it is shown
that the presence of curvature induces a gap in the sound
mode spectrum at short wave-vectors, leading to a flock-
ing band structure with nontrivial topology.

On the general theoretical setting, the overdamped
kinematics of an active Brownian particle is described
by a pair of Langevin-like equations, one for the par-
ticles position and the other for the swimming direc-
tion [1]. A coarse-grained description only in terms of
the probability density of the particle’s position leads
to a Smoluchowski-like equation which, in the open Eu-
clidean space and in the long-time regime, is well ap-
proximated by the so-called telegrapher equation (TE)
[23–25]. Such an equation accounts for persistent Brow-
nian motion if coherent initial distributions are avoided
in order to maintain the positiveness of the probability
density [26], i.e. it is valid only in the diffusive regime.
Notwithstanding this, it has been proved that the TE
provides the whole and exact time-dependence of the
mean squared displacement of a self-propelled particle
[23, 24], not like this the time-dependence of higher mo-
ments which are well approximated by the TE only in
the long-time regime.

The TE has been widely studied since it describes
transport phenomena in many different contexts. It was
introduced in the middle of the last century to take into
account the effects of persistence in the one-dimensional
trajectories of random walkers that propagate at finite
speed [27, 28]. The straightforward generalization of the
telegrapher equation to dimensions larger than one must
be taken with care if its solutions must be interpreted as
a probability density. Indeed the solutions of the TE can
have negative values in the short-time regime as pointed
out in Refs. [26, 29]. The origin of this feature can be
traced back to the wake effects of the wave-like behav-
ior of the solutions in that specific time regime. This
contrasts with the transport properties of an ensemble
of non-interacting persistent random walkers that move
in continuous two-dimensional space [23], for which it is
clear that for times shorter than the persistence time, no
wake effects are apparent and a sharp front of particles
that move almost in a ballistic way is observed. One can
anticipate that the same issue of positiveness of the TE
solutions in the open Euclidean space will also appear
on high-dimensional Riemannian manifolds, however as
in the former case, there is an appropriate parameter re-
gion where probability density is positive [23, 26].

In this paper a theory of diffusion of active particles
on curved surfaces is presented. The theoretical frame-
work starts with Langevin equations for the kinematic
state of an active particle confined to move on a curved

surface. After deriving the corresponding Fokker-Planck
equation, we develop a fluctuating hydrodynamic-like de-
scription for a collection of noninteracting active parti-
cles on the surface. This description is given through
a hierarchy of coupled equations for the hydrodynamic
field tensors, i.e. for the scalar particle density ρ, the
polarization vector field Pa, the second rank tensor or
nematic field Qab, etc. [7]. By use of the standard polar

approximation, which consists of the truncation of the
hierarchy of equations to close them up by retaining only
the particle density and the polarization vector field, we
show that ρ satisfies a generalization of the TE to curved
surfaces. The general covariance of the resulting TE is
exploited in order to study the curvature effects appear-
ing in the particle density, and particularly in the mean
squared geodesic-displacement (MSGD). The calculation
is performed by the use of the local frame provided by the
Riemann Normal Coordinates (RNCs) [30]. Finally, we
consider the surface of a sphere as the underlying curved
manifold, as an application of our general results.

This paper is organized as follows. In section II, we
present the Langevin equations of motion for an active
particle confined to a curved surface. The Fokker-Planck
equation associated to the stochastic equations is derived
in order to build a standard hydrodynamics description
for the system. In section III we discuss the general as-
pects regarding the evolution of the particle density on
the surface, when the polar approximation is enforced.
In section IV, we provide analytical expressions in the
limit of weak curvature. In addition, the mean-square
displacement is studied under the same circumstances.
In section V, we give an explicit application of our theo-
retical framework to a system of active particles diffusing
on the sphere. In the final section VI, we give our con-
cluding remarks and perspectives of this work.

II. ACTIVE MOTION ON CURVED SURFACES

The kinematic state of an active particle that swims
with constant speed v0 on a two-dimensional curved sur-
face S, is determined by its position x(t) and the direc-
tion of motion v̂swim(t). The particle’s position on the
surface is described by the two local coordinates xµ(t)
and xν(t), which are denoted simply by xa(t) with a =
µ, ν. The self-propulsion director v̂swim(t), that changes
the position of the particle along the surface, is contained
only on the tangential plane to the surface at the point
where the particle is located, i.e. it is a two-dimensional
xa-dependent quantity whose dynamics is described by
the evolution of the coordinates vaswim, which must satisfy
the condition vaswim (t) vbswim (t) gab [x(t)] = 1, gab [x(t)]
being the metric tensor that characterizes the Rieman-
nian geometry of the surface. Throughout this paper we
will use indistinctly the single symbol x(t) or xa(t) as
a shorthand notation to refer to the pair of coordinates
xµ(t) and xν(t). The stochastic equations that give the
dynamics of the active particle on a curved surface are
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(see appendix A for a derivation)

d

dt
xa(t) = v0v

a
swim(t), (1a)

d

dt
vaswim(t) =− v0 v

c
swim(t)v

d
swim(t)Γa

cd+
√
2γ g[x(t)] vcswim(t) ǫcd g

da ζ[x(t)],
(1b)

where Einstein notation, summation over repeated in-
dexes, is assumed. γ denotes the strength of the active
fluctuations that affects the direction of motion and has
units of time−1, while g[x(t)] = det{gab[x(t)]}. Notice
that together with v0, the characteristic length scale,
L = v0/γ, measures the average distance that an ac-
tive particle travels along a given direction and is called
the persistent length. ζ[x(t)] is a scalar noise that de-
pends explicitly on the particle state through the projec-
tion of the three-dimensional vector ζ(t) along N[xa(t)].
ζ(t) dictates the time evolution of the swimming direc-
tion and its entries are Gaussian white noise with zero
mean. N[xa(t)] is a local unitary normal vector to the
tangential plane located at the particle position xa(t) on
the surface. gab and ǫab denote the inverse of the met-
ric tensor and the two dimensional Levi-Civita tensor,
respectively, while Γa

cd denotes the Christoffel symbols.
All these tensors encompasses the geometrical data of the
intrinsically curved surface. Particularly, for a flat sur-
face, where one has Γa

cd = 0 and gab = δab, the above
stochastic equations (1) reduce to the equations studied
in Ref. [23]. An slightly different approach that consid-
ers the interaction between active particles confined on a
curved surface is presented in Ref. [13].
By following standard methods [31], it is straightfor-

ward to show that the one-particle probability density

P (x, v, t) =

〈
1√
g (x)

∏

a

δ [xa − xa (t)] ×

δ [va − vaswim (t)]

〉
, (2)

satisfies the Fokker-Planck equation

∂P

∂t
= γ

∂

∂va

[(
gabv2 − vavb

) ∂P

∂vb

]
−∇a (v0v

aP )

+
∂

∂va
(
v0v

cvdΓa
cdP

)
, (3)

where v2 = vavbgab = 1 by consistency with fact that
the swimming direction is a vector of length one (see
the appendix B) and ∇a denotes the covariant derivative
compatible with the metric gab. In the equation (2), 〈· · · 〉
symbolizes the average over the realizations of the active
fluctuations ζ[x(t)]. The equation (3) takes into account,
in an explicit manner, the effects of the surface curva-
ture on the dynamics of an active particle constrained to
move on that surface. The first term of such an equation
accounts for the internal fluctuations on the direction of

motion that occurs on the tangent plane located at the
particle location on the surface. The second term gives
the drift term on the surface due to the self-propulsion,
while the third one accounts for the constrained mo-
tion to the surface as is evidenced by the appearance
of the Christoffel symbols. Notice that strictly speaking,
P (x, v, t) depends conditionally also on the initial values
of the position and velocity, not written explicitly for the
sake of writing.
The drift term in equation (3) hinders the obtention

of an exact solution, however, a thorough analysis can
be carried out along different methods [23, 24, 32, 33].
We follow the standard coarse-graining procedure to give
a fluctuating-like hydrodynamic description of Eq. (3)
[13, 32, 34] in terms of a hierarchy of coupled equations
for the hydrodynamic tensor fields. These tensor fields
are defined through a multipolar expansion of the single-
particle probability density P (x, v, t) as

P (x, v, t) =
∞∑

r=0

Hr(x, t)τ
r(v), (4)

where Hr(x, t)τ
r(v) denotes the contraction of the hydro-

dynamic tensor field of rank r, Hr(x, t) with the tensor
of the same rank τ r(v). The set of tensors {τ r(v)} forms
an orthogonal basis, thus, the hydrodynamic tensor fields
are calculated by mean of the projection

Hr(x, t) =
1

2r

∫
d2v τ r(v)P (x, v, t). (5)

With the firsts elements of such a basis

τ0(v) = 1, (6a)

τa(v) = 2va, (6b)

τab(v) = 4

(
vavb − 1

2
gab

)
, (6c)

τabc(v) = 8

(
vavbvc − 1

4
gabvc − 1

4
gbcva − 1

4
gcavb

)
,

(6d)

we have that the firsts hydrodynamic tensors: the prob-
ability density ρ(x, t), the polarization field Pa(x, t), the
nematic order parameter Qab(x, t), and the 3rd rank ten-
sor field Rabc (x, t) are given explicitly by

ρ(x, t) ≡ H0(x, t) =

∫
d2v P (x, v, t), (7a)

Pa (x, t) ≡ Ha(x, t) =
1

2

∫
d2v τa(v)P (x, v, t), (7b)

Qab (x, t) ≡ Hab(x, t) =
1

4

∫
d2v τab(v)P (x, v, t), (7c)

Rabc(x, t) ≡ Habc(x, t) =
1

8

∫
d2v τabc(v)P (x, v, t).

(7d)

The orthonormal basis chosen enforce some restrictions
in these hydrodynamic quantities, for instance, it can be
proved that nematic order parameter is traceless with
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respect to the metric tensor, i.e. gabQ
ab = 0. In the fol-

lowing, we briefly depict how the hierarchy of equations
for these hydrodynamic quantities emerge from Eq. (3)
[13].
After the integration over the velocity domain on both

sides of the Fokker-Planck equation (3), the change in
time of ρ(x, t) is related with the polarization field in the
continuity-like equation

∂ρ

∂t
= −∇a (v0P

a) , (8)

where v0P
a can be interpreted as the probability current

on the surface. The evolution equations for the hydro-
dynamic tensor fields Pa(x, t), Qab(x, t), Rabc(x, t), etc.
are obtained after multiplying Eq. (3) by τa, τab, τabc,
etc. and integrate over the whole velocity domain. Spe-
cial care must be taken on such evaluations due to the
particular way the covariant derivative acts on the rank-k
tensors [35]. It can be shown that the Christoffel symbols
disappear explicitly in the equation for Pa, namely

∂Pa

∂t
= −γPa − v0

2
∇aρ− v0∇bQ

ab. (9)

The evolution equation for the nematic order tensor field
Qab(x, t) can be written in terms of the polarization field,
and a traceless three rank tensor field Rabc(x, t) [13], to
say

∂Qab

∂t
= −4γQab − v0

4
Tab − v0∇cR

abc, (10)

where Tab denotes the traceless rank-2 tensor−gab∇cP
c+(

∇aPb +∇bPa
)
. The evolution equations for Rabc(x, t),

and higher order hydrodynamic fields can be obtained by
a similar procedure. Initial data for the each of the hier-
archy equations is obtained consistently from the initial
data.
Notice that equations (8) and (9) can be combined

through the explicit elimination of the polarization field
to obtain

∂2ρ

∂t2
+ γ

∂ρ

∂t
=

v20
2
∆gρ+ v20∇a∇bQ

ab, (11)

where ∆g is the so-called Laplace-Beltrami operator,
given explicitly in generalized coordinates by

∆g =
1√
g(x)

∂

∂xa

√
g(x)gab(x)

∂

∂xb
. (12)

With the probability density function, ρ(x, t), at hand,
we look at the expectation values of physical observables,
O (x), like the mean squared geodesic-displacement. The
expectation values are defined in the standard fashion by

〈O [x (t)]〉 =
∫

d2x
√
g O (x) ρ(x, t). (13)

It is noteworthy to mention that in the open euclidean
space one is able to obtain the exact time dependence
for the MSGD directly from the Eq. (11). Indeed, it

can be shown straightforwardly from (11), that
〈
s2(t)

〉
=〈

[x− x0]
2
〉
satisfies the equation

d2

dt2
〈
s2(t)

〉
+ γ

d

dt

〈
s2(t)

〉
=

v20
2
×

∫
d2x

[
ρ∇2 + 2Qab∇a∇b

]
s2. (14)

The last integral can be evaluated by noticing that
∇2s2 = 4, and ∇a∇bs

2 = 2δab, therefore the term pro-
portional to Qabδab vanishes by the symmetry of the ne-
matic tensor. With these considerations we have

d2

dt2
〈
s2(t)

〉
+ γ

d

dt

〈
s2(t)

〉
= 2v20 , (15)

whose solution with initial conditions
〈
s2(t = 0)

〉
= 0

and d
dt

〈
s2(t = 0)

〉
= 0 gives the exact expression [23]

〈
s2(t)

〉
= 4D

[
t−

(
1− e−γt

)
/γ

]
, (16)

where D = v20/2γ is the effective diffusion constant.
In the next section the polar approximation is con-

sidered. In this approximation the nematic order ten-
sor field and the higher order tensor fields as well, are
assumed fast variables and approximately homogeneous
over the points of the curved surface. Thus, the second
term in the rhs of Eq. (11) can be neglected leading to
the so-called telegrapher’s equation.

III. THE POLAR APPROXIMATION: THE

TELEGRAPHER EQUATION

Our main interest is in getting an approximated equa-
tion for the zero-rank hydrodynamic field, ρ(x, t), which
gives the probability density of finding a particle located
at the coordinates x independently of its swimming di-
rection v. It is customarily to truncate the infinite hi-
erarchy of equations of the last section to withhold only
the polarization field, Pa, and disregard the contribu-
tion of higher multipole terms. This procedure simpli-
fies the calculations by neglecting a whole lot of infor-
mation, the payoff, only some quantities (as the mean-
squared displacement in the two dimensional Euclidean
space) are well-described by such an approximation [24].
Nonetheless, the approximation gets better the longer the
time regime of the description since the information from
higher rank tensors turns out negligible. Indeed, as can
be seen from Eqs. (9) and (10), the Polarization field is
damped out as e−γt, while the nematic order parameter
tensor is damped out faster as e−4γt. The higher the rank
of the tensor in consideration the faster is damped out,
as has been exhibited in the case of active motion on the
plane analyzed in Ref. [23]. In physical grounds: if the
active particle is diffusing on the surface of a one-piece
manifold, it is expected that as time passes, the den-
sity becomes uniform on the surface, i.e. ρ(x, t) → Ω−1

M
,

where ΩM is the area of the manifold’s surface. Thus, any
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inhomogeneity of the density at short times, is induced
by the contribution of higher multipoles of the hierarchy.
Under these considerations we have that, in the polar

approximation, ρ(x, t) satisfies the non-Euclidean version
of the so-called Telegrapher’s equation

∂2ρ

∂t2
+ γ

∂ρ

∂t
=

v20
2
∆gρ. (17)

The Telegrapher’s equation equation has received much
attention in different contexts [28] that consider the flat
geometry of space, however, to our knowledge, little or
nothing has been said about the effects of intrinsic curva-
ture on the transport properties described by the equa-
tion (17).
The formal solution to the Eq. (17) can be found by

expanding ρ (x, t) in a complete set of eigenfunctions,
{ΨI(x)}, of the Laplace-Beltrami operator, −∆g. This
method is valid for arbitrary one-piece (compact) mani-
folds M, the Euclidean space Rd and manifolds that re-
sult form the direct product of these, namely, M×R (see
table (I)). Thus we have

ρ (x, t|x′) =
∑

I

aI (x
′, t)ΨI (x) , (18)

where we have explicitly stated the dependence on the
initial value x′ and the coefficients aI(x

′, t) are given by
(see appendix C)

aI(x
′, t) =

∑

i=±
K̄

(i)
I (t)Ai,I (x

′) . (19)

K̄±
I (t) are the Green’s functions,

K̄±
I (t) = ± exp

[
α±

(
v20λ

2
I/2

)
t
]

α+ (v20λ
2
I/2)− α− (v20λ

2
I/2)

, (20)

that correspond to the two independent solutions of
the characteristic equation associated to (17), which is
equivalent to the second order differential equation of
a damped harmonic oscillator. Ai,I(x

′) are functions
of x′ only and are determined from the initial data.
The symbol λ2

I ≥ 0, that have physical dimensions of
length−2, denote the discrete set of eigenvalues of −∆g,
that correspond to the eigenfunctions ΨI(x). The func-

tions α± (ω) = − γ
2 ±

√
γ2

4 − ω2 are derived in the ap-

pendix, where γ is the inverse of the persistence time.
If the following initial data is chosen,

lim
t→0

ρ(x, t|x′) =
1√
g
δ(2) (x− x′) , (21a)

lim
t→0

∂ρ (x, t|x′)

∂t
= 0, (21b)

namely, if a pulse on the surface starts to propagate with
vanishing initial flux, the coefficients A±,I (x

′) can be
computed explicitly and after substitution in (19) and
some rearrangements in (18) we have

ρ(x, t|x′) =
∑

I

G

(
γt

2
,
2v20
γ2

λ2
I

)
Ψ†

I(x
′)ΨI(x), (22)

where the function G(v, w) is given explicitly as

G(v, w) = e−v

[
cosh(v

√
1− w) +

sinh(v
√
1− w)√

1− w

]
.

(23)
This function embodies the time evolution that charac-
terizes the telegrapher’s equation, indeed, notice that for
each eigenvalue λ2

I , for which
(
2v20/γ

2
)
λ2
I > 1, G shows

an oscillatory behavior associated to the wave-like prop-
agation originated by the second order time-derivative
that appear in the telegrapher’s equation. The solution
for the case of flat space is recovered as can be checked
with the explicit solutions presented in refs. [26, 36].
Note, also, in this case that the particle density satisfies
the boundary behavior ρ(x, t|x′) → 0 when |x| → ∞.

Manifold Index Sum Eigenfunctions of −∆g

M I
∑

I ΨI (x)

Rd p
∫

ddp exp (ip · x) /(2π)d/2

M× R (I, p)
∑

I

∫

dp ΨI (x) exp (ipz) /
√
2π

TABLE I. In this table we show the type of manifolds that
we are considering and the corresponding identification of the
index, sum and eigenfunctions.

Notice that two characteristic length scales appear in
this, so far, general analysis. One of these scales char-
acterizes the persistence of active motion and we refer
to it as the the persistence length, denoted with L and
given by the product of the swimming speed v0 times the
persistence time γ−1, i.e. L = v0/γ. The other length
scale, characterizes the particular surface under consid-
eration and can be chosen, without loss of generality, as
the squared root of the inverse of the first positive eigen-
value, namely R = 1/

√
λ2
1 (this is warranted under the

assumption of the compactness of the manifold, for which
the zero eigenvalue is associated to the constant eigen-
function). Any of this two characteristic lengths can be
picked out as the length scale in the system, and the ratio
between them R/L, serves as a parameter that compares
the effects of curvature to those of persistence in the dif-
fusion process of an active particle on the surface.

In the limit L ≪ R we have that G
(
γt/2, 2

v2

0

γ2λ
2
I

)
can

be approximated by e−λ2

I Dt, where D = v20/2γ is the
well-known effective diffusion coefficient. In this limit
the particle density is given by

ρ(x, t|x′) ≃
∑

I

exp
(
−λ2

I Dt
)
Ψ†

I(x
′)ΨI(x), (24)

which corresponds to the formal solution of the diffu-
sion equation in curved manifolds, i.e. ∂ρ/∂t = D∆gρ.
Notice that in the asymptotic limit t → ∞, the domi-
nating term corresponds to the constant function asso-
ciated to the vanishing eigenvalue I = 0, and therefore
ρ → |Ψ0|2. From the normalization condition we have

that Ψ†
0 = Ψ0 = 1

√
ΩM. The mean squared distance from
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the initial position x′, 〈s2(t)〉 tends to the constant value∫
dxa [d(x|x′)]

2
/ΩM, where d(x|x′) denotes the geodesic

distance between x and x′.
In the opposite limit, L ≫ R, the effects of persistence

are important, and G
(
γt/2, 2v20λ

2
I/γ

2
)
results oscillatory

for each eigenvalue λI > 1/L. In particular for γt ≪
1 one has that G

(
γt/2, 2v20λ

2
I/γ

2
)
≃ cos

(
λI

v0√
2
t
)

and

therefore

ρ(x, t|x′) ≃
∑

I

cos
(
λI v0t/

√
2
)
Ψ†

I(x
′)ΨI(x), (25)

which now corresponds to a pulse that propagates on the
surface of a compact, curved manifold, that started at
x′, which is a solution of the wave equation, ∂2ρ/∂t2 =
(v20/2)∆gρ.

IV. WEAK CURVATURE APPROXIMATION

In this section, our goal is to determine an approxi-
mation for the probability density function, ρ (x, t), in
a neighborhood of a given point of the manifold. This
approximation captures the first correction due to the
effects of curvature which results linear in the Ricci cur-
vature tensor Rab and would serve as a basis to the im-
plementation of computing algorithms to find solutions
on arbitrary surfaces.
The procedure used in this paper follows the same tech-

niques originally used in the context of quantum field
theory in curved space, developed mainly by B. DeWitt
[37] (see appendix C), which goes in analogy with the
standard perturbation theory in quantum mechanics. In
addition, we use the such an approximation for ρ(x, t),
in order to compute an expression for the mean squared
geodesic-displacement in the weak curvature regime.

A. The probability density function in the

neighborhood of a given point on the surface

For weakly curved surfaces, the probability density
function (pdf) around the neighborhood of a given
position x′, can be approximated as the superposi-
tion of the continuous set of eigenfunctions ΨI (x) =
exp (ip · x) / (2π) with eigenvalue p in the infinite inter-
val (−∞,∞). Since our interest is in providing the pdf
around x′, it is clear that for weakly enough curved sur-
faces such pdf can be approximated by its locally flat
counterpart and therefore

ρ (x, t|x′) =

∫
d2p

(2π)
a(p;x, x′, t) eip·x, (26)

where the coefficient a(p;x, x′, t) is now given, in analogy
with (19), by

a(p;x, x′, t) =
∑

i=±
K̄(i)(p, x, t)Ai(p, x

′). (27)

In this approximation the effects of curvature are encoded
in the Green functions K̄(i)(p, x, t) only, i.e. curvature
decouples explicitly from the complete set of eigenfunc-
tions of the Laplace-Beltrami operator. The calculation
of the Green functions follows the standard procedures
used in the perturbation theory in quantum mechanics
and are computed explicitly in the appendix, these are
given by

K̄± (p, x, t) = ±g−1/4 (x) exp {α± [H0 (p)] t}
α+ [H0 (p)]− α− [H0 (p)]

, (28)

where α±(P ) = − γ
2 ±

√
γ2

4 − P and

H0 (p) =
v20
2

(
p2 − Rg (x

′)

6

)
, (29)

Rg(x
′) being the well-known scalar curvature (see ap-

pendix) evaluated at x′. As before, Ai(p, x
′) are directly

determined from the initial data (21), which lead to

ρ(x, t|x′) ≃
∫

d2p

(2π)
eip·(x−x′) g−1/4(x)g−1/4(x′)

G

[
γt

2
,
4

γ2
H0 (p)

]
, (30)

with the function G defined as in (23). In order to
obtain the linear curvature response we still need to
expand the function G(γt2 ,

4
γ2H0 (p)) and g1/4(x) lin-

early in the curvature. This can be achieved by con-
sidering the characteristic function of ρ(x, t|x′), namely

ρ̃(p, t) ≡
〈
e−ip·(x−x′)

〉
, given explicitly by the integrand

in Eq. (30), thus in the weak curvature approximation
we have

ρ̃(p, t) ≃ G (γt/2, w) +
4

3

(
v0
γ

)4

Rabp
apb

∂2G(γt/2, w)

∂w2
,

(31)

where we must evaluate at w =
2v2

0

γ2 p
2. Using the charac-

teristic function one is able to compute all the moments
of the distribution within this approximation.

B. The mean squared geodesic-displacement: the

weak curvature limit

The weak curvature limit in the mean-square displace-
ment can be computed using the correlation function
〈(xa − x′

a)(xb − x′
b)〉 = −∂2ρ̃ (p, t) /∂pa∂pb, which is cal-

culated with a second derivative of the characteristic
function. The structure of this quantity is inherited from
the form of ρ̃(p, t), that is, within the linear curvature
approximation the correlation function displays a known
flat expression plus a first correction due to the curva-
ture, Rab, which is multiplied by the function f(z) given
by

f(z) =
1

4

[
z2 − 2z +

3

2
−
(
z +

3

2

)
e−2z

]
. (32)
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One can notice that for dimension d > 2, correlations
between (xa − x′

a) and (xb − x′
b), for a 6= b, may oc-

cur depending on the structure of the Ricci tensor, Rab.
However, in the dimension of our interest d = 2, the
Ricci tensor is proportional to the metric tensor, gab,
and the scalar curvature, Rg. Furthermore, in d = 2, the
Riemann normal coordinates implies that gab(x

′) = δab,
where x′ is the fiducial point. These considerations im-
ply that 2 〈(xa − x′

a)(xb − x′
b)〉 =

〈
s2(t)

〉
δab, where the

mean squared geodesic-displacement turns out to be

〈
s2(t)

〉
=

〈
s2(t)

〉
0
− 32

3

(
D

γ

)2

f

(
γt

2

)
Rg + · · · ,(33)

where the mean squared displacement,
〈
s2(t)

〉
0

=

4D [t− (1− e−γt) /γ], on the flat space was computed
previously by one of the authors [23]. In what follows,
we are going to determine the behaviors displayed by the
mean squared geodesic-displacement (33) in the limiting
cases performing in the last section.
For long times, γt ≫ 1, we have f(γt/2) ≃ γ2t2/16

which gives the mean squared geodesic-displacement,

〈
s2(t)

〉
≃ 4Dt− 2

3
Rg(Dt)2 + · · · , (34)

for a Brownian particle in a curved manifold of scalar
curvature Rg, where D is the same effective diffusion co-
efficient defined above. The first term corresponds to the
standard diffusion regime found in an Euclidean space,
whereas the second term corresponds to the first correc-
tion due to curvature. Further curvature corrections can
also be determined using the same procedure [38].
For the short-time regime, γt ≪ 1, we have f(γt/2) ≃

γ4t4/192, and then one has the curvature correction to
the standard ballistic regime found in flat space is given
by

〈
s2
〉
≃ v20t

2

[
1−Rgv

2
0t

2

(
1

72
− 1

180
γt+ · · ·

)]
.

(35)

We claim that in an arbitrary local domain D ⊂ M, with
x′ ∈ D and scalar curvature Rg(x

′), the equation (33)
describes the crossover from ballistic to diffusive motion
on the curved manifold. This is a generalization of the
same crossover in Euclidean spaces discovered previously
by one of the authors in [23].

V. ACTIVE MOTION ON THE SURFACE OF

THE THREE-DIMENSIONAL SPHERE S2

As an example of the direct application of the general
theory given in the previous sections, we analyze in this
one, the motion of an active particle moving on the sur-
face of a sphere of radius R. This particular example has
been discussed recently, by the use of numerical simula-
tions, in Ref. [39]. The kinematic state of the 2D active
particle on the sphere can be described using equations
(1) specialized to the case of the sphere. In this case,

there is a further simplification since one can choose a
coordinate system where the metric tensor of S2 is diag-
onal.
The Riemannian geometry of the sphere S2 is encoded

in the metric tensor, which for the standard spherical
coordinates xθ = θ and xϕ = ϕ, the polar, and azimuthal
angles respectively, has as elements the following ones:
gθϕ = gϕθ = 0, gθθ = R2, and gϕϕ = R2 sin2 θ. In these
coordinates the components of the swimming direction
v̂swim are denoted with vθ and vϕ, and the Christoffel
symbols are explicitly given by Γa

θθ = Γθ
θϕ = Γϕ

ϕϕ = 0

with a = θ, ϕ, Γϕ
θϕ = cot θ and Γθ

ϕϕ = − sin θ cos θ and

the determinant of the metric tensor is g = R4 sin2 θ.
With these particular values, we have that Eqs. (1b) can
be written explicitly as

d

dt
vθswim = v0 (v

ϕ)
2
sin θ cos θ −

√
2γR sin θ vϕζ[x(t)],

(36a)

d

dt
vϕswim = −v0v

θ
swimv

ϕ
swim2 cot θ +

√
2γR vθ ζ[x(t)],

(36b)

where the state-dependent noise ζ[x(t)] is explicitly
given by ζ1(t) cos θ(t) cosϕ(t) + ζ2(t) sin θ(t) sinϕ(t) +
ζ3(t) cos θ(t). As a consequence of the constancy of the
swimming speed, the vaswim’s are not independent and are

related by
[
Rvθswim(t)

]2
+ [R sin θ vϕswim(t)]

2
= 1, there-

fore only one degree of freedom is needed. It is conve-
nient to chose that degree of freedom as the swimming
angle Θ(t), such that in terms of this, the components
of the swimming direction are vθswim(t) = cosΘ(t)/R and
vϕswim(t) = sinΘ(t)/R sin θ(t). With these considerations
we have that the Langevin equations that give the tra-
jectories of an active particle on the surface of a sphere
are given by

d

dt
θ(t) =

v0
R

cosΘ(t), (37a)

d

dt
ϕ(t) =

v0
R

sinΘ(t)

sin θ(t)
, (37b)

d

dt
Θ(t) = −v0

R
sinΘ(t) cot θ(t) +

√
2γ ζ[x(t)]. (37c)

In contrast with the corresponding equations for an ac-
tive particle that diffuse in a two-dimensional Euclidean
plane (see for instance those given in [23]), two effects due
to the sphere curvature can be identified, namely, the first
term in the right hand side of Eq. (37c) that accounts
for the intrinsic curvature of the sphere and secondly, the
state dependent nature of the active fluctuations which
leads to multiplicative noise.
The Fokker-Planck equation for the one-particle distri-

bution function

P (θ, ϕ,Θ, t) =

〈
1√
g

∏

a

δ (xa − xa(t)) δ (Θ−Θ(t))

〉
,

associated to Eqs. (37) is given, after a straightforward
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calculation following the method in section II, by

∂P

∂t
= γ

∂2P

∂Θ2
− v0 cosΘ

R sin θ

∂

∂θ
(sin θP )

− v0 sinΘ

R sin θ

∂

∂ϕ
P +

v0
R

∂

∂Θ
(sinΘ cot θP ) ,

(38)

where the arguments of P have been omitted for the sake
of writing. We now follow the same procedure used in
Ref. [23], and we employ the following expansion,

P (θ, ϕ,Θ, t) =
∑

n∈Z

einΘe−γn2tpn (θ, ϕ, t) , (39)

where the expansion coefficients pn(θ, ϕ, t) satisfy the fol-
lowing hierarchy equations

∂pn
∂t

= − v0
2R

e−γt
1∑

σ=−1

e−2σ γn tℓ̂σ,n pn+σ,

(40)

where the operators ℓ̂σ,n, σ = ±1, are given explicitly by

ℓ̂σ,n =
1

sin θ

(
∂

∂θ
sin θ + σi

∂

∂ϕ

)
+ σn cot θ. (41)

The diffusion of free active particles on the sphere, is
given by the exact solution of the hierarchical Eqs. (40),
which is unknown in the most general case. We explore
such a solution in the polar approximation as is discussed
in the next section, leaving the analysis of the effects of
higher Fourier modes in the expansion (39), to be pre-
sented elsewhere in a future communication.

A. Active motion on the sphere S2: The polar

approximation

In the polar approximation, the first three Fourier
modes, namely p0(θ, ϕ, t) and p±1(θ, ϕ, t), are retained
in such a way that the hierarchical equations (40) are re-
duced to a closed system of equations, after elimination
of the modes p±1(θ, ϕ, t) we have that p0(θ, ϕ, t) satisfies
the spherical telegrapher equation

∂2

∂t2
p0 + γ

∂

∂t
p0 =

v20
2R2

[
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

]
p0(θ, ϕ, t), (42)

where we have used that ℓ̂−1,0ℓ̂+1,−1 + ℓ̂+1,0ℓ̂−1,+1 re-
sults into two times the Laplace-Beltrami operator, ∆g,
in spherical coordinates, more precisely

ℓ̂−1,0ℓ̂+1,−1 + ℓ̂+1,0ℓ̂−1,+1 = 2×
[

1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

]
. (43)

As before, we make the identification p0(x, t) ≡ ρ(x, t|x′).
As is well-known, the eigenfunctions of the Laplace-

Beltrami operator on the sphere correspond to those
given by the spherical harmonics Y m

l (θ, ϕ) with eigen-
values l(l+1)/R2, with l = 0, 1, . . . and m = −l, · · · , l. If
the initial probability distribution corresponds to a pulse
with zero velocity in the north pole, the azimuthal in-
variance allows us to write the solution in the following
manner

ρ(θ, ϕ, t) =
∞∑

l=0

2l + 1

4πR2
G

[
γt

2
, 2

v20
γ2

l(l + 1)

R2

]
Pl(cos θ),

(44)
where Pl(cos θ) denotes the Legendre polynomial of de-
gree l. Notice the explicit appearance of the ratio R/L =
R/(v0/γ), which measures the competence between the
effects of curvature and the effects of persistence. If the
persistence length is much more smaller than the curva-
ture radius, L/R → 0, the well-known solution of diffu-
sion on the sphere,

ρ(θ, ϕ, t) =

∞∑

l=0

2l+ 1

4πR2
e−D l(l+1)t/R2

Pl(cos θ), (45)

is recovered, with the effective diffusion constant D =
v20/2γ.

1. Mean squared geodesic-displacement on S2

Coincident with the initial data previously chosen, the
geodesic displacement s(t) is Rθ(t) and correspondingly
the mean square geodesic-displacement,

〈
s2(t)

〉
is given

by R2〈θ2(t)〉. A differential equation for the mean square
geodesic-displacement can be obtained directly from the
Eq. (42), namely

d2
〈
s2(t)

〉

dt2
+ γ

d〈s2(t)〉
dt

= v20×
{
1 +

〈
s(t)

R
cot

[
s(t)

R

]〉}
. (46)

In contrast with its counterpart in the two dimensional
Euclidean manifold (15), the last equation is not closed in〈
s2(t)

〉
but coupled in a high nonlinear way with higher

moments of s(t), however, by the use of the Taylor expan-
sion of z cot z =

∑
n(−1)n22nB2nz

2n/(2n)!, where Bn

are the Bernoulli numbers, we have in the limit of weak
curvature, i.e. v0/γ ≪ R, that right hand side of Eq.
(46) is 2v20

[
1− 1

6R2

〈
s2
〉
− . . .

]
. By retaining only the

first correction proportional to R−2 and recalling that the
Ricci scalar curvature is Rg = 2/R2, the solution to the
last equation coincides with the mean square geodesic-
displacement given in Eq. (33).
The exact time-dependence of

〈
s2(t)

〉
can be obtained

by the use of (44), which is given explicitly by

〈
s2(t)

〉
=

R2

2

∞∑

l=0

(2l+1)gθ2 (l)G

[
γt

2
,
2L2

R2
l(l + 1)

]
,

(47)
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FIG. 1. (Color online) Time dependence of the dimensionless mean squared geodesic-displacement 〈s2(r)〉/R2 = 〈θ2(t)〉 for
different values of the ratio of the sphere radius R to the persistent length L. In the left panel, R/L = 0.25, 0.5, 1.0,
2.0 and 5.0, the effects of persistence are marked by the t2 dependence and by the oscillations around the asymptotic value
〈

θ2(t)
〉

= (π2−4)/2, that characterizes the uniform distribution on the whole sphere (dotted-lines). In the right panel R/L =10,

20 and 100, the effects of persistence are diminished and 〈s2(t)〉 starts exhibiting the standard linear dependence for times
larger than γ−1. The thick-gray lines mark the linear t and quadratic t2 time dependence.

where gθ2 (l) denotes the projection of θ2 onto the Leg-
endre polynomial of degree l, i.e.

gθ2(l) =

∫ π

0

dθ sin θ Pl(cos θ) θ
2, (48)

and whose explicit dependence on l has been given in
Ref. [40]. As before, L denotes the persistent length.
The time dependence of the mean squared geodesic-

displacement, given in Eq. (47), is shown in the Fig-
ure (1) for some particular values of the ratio R/L. As
can be observed in the figure, an active particle con-
fined to the sphere exhibits two conspicuously different
behaviors whenever R/L is larger or smaller than 2 (left
panel). On the one hand, for R/L ≤ 2, the mean squared
geodesic-displacement starts growing quadratically with
time (ballistic regime) in contrast to the linear grow for
standard diffusion (attained in the R/L ≫ 1 regime for
times larger than γ−1, see the right panel). The ex-
plicit time dependence of

〈
s2(t)

〉
in the ballistic regime

can be written as v2efft
2, with veff an effective swimming

speed defined through v2eff = η2 v20/8, where the constant
η2 = −∑∞

l=0 l(l + 1)(2l + 1)gθ2(l) > 0. In addition, the
mean squared geodesic-displacement reaches the asymp-
totic value (π2 − 4)/2 non-monotonically exhibiting os-
cillations (left panel), contrary to the case R/L > 2
for which such behavior is monotonic. These oscilla-
tions have been pointed out in the numerical analysis
of Ref. Apaza and Sandoval [39], though in there, the
authors consider translational fluctuation in addition to
rotational ones. The physical meaning of such oscilla-
tory behavior is clear: The initial pulse in the north pole
of the sphere starts to propagate with speed v0 in all
directions forming a sharp ring that sweeps the sphere
surface (and in general the surface of a compact mani-
fold) a number of times that depends on the ratio R/L.
Indeed, this is confirmed by the estimation of the time

at which the first maximum of the oscillations appears,
which roughly corresponds to the time at which the par-
ticles reach the south pole of the sphere, tsouth, a simple

calculation leads to tsouth ≈ (2
√
2π/

√
η2)R/v0 that gives

γtsouth ≈ 0.5878 for R/L = 0.25. As time passes the ring
becomes thicker due to fluctuations, persistence effects
become negligible and the distribution turns uniform in
the asymptotic limit. For large values of the R/L the ef-
fects of persistence are damped out leading to a standard
diffusive regime.

VI. CONCLUDING REMARKS AND

PERSPECTIVES

In this paper, we have analyzed the diffusion of non-
interacting active particles confined to move on a curved
surface. On the one hand, Langevin equations that con-
sider explicitly the effects of curvature and active motion
are provided. By the use of the corresponding Fokker-
Planck equation, we built the standard stochastic hydro-
dynamic hierarchy of equations that couple the particle
density ρ, the polarization field Pa, the nematic tensor
Qab, etc. Of particular importance, the commonly used
polar approximation, was considered. Such approxima-
tion consists in truncating the hierarchy of equations re-
taining only up to the polarization field and disregarding
higher order tensors. The approximation is valid in the
long-time regime when the nematic tensor can be consid-
ered as a fast variable and homogeneous over the surface.
As consequence of the approximation, it was shown that
the conserved particle density obeys a generalization of
the Telegrapher’s equation in curved surfaces, where the
Laplace operator in Euclidean space, is replaced by the
corresponding Laplace-Beltrami operator that considers
the intrinsic curvature of the surface.
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The main consequences of the generalization of the
Telegrapher’s equation to curved manifolds were dis-
cussed. On the one hand, a general solution is given for
compact manifolds in terms of a expansion on the discrete
set of eigenfunctions of the Laplace-Beltrami operator. In
the short-time regime, the provided solution corresponds
to the solution of the wave-equation in curved surfaces
that characterizes wave-like propagation. In the weak-
curvature limit, such propagation is reminiscent of the
propagation in the plane, i.e. with propagation speed
v0 and wake effects are markedly observed. Interest-
ingly, however, for arbitrary values of curvature, the sig-
nal propagation is realized at an effective speed that de-
pends on the surface curvature. In a local domain, we
have studied the effects of curvature in the probability
density function as well as in the mean squared geodesic
displacement.

If initial data corresponding to a pulse with vanishing
current is chosen, the pulse turns with time into a ring-
like structure that propagates with the effective speed
and for compact surfaces and for small enough ratios
R/L, the ring structure recurs with time that lead to
oscillations in the mean squared geodesic-displacement.
This is clearly exhibited in section V in the case of the
sphere.

In the regime for which the persistence length is much
smaller than the curvature that characterizes the surface,
L/R → 0, the solution to the generalized telegrapher
equation (17), is close to the solution of the diffusion
equation on curved manifolds with an effective diffusion
constant D = v20/2γ, i.e. the second order derivative
with respect to time in Eq. (17) can be disregarded. In
this regime it is shown that the MSGD coincides with
that previously obtained for passive Brownian particles
in curved space [38]. On the contrary, in the persistent
regime, it is shown how the MSGD has a ballistic behav-
ior, in particular, we provide corrections to this behavior
when the effects of curvature and diffusive effects begin
to be relevant.

The results presented in this study can be extended
along several directions. Among these are: the realiza-
tion of a systematic study of the dynamics of active par-
ticles in a sphere beyond the polar approximation; the
inclusion of passive fluctuations on the translational de-
gree of freedom of the model can be treated in the same
way to obtain analytical results. In particular, this situ-
ation could be subjected to an experimental scrutiny as
has been the case for passive Brownian particles on the
sphere [41]. Another natural extension can be developed
to include the effects of curvature in continuous mean
field models similar to those of Toner and Tu hydrody-
namic equations. Also, we can derive the hydrodynamic
equations of Brownian particles with alignment interac-
tion in curved space. Finally, the methods and results
proposed in the present work allow us to propose a step
further to develop simulation algorithms to study active
particles with alignment interaction in different surfaces
such as ellipsoids, tori, catenoid, etc.
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Appendix A: Langevin equations for active particles

moving on surfaces

The starting point in the derivation of Eqs. (1) is the
following pair of equations

ẍc + Γc
abẋ

aẋb =
µ

m
e
c ·

[
−ebẋ

b + v0v̂swim(t)
]
, (A1a)

d

dt
v̂swim(t) =

√
2γ ζ(t)× v̂swim(t), (A1b)

where the superscripts a, b, c label the particular local
coordinate used, m is the mass of the particle and µ
the dragging coefficient of the friction force exerted by
the surface on the particle. {ea} form a set of linearly
independent local vectors at the position of the parti-
cle on the surface. Equation (A1a) corresponds to the
equation of motion of particle of mass m moving on a
surface [40] subject to a linear friction force (first term
in squared parenthesis) and to self-propulsion force-like
(second term). Equation (A1b), on the other hand, ac-
counts for the internal dynamics of the self-propelling
“swimming force”, that accounts for the stochastic rota-
tions of v̂swim(t) in the tangent plane on the surface at the
position of the particle, and ζ(t) is a three-dimensional
vector whose entries correspond to Gaussian white noise
with zero mean and unit variance.
We consider the overdamped limit, that is, the limit

for which inertial effects can be neglected, consequently
the left hand side of equation (A1a) is identical to zero
which directly leads to (1a). We also ignore any possible
Brownian contribution due to external– thermal– fluctu-
ations.
The change in time of v̂swim(t) involves the change in

time of the local coordinate system, and therefore the
change of the local basis {ea}. The variation of the
local coordinate system upon small movements on the
surface is accounted by the Weingarten-Gauss formulas,
(∂/∂xb)ea − Γc

baec = −KabN, where Kab denotes the
components of the second fundamental form of the sur-
face, namely, Kab = ea ·(∂/∂xb)N. Thus the lhs of (A1b)
can be written as

d

dt
v̂swim(t) =

d

dt
vaswim ea+

vaswim (Γc
baec −KabN)

dxb

dt
. (A2)

Since the dynamics occurs in the tangent plane we
project equation (A1b) into it, thus the left hand side
becomes

dvaswim

dt
+ v0v

a
swimvbswimΓ

c
ba, (A3)



11

where (1a) has been used to replace dxb/dt. The projec-
tion of the right hand side of the equation,

√
2γζ×v̂swim ·

ed can be written as

√
2γ

√
g vfswim ǫfd ζ ·N. (A4)

These considerations lead straightforward to equations
(1).

Appendix B: The condition of consistency v2 = 1

1. Proof of v2 = 1

Here we show that the random variables va in Eq. (3)
satisfy the condition v2 = vavbgab = 1. To this purpose
we consider the change in time of the expectation value
of v2, that is,

d

dt

〈
v2
〉
=

∫
dµ v2

∂

∂t
P (x, v, t), (B1)

where dµ =
√
gd2x d2v denotes the measure of the phase

space. By use of the Fokker-Planck equation (3) and after
integrating by parts one has that and Λab = gabv2−vavb.

d

dt

〈
v2
〉
= 2

∫
dµ

[
γ

∂

∂vb
(
gabv2 − vavb

)
va

−2v0v
avbvcΓabc

]
P (x, v, t), (B2)

where the identities

∂gcd

∂xa
= −gbdgec

∂gbe
∂xa

,
∂gbc
∂xa

= Γbca + Γcba, (B3)

have been used. Finally, notice that
(
gabv2 − vavb

)
va =

0 and vavbvcΓabc = 0, then one have that
〈
v2
〉
is a con-

stant, which can be chosen to be one by a simple scaling
argument. Since

〈
v2
〉
= 1, it means that

∫
dµ (v2 − 1) P (x, v, t) = 0, (B4)

which implies that v2 = 1, since P (x, v, t) is a positive
function in the whole phase-space domain.

Appendix C: Green functions for the curved

Telegrapher’s equation

In this section, our goal is to determined the Green
function K (x, x′, t) that satisfies the equation

(
∂2

∂t2
+ γ

∂

∂t
− v20

2
∆g

)
K (x, x′, t) =

1√
g
δ (x− x′) δ (t) .

(C1)

Now, in order to find a formal solution for K (x, x′, t)
we assume the existence of a complete set of eigenfunc-
tions {ΨI} and corresponding eigenvalues −λI of the

Laplace-Beltrami operator ∆g [42]. Using the complete-

ness relation δ (x− x′) /
√
g =

∑
I Ψ

†
I (x

′)ΨI (x) and a
Fourier decomposition in the time variable K (x, x′, t) =∫

dE
2π e

iEtK (x, x′, E) one can express the Green function
as follows

K (x, x′, t) =
∑

I

Ψ†
I (x

′)ΨI (x)

∮

Γ

dz

2πi

ezt

z2 + γz +
v2

0

2 λI

,

(C2)

where integration in the E variable has been replaced by
an equivalent integration along the semi-circle contour Γ
in the complex plane (see figure (2)). We can identify
the poles

α± (ω) = −γ

2
±
√

γ2

4
− ω, (C3)

where ω =
(
v20/2

)
λI .

FIG. 2. (Color online) It is shown one of the two possible
integration contours, Γ, to evaluate the integral in Eq. (C2).
These contours are symmetric respect to the imaginary axis
and they enclose the poles α+ and α−, respectively.

The complex integration gives the two independent so-
lutions

K̄(±) (x, x′, t) = ±
∑

I

Ψ†
I (x

′)ΨI (x) e
α±(v2

0
λI/2)t

α+ (v20λI/2)− α− (v20λI/2)
.

(C4)

Using these Green’s functions the pdf can be obtained
spanned in the Green’s functions as follows

ρ (x, t) =

∫
ddy

√
g

∑

i=+,−

[
K(i) (x, y, t)Ai (y, x

′)
]
.

(C5)

Now, we substitute Ai (y, x
′) =

∑
I Ai,I (x

′)ΨI(y) and
(C4) into (C5). In addition, we use the orthogonal re-

lation
∫
ddy

√
gΨ†

I (y)ΨI (y) = δII′ . All these considera-
tions allow us to prove Eq. (18).
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1. Green functions for the curved Telegrapher’s

equation in the weak curvature regime

By the use of the same methods originally im-
plemented in the context of quantum field theory
on curved spaces [37, 43], we now determine the
Green’s function, K(x, x′, t), in the weak curvature
regime. We first performed a change K (x, x′, t) =
g−1/4 (x) K̄ (x, x′, t) g−1/4 (x′). In addition, the term
1/

√
g that multiplies by the Dirac delta appearing in

the corresponding Green equation (C1) is separated as
g−1/4 (x) g−1/4 (x′). Thus, using these changes of vari-
ables the resulting Green equation can be rewritten as

[
∂2

∂t2
+ γ

∂

∂t
+ Ĥ

]
K̄ (x, x′, t) = δ (x− x′) δ (t) , (C6)

where Ĥ(x) is defined in terms of the Laplace-Beltrami

operator as − v2

0

2 g1/4(x)∆g g
−1/4(x), which after use of

the explicit definition of ∆g given in Eq. (12), Ĥ(x) can
be rewritten in terms of the operator p̂a = −i∂/∂xa as
[44]

Ĥ =
v20
2

[
δabp̂ap̂b + p̂a

((
gab − δab

)
p̂b·

)
+ V (x)

]
(C7)

with

V (x) = −g−1/4(x)
∂

∂xa

[√
g(x) gab(x)

∂

∂xb
g−1/4(x)

]
.

(C8)
Before attempting to do any approximation let us take

the Fourier transform in the time variable of Eq. (C6).
Let K̄ (x, x′, E) be the Fourier transform of the Green
function where E is the conjugate Fourier variable of
time, then, Eq. (C6) can be written as

(
−E2 + iγE + Ĥ

)
K̄ (x, x′, E) = δ(x− x′). (C9)

Thus the Green function can be written as the
matrix elements of the resolvent operator K̂ =[
−E2 + iγE + Ĥ

]−1

as

K̄ (x, x′, t) =
〈
x
∣∣∣K̂

∣∣∣ x′
〉
. (C10)

We now take the advantage of the spatial covariance of
the Laplace-Beltrami operator in the Telegrapher’s equa-
tion, in order to use Riemann normal coordinates (RNC)
around the point x′. This coordinate frame is particu-
larly useful in the case of weak curvature regime since
one the following expansions are valid [30] for the metric

tensor gab(x) and
√
g(x)

gab(x) = δab +
1

3
Racdb(x

′) (x− x′)c(x− x′)d + . . . ,

(C11)
√
g(x) = 1− 1

6
Rab(x

′) (x− x′)a(x − x′)b + . . . , (C12)

where standardly the Riemann curvature tensor Rabcd =

gafR
f
bcd, Ra

bcd = ∂cΓ
a
bd − ∂dΓ

a
bd + Γa

csΓ
s
bd − Γa

dsΓ
s
bc and

Rab = Rc
acb = gcdRacbd is the Rici tensor.

Using these expressions and the corresponding ones for
the inverse metric tensor gab(x) as well as for the deter-
minant of the metric g(x), one has the following approx-

imation for the Ĥ

Ĥ = Ĥ0 + ĤI , (C13)

where the unperturbed part Ĥ0 is given by

Ĥ0 =
v20
2

[
δabp̂ap̂b −

Rg

6

]
, (C14)

being Rg = gabRab the scalar curvature and the perturb-
ing part

ĤI = −1

3
Racdbp̂

aycydp̂b. (C15)

The standard perturbation theory used in Quantum
Mechanics allows to write the resolvent operator as the
following expansion

K̂ = K̂0 − K̂0ĤIK̂0 + · · · , (C16)

where the unperturbed resolvent operator K̂0 is defined
by

K̂0 =
[
−E2 + iγE + Ĥ0

]−1

, (C17)

and can be referred to as the “free” resolvent oper-
ator. Due to the antisymmetric nature of the Rie-
mann tensor (see for instance [45]) it can be proved that〈
x
∣∣∣K̂0ĤIK̂0

∣∣∣ x′
〉
= 0 and therefore, to the lowest non-

trivial approximation in the curvature, only the free re-
solvent operator contributes. With this considerations
the Green function can be written as

K̄ (x, x′, t) =

∫
ddp

(2π)
d
eip·(x−x′)×
∮

γ

dz

2πi

ezt

z2 + γz +H0 (p)
, (C18)

where the complete set of eigenstates of p̂a, {|pa〉}, for
which 〈xa|pb〉 = δabe

ixapa and H0 (p) =
v2

0

2

(
p2 − Rg

6

)
,

has been used. The dependence in time is recovered by
the integration on the complex plane z, along the semi-
circle contour γ (see figure (2)), form which we obtain

K̄± (x, x′, t) = ±
∫

ddp

(2π)d
eip·(x−x′)+α±(H0(p))t

α+ (H0 (p))− α− (H0 (p))
.

(C19)

where α± (P ) = − γ
2 ±

√
γ2

2 − P correspond to the poles

of the integrand in Eq. (C18)
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2127 (1997).
[30] L. P. Eisenhart, Riemannian Geometry (Princeton Uni-

versity Press, 1997), ISBN 0691023530,9780691023533.
[31] J. Zinn-Justin, Quantum Field Theory and Critical Phe-

nomena, International Series of Monographs on Physics
(Oxford University Press, USA, 1996), 3rd ed., ISBN
019851882X,9780198518822.

[32] M. E. Cates and J. Tailleur, EPL (Europhysics Let-
ters) 101, 20010 (2013), URL http://stacks.iop.org/

0295-5075/101/i=2/a=20010.
[33] M. J. Schnitzer, Phys. Rev. E 48, 2553 (1993), URL

http://link.aps.org/doi/10.1103/PhysRevE.48.

2553.
[34] J. J. Duderstadt and W. R. Martin, Transport theory.,

vol. 1 (1979).
[35] M. Nakahara, Geometry, topology, and physics, Graduate

student series in physics (Institute of Physics Publishing,
2003), 2nd ed., ISBN 0750306068,9780750306065.

[36] P. M. Morse and H. Feshbach, Methods of theoretical

physics, vol. 1 (1953).
[37] B. S. DeWitt, Dynamical theory of groups and fields

(Gordon and Breach, ????).
[38] P. Castro-Villarreal, Journal of Statistical Mechan-

ics: Theory and Experiment 2010, P08006 (2010),
URL http://stacks.iop.org/1742-5468/2010/i=08/

a=P08006.
[39] L. Apaza and M. Sandoval, Phys. Rev. E 96,

022606 (2017), URL https://link.aps.org/doi/10.

1103/PhysRevE.96.022606.
[40] P. Castro-Villarreal, A. Villada-Balbuena, J. M. Mndez-

Alcaraz, R. Castaeda-Priego, and S. Estrada-Jimnez,
The Journal of Chemical Physics 140, 214115 (2014),
https://doi.org/10.1063/1.4881060, URL https://doi.

org/10.1063/1.4881060.



14

[41] Y. Zhong, L. Zhao, P. M. Tyrlik, and G. Wang, The
Journal of Physical Chemistry C 121, 8023 (2017),
http://dx.doi.org/10.1021/acs.jpcc.7b01721, URL http:

//dx.doi.org/10.1021/acs.jpcc.7b01721.
[42] I. Chavel, Eigenvalues in Riemannian ge-

ometry, Pure and applied mathematics 115
(Academic Press, 1984), 2nd ed., ISBN
0121706400,9780121706401,9780080874340.

[43] D. T. Leonard Parker, Quantum Field Theory in

Curved Spacetime: Quantized Fields and Gravity,

Cambridge Monographs on Mathematical Physics
(Cambridge University Press, 2009), 1st ed., ISBN
0521877873,9780521877879.

[44] D. O’Connor, Quantum Field Theory in Curved Space-

time: The Effective Action and Finite Size Effects (Uni-
versity of Maryland at College Park, 1985), URL https:

//books.google.com.mx/books?id=A6s0OAAACAAJ.
[45] P. Castro-Villarreal and R. Ruiz-Sánchez, Phys. Rev. B

95, 125432 (2017), URL https://link.aps.org/doi/

10.1103/PhysRevB.95.125432.


