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We report the thermodynamic properties of cuprate superconductors YBa2Cu3O6+x,

with x ranging from underdoped (x = 0.55) to optimally doped (x = 0.9) regions. We
model cuprates as a boson-fermion gas mixture immersed in a layered structure, which

is generated via a Dirac comb potential applied in the perpendicular direction to the

CuO2 planes, while the particles move freely in the other two directions. The optimal
system parameters, namely, the planes’ impenetrability and the paired-fermion fraction

are obtained by minimizing the Helmholtz free energy in addition to fixing the critical

temperature Tc to its experimental value. Using this optimized scheme, we calculate the
entropy, the Helmholtz free energy and the specific heat as functions of temperature.

Additionally, some fundamental properties of the electronic specific heat are obtained,

such as the normal linear coefficient γ(Tc), the quadratic α term and the jump height at
Tc. We reproduce the cubic βl term of the total specific heat for low temperatures. Also

our multilayer model inherently brings with it the mass anisotropy observed in cuprate
superconductors. Furthermore, we establish the doping value beyond which supercon-

ductivity is suppressed.

Keywords: Underdoped cuprates; Superconductivity; Helmholtz free energy; Specific
heat.

1. Introduction

A great amount of theoretical work has been invested in pursuing a better descrip-

tion of the properties of the High Temperature Superconductors (HTSC) since their

discovery1, in an effort to go beyond the models provided by the BCS theory2. Most

of these models are BCS-type theories, and very few of them extend their predic-

tions to the thermodynamic properties other than the critical temperature, such as

the Helmholtz free energy or the specific heat. In addition, the influence of doping

is hardly ever mentioned in theoretical calculations, even though there is abundant

experimental material that can be found in the literature.

Most recent investigations focus on the newer kinds of superconductors such as

FeAs3,4 and H2S5,6, which has the record of highest Tc. Therefore it is not surprising
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that experiments that report advances on cuprates frequently go unnoticed. How-

ever, these advances have lead us to a deeper understanding of the relation among

their properties and the superconducting state. Some of them are: the notorious

increase in the value of the superconducting gap for underdoped cuprates as doping

diminishes7; the dramatic decrease of the Fermi temperature with doping8; the de-

pendence of hole concentration vs oxygen content9, and the dependence of doping

on the cell size10, among others.

In this work, we use the Boson-Fermion model of superconductivity11,12,13,27,30

and its recently developed extension to layered systems26 to study the influence of

doping on the thermodynamic properties of underdoped cuprates YBa2Cu3O6+x,

with x ∈ [0.55, 0.9]. To model the cuprate superconductors, we begin with an electron

gas subject to a BCS interaction and immersed in a multilayer structure which rep-

resents the CuO2 planes. As the temperature is lowered, the electron pairing starts

at some temperature T ∗, while coherence among the Cooper pairs is reached a the

critical temperature Tc < T ∗13,14,15,16. At this stage, the Cooper pairs behave like

composite, non-interacting spin-zero bosons17, with either zero or nonzero center-

of-mass momenta, coexisting with the fermion fluid of unpaired electrons immersed

in a periodic multilayer array18,19,20 in a ratio that depends on the characteris-

tics of each superconductor. Whether the temperature T ∗ represents the pseudogap

temperature as a sign of pre-pairing7,21,22,23 or not24,25 is still an ongoing debate.

The paper is organized as follows: in Sec. 2 we describe the Boson-Fermion

Layered model where we derive the bosonic and fermionic thermodynamic grand

potentials. The multilayer array is generated by an external Kronig-Penney (KP)

potential at the delta limit (Dirac-comb potential) along the perpendicular direc-

tion to the CuO2 planes, while the particles are allowed to move freely in the plane

parallel directions26. In Sec. 3 we calculate the critical temperature for several un-

derdoped cuprates in terms of our system parameters P0 and f , which are the plane

impenetrability and the fraction of pairable fermions, respectively. Upon minimiza-

tion of the Helmholtz free energy we optimize these parameters, and, together with

the phonon contribution from the the lattice spectrum reported by ARPES, as in

Ref. 23 , we obtain the thermodynamic properties as functions of temperature for

several doping values. We also present our results for the specific heat constants

and the mass anisotropy vs doping. Conclusions and final remarks are presented in

Sec. 4.

2. The Model

We start with a system of N electrons of mass me interacting via a BCS-type

potential immersed in a periodic layered array. It is assumed that there is a set of

pairable electrons in momentum space within a shell of width 2~ωD around the Fermi

energy EF , where ~ωD is the Debye energy of the superconductor. This set coexists

with a group of non-pairable electrons, namely those outside the pairing shell which

are not eligible for pairing. In the first set, we assume that only a small fraction
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(fN/2) of them are paired at T = Tc, and which participate in the superconduction.

This assumption, also valid for underdoped cuprates27, is based on the analysis

made in Ref. 26 of Uemura’s plot28,29, in which the Fermi energy is represented as a

function of the superconducting particle density. Thus, the N electrons are grouped

in three major components: paired electrons (boson gas) formed by a fraction f of

half the total N electrons; a fermion gas of the pairable but unpaired electrons (also

inside the pairing shell); and the unpairable electrons (outside the pairing shell). We

assume that the number of pairs at Tc remains constant as temperature is lowered,

although it could increase by a mechanism not yet considered in this model.

The composite bosons of mass m = 2me are Cooper pairs that appear as res-

onances in two electrons or two holes, as proposed by Friedberg and Lee11,12. The

corresponding Hamiltonian is

H =
∑
k,s

εka
†
k,sak,s +

∑
K

εKb
†
KbK +H1, (1)

where a†k,s (ak,s) and b†K (bK) are fermion and composite-boson creation (annihila-

tion) operators, respectively, s is the spin and

H1 =
G√
L3

[aK/2+k,saK/2−k,sb
†
Kv(k) + h.c.] (2)

is the interaction Hamiltonian that creates (destroys) composite bosons from (into)

two fermions, where the wave vector for the center-of-mass momentum (CMM) of

the pair is given by K = (Kx,Ky,Kz) ≡ k1 + k2 with k1 and k2 the wave-vectors

of each electron in the pair. The form factor v(k) is normalized such that v(0) = 1,

which defines the coupling constant G. The energy for each boson particle can be

separated in the x− y− and z− directions as εK = εKx,y + εKz .

It has been shown27,30 that when |K| is non zero but small, one can expand the

binding energy from the Cooper equation in a series of powers with the linear term

predominating, so that the total energy in the plane is

εKx,y
= e0 + C1(K2

x +K2
y)1/2, (3)

where e0 ≡ 2EF−∆0 is a constant, C1 = (2/π)~vF2D is the linear term coefficient in

2D, vF2D is the two-dimensional Fermi velocity, ∆0 = 2~ωD exp(−1/λ) is the energy

gap for K = 0 in the weak-coupling regime (corresponding to the BCS theory), and

λ is the electron-phonon coupling constant given by λ = g(EF )V , with g(EF ) the

density of states at the Fermi energy and V the BCS interaction strength.

Along the z-direction we model the layers using the Dirac-comb potential, where

the energies are implicitly obtained as a function of the separation between barriers

a, from the transcendental equation18,19

[P0(a/λ0) sin(αKz
a)] / (αKz

a) + cos(αKz
a) = cos(Kza), (4)
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with α2
Kz
≡ 2mεKz/~2, and P0 = mΛλ0/~2 is a measure of the plane impen-

etrability. The constant λ0 ≡ h/
√

2πmkBT0 is the de Broglie thermal wave-

length of an ideal boson gas in an infinite box at the BEC critical temperature

T0 = 2π~2n2/3B /mkBζ(3/2)2/3 ' 3.31~2n2/3B /mkB , with nB ≡ N/(2L3) the boson

number density and Λ the strength of the KP delta potentials
∑∞
nz=−∞ Λδ(z−nza).

In what follows, the plane separation a will be taken as half the crystallographic

constant c of the cuprates, considering that there are two copper-oxide regions per

unit cell where superconductivity takes place.

The non-paired fermions are subject to the same external KP potential Eq. (4)

in z−direction and they move freely in the x − y directions20, with their single

particle energies given by εk = εkx + εky + εkz .

We first obtain the grand potential for each component to calculate the corre-

sponding thermodynamic properties. Hence, for the boson gas we have

ΩB
(
T, L3, µB

)
= kBT ln

{
1− exp[−β(ε0 + e0 − µB)

}
−

1

β3

L3

(2π)
2

Γ(2)

C2
1

∫ ∞
−∞

dKz g3
{

exp[−β(εKz
+ e0 − µB)]

}
, (5)

where µB is the boson chemical potential, β ≡ 1/kBT , ε0 ≡ ~2α0
2/2m the solu-

tion of Eq. (4) for the ground state energy, and gσ(t) ≡
∑∞
l=1(t)l/lσ are the Bose

functions 31; while for the unpaired fermions we have

ΩF
(
T, L3, µF

)
= −2

L3

(2π)
2

me

~2
1

β2

∫ ∞
−∞

dkz f2
{

exp[−β(εkz − µF )]
}
, (6)

where µF is the chemical potential of the fermions, εk = ~2k2x/2me+~2k2y/2me+εkz
is their energy, fσ(t) ≡ −

∑∞
l=1(−t)l/lσ are the Fermi-Dirac functions, and where

the spin degeneracy has already been taken into account.

3. Thermodynamic properties

We calculate the thermodynamic properties using the grand potential (5) for the

Cooper pairs and (6) for the normal state fermions.

3.1. Critical temperature

We assume that the superconducting critical temperature is the BEC temperature

of the pairs obtained from the boson number equation derived directly from Eq.

(5),

NB =
1

exp
{
β(ε0 + e0 − µB)

}
− 1

+
L3

(2π)
2

Γ(2)

C2
1

1

β2

×
∫ ∞
−∞

dKzg2
{

exp[−β(εKz
+ e0 − µB)]

}
, (7)
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Fig. 1. (Color online) Critical temperature, computed from Eq. (8) in units of the doping-

dependent Fermi temperature vs the impenetrability P0 for different values of paired electrons

f (in color) and for values of the doping x between 0.55 and 0.9.

where in the rhs we have separated the number of particles in the condensateNB0(T )

from those in the excited state (first and second term, respectively). At T = Tc we

introduce the conditions µ0 = ε0 + e0 and NB0(Tc)/NB ' 0, so

NB =
L3

(2π)
2

Γ(2)

C2
1

1

β2
c

∫ ∞
−∞

dKzg2
{

exp[−βc(εKz − ε0)]
}
, (8)

where βc ≡ 1/kBTc.

Introducing the values for the superconducting gap ∆0
7, the Fermi

temperatures8 and the cell size10 reported in the literature for the cuprates

YBa2Cu3O6+x, with x varying from underdoped (x = 0.55) to optimally doped

(x = 0.90), we calculate the critical temperature of each cuprate as a function of P0

for several values of f , as shown in Fig. 1. The shaded areas are the allowed values

for the parameters P0 and f , limited by the critical temperatures of the extreme

doping values x = 0.55 and 0.90, respectively. This procedure indicates that the

fraction f must be under 1 − 2%, which is consistent with Ref. 23 , if the experi-
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mental critical temperatures (as shown in Uemura’s plot28) are to be reproduced.

However, the exact values of our system parameters P0 and f have to be determined

by other methods, as will be done in the next section by minimizing the Helmholtz

free energy. Furthermore, this procedure loses consistency for doping values below

x = 0.55, which is in agreement with the suppression of superconductivity at approx.

x = 0.5 reported in Ref. 8.

Fig. 2. (Color online) Minimization of the total electronic Helmholtz free energy for several doping

values.

3.2. Electronic Helmholtz free energy

The optimal values for (P0, f) are obtained by minimizing the total electronic

Helmholtz free energy A that includes the Cooper pairs component (superconduct-

ing) and the free fermion (normal) component, A = Aes + Aen. We fix the critical

temperature to the experimental value, i.e. Tc = Tc−exp, in the Boson-Number Eq.

(8) and use it as the condition in the Lagrange multipliers’ method. In Fig. 2 we

plot this condition, namely, the derivative of the Helmholtz free energy together
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Fig. 3. (Color online) Optimal parameters P0 and f , for each doping value x.

with the constraint. The roots provide the optimal parameters values (P0, f) for

each doping value x, which are shown in Fig. 3.

3.3. Electronic entropy

Once the parameters of the model have been set for each doping value, we may

obtain the thermodynamic properties as functions of temperature. This is shown in

Fig. 4, where the calculated electronic entropy Se = Ses + Sen is plotted together

with a curve obtained from the experimental electronic specific heat reported in

Fig. 5 of Ref. 23 for a doping value x = 0.7, which we compare with our results for

x = 0.68. We are aware that the curvature of the experimental result below 40 K

is lower than ours, and we attribute this to the fact that we are not allowing the

pair formation at temperatures below the critical temperature. Also, there are other

possible disorder sources not considered in our model, such as the suppression of

the spin susceptibility32 and oxygen disorder33.



December 20, 2016 16:6 WSPC/INSTRUCTION FILE psalas˙dic20b

8 P. Salas et al.

0 20 40 60 80 100

0

2

4

6

8

T (K)

(J
/m

o
l 
K
)

S
e

Meingast, et al., 

2009, for x = 0.7

x = 0.62

x = 0.76

x = 0.87

x = 0.90

x = 0.80

x = 0.68

Fig. 4. (Color online) Electronic entropy for several doping values x. The line with open triangles

is the calculated entropy obtained from the electronic specific heat of Ref.23, to be compared with
the line with open circles from the present work.

3.4. Specific heat

The total constant-pressure specific heat is Cp = Cpes+Cpen+Cl, where the boson

gas component Cpes is given by

Cpes
NBkB

=
CV es
NBkB

−

(∫∞
−∞ dKz ln

{
1− exp[−β(εKz + e0 − µB)]

}∫∞
−∞ dKzg2

{
exp[−β(εKz + e0 − µB)]

} )

×
(

L3

(2π)2
Γ(2)

C2
1

1

β2

[
3

∫ ∞
−∞

dKzg3
{

exp[−β(εKz
+ e0 − µB)]

}
+β

∫ ∞
−∞

dKzg2
{

exp[−β(εKz
+ e0 − µB)]

}])2

, (9)
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Fig. 5. (Color online) Total constant pressure specific heat as function of temperature for several

doping values ranging from x = 0.62 to 0.90. Inset: close view of the transition zone.

where CV es is the constant volume specific heat for the bosons. The corresponding

fermion component Cpen is given by

Cpen
NkB

=
CV en
NkB

+
2L3

(1− f)N (2π)
2

me

~2
β

( ∫∞
−∞

dkz
exp[β(εkz−µF )]+1

(
∫∞
−∞ dkz ln{1 + exp[−β(εkz − µF )]})2

)

×
(∫ ∞
−∞

dkz ln{1 + exp[−β(εkz − µF )]}
[
εkz − µF + T

dµF
dT

]
+

2

β

∫ ∞
−∞

dkzf2
{

exp[−β(εkz − µF )]
})2

.(10)

The phonon specific heat Cl is obtained in Ref. 26 from ARPES, which repre-

sents the major contribution to the total Cp, as shown in Figs. 5 and 6 for several

doping values, together with the curves taken from the “raw data” of two different

experiments23,34. Although we use Cl for the YBa2Cu3O7 cuprate in every curve, it

has been shown26 that the variation in the phonon density of states due to doping
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Fig. 6. (Color online) Total constant pressure specific heat over temperature as functions of

temperature for several doping values ranging from x = 0.62 to 0.90.

is very small and is not significant for the final result.

3.5. Specific heat constants and jump height as functions of doping

Our results for the specific heat constants γn(Tc) = Cp/Tc, α (quadratic term coef-

ficient) and βl (cubic term coefficient for low temperatures) as functions of doping

are presented in Figs. 7 and 8, together with the jump height ∆Cp/Tc. To compare,

we added some experimental data, which show a random behavior in the sense that

most authors usually present only one point, mostly in the overdoped region, how-

ever, they all lie in the same order of magnitude. In Fig. 7 the experimental values

for α are shown with filled symbols and open symbols for βl, while in Fig. 8 we use

filled symbols for ∆Cp/Tc and open ones for γn(Tc). In particular, there is a series

of values obtained by Wright et al.35 and Moler et al.36,37, which we show in Fig.

7, where the data show the same tendency as our results.

Whereas there are experimental data values for γ versus doping at temperatures



December 20, 2016 16:6 WSPC/INSTRUCTION FILE psalas˙dic20b

Thermodynamic properties of underdoped YBa2Cu3O6+x cuprates for several doping values 11

0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

α
 (
m

J/
m

o
l K

3
)

x

β

α

Wang 2001

Emerson 1999
Junod 2000

Wang 2001

β
 (
m

J/
m

o
l K

4
)Moler 1994

Fisher 1995
Wright 1999

Chiao 2000

Moler 1994-97

Fisher 1995

Wright 1999

Emerson 1999

Riggs 2011

Fig. 7. (Color online) Quadratic α and cubic β specific heat coefficients as functions of doping.
Filled symbols are for α experimental data and open symbols are for βl data. Data is taken from

Refs.: Riggs 2011 [33], Wright 1999 [35], Moler 1994-97 [36,37] , Fisher 1995 [38], Emerson 1999

[39], Junod 2000 [40], Chiao 2000 [41] and Wang 2001 [42].

near zero, these are absent at Tc. However, extrapolations to the overdoped side,

as shown in Fig. 8, do lie in the correct order of magnitude. Furthermore, our

calculations produce results of the correct order of magnitude for the jump height

∆Cp/Tc. We note, however, that our curve shows a decreasing tendency in contrast

with the rising trend shown in experiments, which is an indirect confirmation that

additional effects compete with the layered structure model at temperatures near

and equal to Tc.

3.6. Mass anisotropy as a function of doping

The mass anisotropy we present here is a direct connection between a physical

observable of the cuprates and our model parameters, in the absence of external

magnetic fields, and represents an alternative way to the mass tensor derivation

from the Ginzburg-Landau equations45. We start by expanding the first term of the
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Fig. 8. (Color online) Linear γn(Tc) specific heat term at Tc and jump height ∆Cp/Tc as functions
of doping. Filled symbols are for ∆Cp/Tc experimental data and open symbols are for γn(Tc) data.

Data is taken from Refs.: Loram 1994 [34], Emerson 1999 [39], Wang 2001 [42], Junod 1989 [43]

and Revaz 1998 [44].

dispersion relation (4) for small particle energies εKz << ~2/2ma2 around ε0

εKz
∼= ε0 +

~2

Ma2
(1− cosKza), (11)

where ε0 is the solution to Eq. 4 when Kz = 0, namely,

P0(a/λ0) sin(α0a)/α0a+ cos(α0a) = 1, (12)

and M is the effective mass in the z-direction. Solving for M/m one obtains

M/m = |[sin(α0a)− (P0(a/λ0) + 1) cos(α0a)/(α0a)]/(α0a)|. (13)

Table 1. Mass anisotropy as a function of doping

YBa2Cu3O6+x.

6 + x 6.55 6.62 6.68 6.76 6.8 6.87 6.9

M/m 3.75 3.69 2.89 2.76 2.9 2.62 2.25
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Our results for the mass anisotropy of the YBa2Cu3O6+x cuprate are given in

Table 1, which are of the same order of magnitude as those obtained from the series

of experiments made by Roulin et al.46 and Junod et al.14. Although our values

are smaller than theirs, they show the same decreasing tendency, and it has to be

noticed that their experiments were made mostly in the optimally and overdoped

regions and in the presence of strong external fields.

4. Conclusions

In this work we have shown that the Boson-Fermion theory of superconductivity

applied to a layered structure to represent YBa2Cu3O6+x cuprates produces excel-

lent agreement with experimental data for their thermodynamic properties from

zero to the critical temperature, such as the total isobaric specific heat as well as

the entropy for doping values x ranging from 0.55 to 0.9. We show that the min-

imization of the electronic Helmholtz free energy coupled with the experimental

critical temperature provides two optimum model parameters which are enough to

reproduce the electronic specific heat constants α, γn(Tc) and the total specific heat

constant for low temperatures βl, as functions of doping.

The total isobaric specific heat vs temperature for all the doping values con-

sidered, coincides with the experimental data within a 5 % error range, where the

lattice specific heat is included.

On the other hand, our curve for ∆Cp/Tc as a function of doping shows a

decreasing tendency, contrary to what is experimentally observed, which could be

an indirect confirmation that for temperatures near Tc there are other phenomena

not considered in our model, such as the suppression of the spin susceptibility and

oxygen disorder, which nevertheless do not affect the magnitude of Cp(T ).

The model gives inherently a direct relation between the layered structure of

the cuprates and the mass anisotropy without the need to introduce external mag-

netic fields to measure it, which gives results of the same order of magnitude as

experimental values.

It is worth mentioning that our model, in spite of the fact that it ignores par-

ticle interactions between composite bosons and unpaired electrons, nevertheless

produces good results thereby suggesting that the effects of the layered structure

are dominant.
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