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Thoughts about Anomalous Diffusion:
Time-Dependent Coefficients versus
Memory Functions

V. M. Kenkre and F.J. Sevilla

Relations between two natural generalizations of the stahdiffusion equation, one involving
memory functions and the other time-dependent coefficiemts investigated. It is shown that
while the two descriptions are by no means equivalent to edlor, each is equivalent to a
spatially nonlocal generalization of the other. Expligiégcriptions to bridge the two formalisms
are provided and illustrated in two physical transportatitns. Experimental relevance of these
considerations is also briefly discussed, one in the confeXtMR microscopy, the other in that
of transient gratings in molecular crystals.

1. Introduction and the Two Descriptions

Electrons and holes in a semiconducting device [1], inte@akatoms injected into
a solid [2], molecules in a gas container, ink droplets inasglof liquid, mice
carrying the deadly Hantavirus over a landscape [3], alheké entities engage
in a common activity: they diffuse. The study of diffusionshaherefore, been
fundamental, important, and active in diverse discipliffe@mous thinkers who
have made primary and oft-used contributions to such a shatiyde not only the
physicist Einstein [4] but the financial expert Bachelidrflae formerin hisresearch
on Brownian motion, the latter during his investigationsnoérkets and stock
movements. In the present manuscript, the authors regargtits and calculations
regarding two manners of the generalization of the funddahprocess of diffusion.
Such generalization becomes necessary when the mechahiaotion is more
complex than in normal diffusion and may involve coherespatial restrictions,
trapping, and similar features.

Non-equilibrium statistical mechanics in general, witinigport theory as might
be represented by diffusion processes as a sub-area, hefittedrfrom the early
work [6] of Professor Gerard Emch on Master equations. Otteegbresent authors
(VMK) has mentioned some of that work in another festsclarificle [7] written
thirty years ago. He remembers fondly the years of overldlp @Gerard as a friend
and colleague in Rochester in the seventies. He thanks @ramuch he taught
him by example, including kindness, integrity and pundtyalt is with pleasure
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that he dedicates the present article, with the consentso€dvauthor (FJS), to
Gerard on the occasion of his seventieth birthday.

One simple manner of describing standard diffusion is \@aliffusion equation.
The latter states that the time-rate of change of dedsity whatever is diffusing
(including the probability of a random walker) equals thedurct of the diffusion
constantD and the Laplacian oP at the spatial location under consideration:
—t = DV?P. From here onwards let us consider 1-dimensional systentsdo
sake of simplicity. The two manners of generalization ofdliision equation that

we wish to explore in the present paper are, respectively,

Pt _ (t)w (1.1)
ot '
oP(x,t) aZP(x s)
pm = /ds¢(t (1.2)

The firstintroduces time-dependence into the diffusiorffa@ent whereas the sec-
ond injects temporal non-locality. Both reduce to stand#fdsion in the respective
limits y (t) = 1 andp(t) = J(t).

Our interest is in studying the connections, if any, betwiberabove mentioned
two alternatives to the description of non-standard diffnsClearly, the quantities
x (t)andgp(t) needto be related to each other before any connection chsduessed.
Itis possible to show 8, 9], through a study of the undedyinocesses notdiscussed
here, that a sensible relationship is

t
2 = /0 dsg(s). (1.3)

The precise source of this relation will become clearerdgbnit we can notice at
once that it leads texactlythe same evolution for the mean square displacement
from the two Egs. (1.1), (1.2). Thus, multiplying each edpraby x2, integrating
overx from —oo to +00, and assuming that the probability decayxat +oo
sufficiently fast, following standard procedures, we getréfspective evolution for
the mean square displacement

(X4(t)) = o+2D/ dsy(s), (1.4)
from the y -formalism, and
t t
(X3(t)) = o+2D/ dt’ [ dsg(s) (1.5)
0

from theg-formalism. Itis immediately clear that the two evolutiagige identical
results provided that(t) is the time integral of the memorg(t), i.e., that relation
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(1.3) is true. We will assume that relation for the rest ofghper. Additionally, for
simplicity, we will take the initial value of all moments suas(x?) to vanish.

2. Higher Moments, Differences and Relations

What happens with higher momentsigx, t) in Egs. (1.1) and (1.2)? Itis straight-
forward to show that the -formalism gives, for ther-th moment (i is a positive
integer) defined a&"(t)) = [0 dxxX"P(x, 1),

d(x"(t))

e Dn(n — 1) (t)(x"%(t)). (2.1)

For the evolution of the same quantity, thdormalism gives

d(x"(t))
dt

= Dn(n — 1)/t dsg(t — s)(x"7%(s)). (2.2)
0

Both formalisms connect the evolution of theh moment to the lowern(— 2)-th
moment, thee-formalism to its instantaneous value through a multighesfactor
containingy (t), theg-formalism to its values at all timessin the past through the
memory functionp(t — s). Iterating Egs. (2.1) and (2.2) ovedown ton = 2, using
the explicit solutions (1.4) and (1.5) for the second momemd focusing attention
only on the even momen{s?"), we have

2n)!
0wy = E% ooy 2.9
for the y -formalism and
- 2 ' ~ n
o) = 22 [Dj(e)] 2.4)

for the ¢-formalism. In Eq. (2.3), we have defined a new time- fg dsy(s). In
Eg. (2.4), tildes denote Laplace transforms ansithe Laplace variable; thus, for
instanceg(e) = [;° dte"¢(t).

When Eq. (1.3) holdsp(t) and y (t) are related in Laplace domain g¢c) =
&(¢)/e. Therefore, by comparing (2.3) with (2.4) we obtain the reswntioned
above that the second moments are exactly the same as pdeljcthe two for-
malisms. On the other hand, higher moments differ. Note @fuatration that the
4-th moment is given by

2
(x4(t)) = 12D? [ /O t ds X(s)} (2.5)
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from the y -formalism, and thus is not the same as

t s
4 _ 2 _
(x*4(t)) = 24D /0 ols/0 du y(s — u)y(u), (2.6)

which is the result of theé-formalism, given relation (1.3). Clearly, Egs. (2.5) and
(2.6) yield differentresults for the fourth moment for albes except that of standard
(not anomalous) diffusion in whicj(t) = 1.

The importance of demonstrating explicitly the perhapsi@ls fact that the
two formalisms are not equivalent to each other stems fremille use that each
has found in practical applications to situations in whidffudion is suspected
to be anomalous. The-formalism is associated [10] with the phrase “fractional
Brownian motion" if y (t) is a power oft, while theg-formalism has been called
the generalized master equation (GME) approach and useslywitll] for the
description of coherence. The clear difference in the highements along with
the exact congruence of the second momentleads us to askwlipaecise relation
between the two formalisms is. An inspection of Egs. (1.1)2)or of (2.1)-(2.2)
shows the following. If the exact description happens tdaegiven by the memory
function formalism, the description provided by theformalism emerges as the
so-callechalf-Markoffian approximationThis terminology appeared decades ago
in the study of exciton motion [11]. The Markoffian approxima (see, e.g., ref.
[7]) on a time non-local term such #dSqﬁ(s)b(t — s)is made if the memory(s)
varies so rapidly that the slowbmay be taken out of the integral b&). The full
Markoffian approximation normally made, for instance, toveert the GME into
the Pauli Master equation further assumesdifgtmay be replaced by&function
times the time integral g(t) over all time:

/t ds¢(s)b(t — s) = b(t)/oods¢(s).
0 0

The other, weaker and less-used Markoffian approximatidhgtbps at takindp
out of the integral, does not take the upper limit of the indgf the memory to be
infinity, and has the form

t t
/ dsp(9b(t — s) ~ b(t) / dsp(s) = b(t) (1)
0 0

This partial Markoffian approximation, applied to thormalism, can be said to
be the content of thg-formalism.

The above discussion should by no means imply thajtliermalism always
provides a more approximate description than doegtfermalism. It is possible
that the underlying dynamics of a given system may be prigdisat given by Eq.
(1.1). In such a case, it will be Eqg. (1.2) that will be the apg@mation. To make
this clear, let us compare the exact solutions of the two tapus Because there
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are no preferred points in space in the systems considetieid ipaper, the solution
of Eq. (1.1) may be computed straightforwardly in Fourieaep It is given by the

Gaussian
P, 7) _ exp[-DkZ/t dsx(s)}, (2.7)
0

wherek is the Fourier variable and the circumflex denotes the Fotra@sform
throughP (k) = [ dx P(x)€**. Equation (1.2), on the other hand, may be solved
in the Fourier-Laplace domain as

P(k,e) 1
P(k,0) €+ Dg(e)k?’

(2.8)

Surely, it is impossible to find &(t) that would make the right hand side of
Eg. (2.8) identical to the Laplace transform of the rightdhaide of Eq. (2.7) for
arbitrary y(t). The reverse is also true: it is impossible to fingt @) that would
make the Laplace transform of the right hand side of Eq. {@efjtical to the right
hand side of Eq. (2.8) faarbitrary ¢(t). Is there then no hope of finding a bridge
between the two descriptions? One of the present authorfasd in the course
of his study of stress distribution in granular materialgti&t a useful bridge might
be constructed by generalizing one or the other of thesedwodlisms to include
spatially non-locakituations. To understand that argument, let us promotg the
formalism by replacing the multiplicative fact@ y (t) in Eq. (1.1) by a spatial
convolution:

oP °P(x', 1)

ox’2

()t(’t) =/_de’ D,(x — X, 1) (2.9)

0

The time rate of change &f(x, t) is now connected to its second spatial derivative
(Laplacian) not only ak but at all locations<’ through the connecting function
D, (x — x’, t) which incorporates, in addition, the time dependence®@stmpler
x(t)inanon-separableform. OnerecoversEq. (1.1) from E) {20, (x—x',t) =

Dy (t)o(x — x’). Letus similarly generalize thi-formalism by replacing the factor
D¢(t—s)inEqg. (1.2) by aspatial convolution involving the new centing function
Dyp(x = x',t —9):

6P(X,t) t aZP(X/9 s)
—_— ! — / —_— _— .
T = / dx /O dS©¢)(X X', t S) 2 (2 10)

We see that Eq. (1.2) is recovered from Eq. (2.1@)j{x — x',t — s) = D¢(t —
S)o(x — x').

Whereas it was true that the spatially local equations of thendg- formalisms
could not be put into equivalence, we now see that their gdirations can be.
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Equating the ratitg% as predicted by the two equations, we find that equivalence
can be established provided

/OO e_kZ f[; @X(k,s)dse—stdt — 1 (211)

0 €+ k2Dy(k, €)’

Equation (2.11) constitutes apractical bridge to passd&ethe two formalisms.
Assume the (spatially locap)-formalismto be correct, i.e., thatthe system evolution
obeysthe original equation (1.1). An entirely equivalesgatiption is then provided
by thespatially non-locaby-formalism given by Eg. (2.10) in which

~ 1 1

Thus, spatially non-locality in thé-formalism is essential to describe a spatially
local y situation. Equation (2.12) is the explicit prescriptiorathgh which we can
find the keyg-quantity, viz., D4 (K, €), for an arbitrarily giveny (t).

Conversely, if the (spatially loca§)-formalism provides the correct description,
i.e., the system evolution obeys the original equation)(la2ully equivalent de-
scription is provided by thepatially non-localy -formalism given by Eg. (2.9), the
key quantiy®(k, t) being computed foany givens(t) by

D,k t) = % I_k_lzln ‘c—l (G—I-T:LDMG))H (2.13)

In the prescriptions (2.12) and (2.13) the symh6land £~! stand, respectively,
for the direct and inverse Laplace transforms, and the aegiof the logarithm is
the absolute value as shown.

3. Applications of the General Formalism

In this Section, we present an illustrative applicationha prescription we have
developed above in one physical instance in which the djydti@al ¢-formalism
providesthe exactdescription of the system. We will alsotine briefly an instance
of the opposite situation.

3.1. ¢ to y: Memory Functions from a Railway-track Model

Coherence issues in exciton transport [15, 16] led to a greal of work based
on memory functions in the seventies [11, 16]. The specifimfof the memory
functions often arose from quantum features in the dynaofiescitons [16]. To
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Pﬂ(x,? —_—
J

— P (x

Figure 1. Pictorial description of the “railway-track” model natliy addressed
via theg-formalism.

dispel an incorrect notion held by some that an underlyingngum layer was
essential to memory functions, one of the present authdrsduaced a trivially
simple model that showed how memory functions could ariselpwclassically:
Because the modelleads easily to Eqg. (1.2), we study it hemg vith its equivalent
spatially nonlocal -description.

For reasons that should be obvious, we call it the railwagktmodel. LetP™
(P<) be the probability that a particle moves to the right (Iefthh ratec (—c).
The particle is subject to scattering at r&@ethe only effect of scattering being
to change the direction of motion from right to left and vigersa. This system is
depicted in Fig. 1 and analyzed through the coupled equation

P ) AP XY R
S = SRR ) - PR, @)
SPU(X) _ OPT() .
T = e R QP ) - PO (32)

Note the Markoffian nature of equations (3.1), (3.2). By da@iiP(x, t) = P~ +
P<andR(x,t) = P~ — P<, we get

R(x,t) = R(x,0)e 2% + ¢ / ds e Q- S> P(x s). (3.3)

For the initial conditioro P(x, t) /ot|i—o = O, P(X, t) satisfies

aP(x ) _ / ds 6229 &XXZS) (3.4)

The utter simplicity of the model meant that there was no neguiblish it—it was only discussed
at conferences and private discussions. Its simplicity mleans that it has been probably invoked by
others before or since.
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Equation (3.4) is exactly of thgform of Eq. (1.2) withD = ¢?/2Q, the memory
#(t) being equal to the exponentiaD2~2<*. This trivial but clear example shows
how a memory function description arises from coarsegngiimvolved in seeking
the evolution of theombination Bx, t) = P~ + P< withoutinterestin how much
of rightward motion versus leftward motion there is. Nesdl® say, we have here
a caricature of a system in which particles move and scatieng various velocity
states, only 2 such states being considered in this caricaystem.

The solution to the memory equation (3.4) with initial carah P(x, t) = §(x)
is given explicitly by [8]

o(X + ct) + o(x — ct)
2

P(x,t) = e < [ + T(x,t)} , (3.5)

whereT (X, t) vanishes identically foct < |x| and equals

T(X,t) = (2%)['0 (%/W) + %u (%M)} (3.6)

for ct > |x|, 1,(2) being the modified Bessel function of order and argument
z. We point out in passing that the momentsRik, t) may be computed by just
knowing the Laplace transform of the memory function anaigig2.4). Inverting
the Laplace transform, we find

(x2(t)) = (ct)® M(n, 2n + 1, —20t), (3.7)

_ a(a+1)2 a(a+1)--(a+n—-1)z"
whereM(a, b, 2) = 14 5§ + 553951 + -+ + BprD)-(orn=Dn

confluent hypergeometric function of argumei 7].

Our purpose in introducing the “railway-track” model hesgé examine how
one may pass from thg formalism to the spatially non-locgl-formalism via our
prescription (2.13). A straightforward evaluation afteplacingg(e) by 20/(e +
2Q) leadsto

+ ... iIsthe Kummer

:Dx(k’ t)

c? sin(Qt‘/kzcz/Q2 — 1)
- (é) sin (Q’t\/kzcz/Q2 - 1) +Vkee?2/Q2 -1 cos(Qt\/WQZ—l) .

(3.8)

The Fourier inverse of this expressi@h, (x — x’, t), when substituted in Eq. (2.9),
allows us to write the desired spatially nonlogatlescription.
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What new insights does the combination of Eqs (2.9) and {88)? One answer
is that (2.9) may now be inverted explicitly as an infinite sofifocal terms:

2POCD _ o) pec ) + 220 Lopgy + 20 Zpi . a9)
where the factor®,,(t) may be computed as-()" 782”33'2(2&& ) . The first
three factors are 0 k=0
Do(t) = D(1—e29, (3.10)
Daot) = %2 [40te 2% — (1 —e*9)], (3.11)
Da(t) = %D; [2+ €779 (1 - 40t — 8Q™?) — 267 (L1 + 4Q1) — &7°],
(3.12)

where and henceforth we suppress the synstanid useD = ¢?/2Q in addition
to Q.

If we truncate (3.9) by keeping only the first term, the logatlescription
emerges:

OP(X,t) t 02

——=D [/0 ds¢(s)} —5P(x.1), (3.13)
sinceDo(t) = Dy(t) = D f; ds¢(s). The solution to Eq. (3.13) is given by the
Gaussian

Ql/2 _ ox?

e ZnDKZQt—(l—e*ZQt))
[27 D (20t — (1 — e29Y))]

1/2 ?

and leads, as mentioned above, to precisely the $af(g) as the exact solution.
However, it predicts, for theext highemoment,

(x4(t)) = %DZZ [20t — (1- e—ZQt)]Z, (3.14)

which is only an approximation (see Fig. 1) to the exact fourbment

2
(x4(t)) = ESQ% [3— 40t +20%% — 729" (3+ 201)] (3.15)

computed from (2.4). Any moment from the spatially-nonloggormalism may
be computed from the infinite series (3.9). Note that notalhigher order terms
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Figure 2. Fourth momentx*(t)) in units of (D/Q)? as function of the dimension-
less timeQt. We compare the exact fourth moment of (3.5) in #héormalism
(solid-line) with the one given by the locaformalism, i.e., the “half-Markoffian”
approximation (dashed-line). The exact curve lies emntibelow the approximate
curve. The lower curve (dotted-line) gives the correctimvjied by just the second
term of the infinite series (3.9). The dashed and the dottegesiadd up precisely
to the solid curve.

are necessary to compute a given moment. Thus, the infinigssmllapses into
only the first two terms when computing*(t)):

4 B t [ t :|2
(x*(t)) = 12/0 ds Dy(s) + 12 /0 ds Du(s)| . (3.16)

In Fig. 2 we show the fourth moment as function of time alonghwis half-
Markoffian approximatior?

21t might be interesting to observe that the recursive retator the even moments in the spatially-
local ¢-formalism, Eq. (2.1), therth moment depends on the previous one 2(1)-th while in the
spatially-non-localy -formalism, described by (3.9), thenzh moment depends on all the previous
non-vanishing moments, the explicit relation is given by

2n)!

E 2n — : I o A 2n—2m
a W= r; @n = 2myizm = 2y1 D2m-2OT-



Thoughts about Anomalous Diffusion 157
3.2. Time Dependent Diffusion Constant, a Sketch

Obviously, the locap-formalism does not provide the more appropriate desoripti
in every physical system. A case in which thdormalism appears s in the Master
equation description [18] of the effects of vibrationabeedtion on intermolecular
transfer of electronic excitation. Time-dependent transftes occur naturally there.
The probability of occupation of vibrational levels as wadl of site occupation,
denoted byPM(t), whereM andm refer to site and vibrational state respectively,
obeys

d

GiPm = ;[ym,nPnM (1) = ynmPa (O] + %[Fn“f’” Pm (1) = Fn ™ Py (0]

(3.17)

When the use of a specific form for the relaxation ratg, and the assumption
of nearest-neighbor transfer raﬂé#'"“ = Fmdm N are made, an effective transfer
equation is seen to emerge which is precisely of the formeolidbaly -description.

It is possible to convert that time dependence into appatgrexpressions for
quantities such a®,(x, x’, t) of Eq. (2.9) and cast the problem into a spatially
non-local¢ mould. We refrain from showing any of the details here for tain
space.

4. Concluding Remarks

If the phrase "anomalous diffusion" is taken to represeppaacess that has some
basic features of standard diffusion but also has signifidepartures from the
latter, one can state confidently that one encounters anosdiffusion in a rich
variety of physical situations. Quantum mechanical (Qpasticles, such as Frenkel
excitons in photosynthetic units and photo-injected etersin molecular crystals,
obey GME’'s[11] whose features are in some regimes simitéuase of the standard
diffusion equation but in others sharply different as whelnarence is substantially
present. A description via memory functions [12], i.e., tia¢- formalism of Eq.
(1.2), is natural in that case. In another extreme exampdagomalous diffusion,
one encounters animal movements [3] that are said to be ampeaffractional
Brownian motionwhich is nothing but Eq. (1.1) representative of ghéormalism
with a power dependence pft) ont[10]. Thereisalarge number of otherinstances
where it is not clear which of the descriptions is approgri&rior to 1973, it had
been thought that continuous time random walks represardedcription that was
fundamentally different from that provided by memory fuons. This viewpoint
held previously (even by some of the originators of one okéhdescriptions)
was found [7, 13, 16] to be incorrect and led to a trivially glenbut important
clarification. Because the demonstration of such an ecgrieal between methods
of investigation or description can typically save much ecessary theoretical
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labor, we thought it worthwhile to make that enquiry in thetext of they - and
the¢-formalisms. This enquiry, begun in part by one of the preaethors in the
context of the stress distribution of granular compacts{8% been extended much
further in the present paper.

The previous observation [8] that, as stated (i.e., in gptiallylocal form), the
two descriptions cannot be generally equivalent, exceptirivial case when both
describe standard diffusion, has been made transpardesiyio the present paper
by Egs. (1.4), (1.5) for the mean square displacement. Ttez la formally similar
in the two formalisms but sharply different in content fongealg(t) or y (t). The
earlierindication [8] that each of the two formalisms is mglent to a spatially non-
local form of the other has been extended here through th@lederand practical
prescriptions (2.12) and (2.13). These prescriptionswatine, given an arbitrary
form of ¢(t) or x(t), to obtain, at least in principle, the corresponding nocal
quantitiesd , (x, t) and®D4(x, t) in the other formalism. The prescriptions are given
in k-space and the Laplace domain and are to be followed by a fiusidt-Laplace
inversion if necessary.

We have also examined, in detail, a physical case in whiclisiatially local)
¢-formalism (i.e., memory functions) provides the accudsscription. We have
explicitly shown how our prescription developed in Eg. j3s8applied and how
the spatially non-local character develops in jhtormalism (see Eqg. (3.9)). This
is the elucidation of the railway-track model. We have alstfed out how, the
reverse situation, a natural description in terms of ga@rmalism, arises in the
theory of vibrational relaxation of molecular excitatianghe presence of motion
[18]. To avoid lengthy calculations we have refrained frdmwing the detail of
that opposite situation.

Because the spatial shape of the propagator in the jodaimalism is always
Gaussian (for instance in fractional Brownian motion) yomgeneralization from
thetimettor = fg dsy(s) being necessary (see Eq. (2.7)), one may tend to believe
that the y-formalism is not as rich as th@-formalism—since the latter allows
more freedom in the shape of the propagator. This is, howeeean appropriate
statement. Indeed, there exists a certain “symmetry imgsh" as we move from
the Laplace domain to the time domain. For instance, an egustich as (1.1) will
appear as a convolution equation in the Laplace domain.

Since it may not be clear by inspection which of the two folisrak may
be providing a correct description for a given system, we ro@mt in passing
about probing this question experimentally. We draw therditbn of the reader to
two observational set-ups in two widely different areastoflg: transient grating
observationsin molecular crystals (TGO) [11, 19] and naicheagnetic resonance
microscopy (NMRM) [20, 21]. Both are sensitive not mereltiie mean square
displacement of the moving entities but to the entire Fourignsform of the
probability densityP(x, t). The TGO involve crossed laser beams that are used
to create a sinusoidal spatial distribution of electronicitations. The decay of
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the amplitude of that distribution is measured and inforameis thereby extracted
about the motion of the excitations. The NMRM uses the stedalulsed-gradient
spin echo technique [22]. In the limit of very short duratprises, that technique,
just as does the TGO, probes directly the Fourier transfdri(g, t) and not its
moments. Clearly, both experiments should be able, in fpliecto discriminate
between whether a locglor localy formalismis appropriate. More details will be
presented elsewhere.

We have restricted attention in the present paper to sjyatiainogeneous (not
the same as spatially non-local or local) systems only.iEotransformation there-
fore diagonalizes the relevant matrices and there is-Ad’ interaction. If spatial
locations were not all equivalent, we would have terms sucB g, X', t) and
Dy(x, x', ) in Egs. (2.9) and (2.10) and the difference nature of theadaernels
would be destroyed. Transformation via eXxp() would be useless and the problem
would become quite complicated. Because situations whewdiffusion coefficient
itself may be spatially varying occur often in physical amdldygical applications,
it is important to extend our analysis to incorporate there.Mén to do that in a
future study.

We acknowledge fruitful discussions with Dr. Luca Giuggidlhis work was
supported in part by the NSF under Grant no. INT-0336343, 8MNIH Ecology
of Infectious Diseases under Grant no. EF-0326757 and by B®&nhder Grant
no. DARPA-N00014-03-1-0900.
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