
Thoughts about Anomalous Diffusion:
Time-Dependent Coefficients versus

Memory Functions

V. M. Kenkre and F.J. Sevilla

Relations between two natural generalizations of the standard diffusion equation, one involving
memory functions and the other time-dependent coefficients, are investigated. It is shown that
while the two descriptions are by no means equivalent to eachother, each is equivalent to a
spatially nonlocal generalization of the other. Explicit prescriptions to bridge the two formalisms
are provided and illustrated in two physical transport situations. Experimental relevance of these
considerations is also briefly discussed, one in the contextof NMR microscopy, the other in that
of transient gratings in molecular crystals.

1. Introduction and the Two Descriptions

Electrons and holes in a semiconducting device [1], interstitial atoms injected into
a solid [2], molecules in a gas container, ink droplets in a glass of liquid, mice
carrying the deadly Hantavirus over a landscape [3], all of these entities engage
in a common activity: they diffuse. The study of diffusion has, therefore, been
fundamental, important, and active in diverse disciplines. Famous thinkers who
have made primary and oft-used contributions to such a studyinclude not only the
physicistEinstein [4]but thefinancialexpertBachelier [5], the former inhis research
on Brownian motion, the latter during his investigations ofmarkets and stock
movements. In the present manuscript, the authors report thoughts and calculations
regarding twomannersof thegeneralizationof the fundamentalprocessofdiffusion.
Such generalization becomes necessary when the mechanism of motion is more
complex than in normal diffusion and may involve coherence,spatial restrictions,
trapping, and similar features.

Non-equilibriumstatistical mechanics in general, with transport theory as might
be represented by diffusion processes as a sub-area, has benefitted from the early
work [6] of Professor Gerard Emch on Master equations. One ofthe present authors
(VMK) has mentioned some of that work in another festschriftarticle [7] written
thirty years ago. He remembers fondly the years of overlap with Gerard as a friend
and colleague in Rochester in the seventies. He thanks Gerard for much he taught
him by example, including kindness, integrity and punctuality. It is with pleasure

Part of Contributions in Mathematical Physics, a tribute to Gerard G. Emch,

S.A. Twareque and K.B. Sinha Eds pp. 147-160

(Hindustany Book Agency, New Delhi, 2007))



148 V. M. Kenkre and F.J. Sevilla

that he dedicates the present article, with the consent of his co-author (FJS), to
Gerard on the occasion of his seventieth birthday.

One simple manner of describing standard diffusion is via the diffusion equation.
The latter states that the time-rate of change of densityP of whatever is diffusing
(including the probability of a random walker) equals the product of the diffusion
constantD and the Laplacian ofP at the spatial location under consideration:
∂P
∂ t = D∇2P. From here onwards let us consider 1-dimensional systems for the
sake of simplicity. The two manners of generalization of thediffusion equation that
we wish to explore in the present paper are, respectively,

∂P(x, t)

∂ t
= Dχ(t)

∂2P(x, t)

∂x2
, (1.1)

∂P(x, t)

∂ t
= D

∫ t

0
dsφ(t − s)

∂2P(x, s)

∂x2
. (1.2)

The first introduces time-dependence into the diffusion coefficient whereas the sec-
ond injects temporal non-locality.Both reduce to standarddiffusion in the respective
limits χ(t) = 1 andφ(t) = δ(t).

Our interest is in studying the connections, if any, betweenthe above mentioned
two alternatives to the description of non-standard diffusion. Clearly, the quantities
χ(t) andφ(t) need tobe related toeachotherbeforeanyconnectioncanbediscussed.
It ispossible toshow[8,9], throughastudyof theunderlyingprocessesnotdiscussed
here, that a sensible relationship is

χ(t) =
∫ t

0
dsφ(s). (1.3)

The precise source of this relation will become clearer below, but we can notice at
once that it leads toexactlythe same evolution for the mean square displacement
from the two Eqs. (1.1), (1.2). Thus, multiplying each equation by x2, integrating
overx from −∞ to +∞, and assuming that the probability decays atx = ±∞
sufficiently fast, following standard procedures, we get the respective evolution for
the mean square displacement

〈x2(t)〉 = 〈x2〉0 + 2D
∫ t

0
dsχ(s), (1.4)

from theχ-formalism, and

〈x2(t)〉 = 〈x2〉0 + 2D
∫ t

0
dt′
∫ t ′

0
dsφ(s) (1.5)

from theφ-formalism. It is immediately clear that the two evolutionsgive identical
results provided thatχ(t) is the time integral of the memoryφ(t), i.e., that relation
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(1.3) is true. We will assume that relation for the rest of thepaper. Additionally, for
simplicity, we will take the initial value of all moments such as〈x2〉0 to vanish.

2. Higher Moments, Differences and Relations

What happens with higher moments ofP(x, t) in Eqs. (1.1) and (1.2)? It is straight-
forward to show that theχ-formalism gives, for then-th moment (n is a positive
integer) defined as〈xn(t)〉 =

∫∞
−∞ dxxnP(x, t),

d〈xn(t)〉
dt

= Dn(n− 1)χ(t)〈xn−2(t)〉. (2.1)

For the evolution of the same quantity, theφ-formalism gives

d〈xn(t)〉
dt

= Dn(n− 1)
∫ t

0
dsφ(t − s)〈xn−2(s)〉. (2.2)

Both formalisms connect the evolution of then-th moment to the lower, (n− 2)-th
moment, theχ-formalism to its instantaneous value through a multiplicative factor
containingχ(t), theφ-formalism to its values at all timess in the past through the
memory functionφ(t−s). Iterating Eqs. (2.1) and (2.2) overn down ton= 2, using
the explicit solutions (1.4) and (1.5) for the second moment, and focusing attention
only on the even moments〈x2n〉, we have

〈x2n(t)〉 =
(2n)!

n!
[Dτ ]n (2.3)

for theχ-formalism and

〈̃x2n(ε)〉 = (2n)!

εn+1

[
Dφ̃(ε)

]n
(2.4)

for theφ-formalism. In Eq. (2.3), we have defined a new timeτ =
∫ t

0 dsχ(s). In
Eq. (2.4), tildes denote Laplace transforms andε is the Laplace variable; thus, for
instance,̃φ(ε) =

∫∞
0 dte−εtφ(t).

When Eq. (1.3) holds,φ(t) andχ(t) are related in Laplace domain as ˜χ (ε) =
φ̃(ε)/ε. Therefore, by comparing (2.3) with (2.4) we obtain the result mentioned
above that the second moments are exactly the same as predicted by the two for-
malisms. On the other hand, higher moments differ. Note as anillustration that the
4-th moment is given by

〈x4(t)〉 = 12D2

[∫ t

0
dsχ(s)

]2

(2.5)
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from theχ-formalism, and thus is not the same as

〈x4(t)〉 = 24D2
∫ t

0
ds
∫ s

0
du χ(s− u)χ(u), (2.6)

which is the result of theφ-formalism, given relation (1.3). Clearly, Eqs. (2.5) and
(2.6) yield different results for the fourthmoment for all cases except that of standard
(not anomalous) diffusion in whichχ(t) = 1.

The importance of demonstrating explicitly the perhaps obvious fact that the
two formalisms are not equivalent to each other stems from the wide use that each
has found in practical applications to situations in which diffusion is suspected
to be anomalous. Theχ-formalism is associated [10] with the phrase “fractional
Brownian motion" ifχ(t) is a power oft , while theφ-formalism has been called
the generalized master equation (GME) approach and used widely [11] for the
description of coherence. The clear difference in the higher moments along with
the exact congruenceof the second moment leads us to ask whatthe precise relation
between the two formalisms is. An inspection of Eqs. (1.1)–(1.2) or of (2.1)-(2.2)
shows the following. If the exact description happens to be that given by the memory
function formalism, the description provided by theχ-formalism emerges as the
so-calledhalf-Markoffian approximation. This terminology appeared decades ago
in the study of exciton motion [11]. The Markoffian approximation (see, e.g., ref.
[7]) on a time non-local term such as

∫ t
0 dsφ(s)b(t − s) is made if the memoryφ(s)

varies so rapidly that the slowerb may be taken out of the integral asb(t). The full
Markoffian approximation normally made, for instance, to convert the GME into
the Pauli Master equation further assumes thatφ(t) may be replaced by aδ-function
times the time integral ofφ(t) over all time:

∫ t

0
dsφ(s)b(t − s) ≈ b(t)

∫ ∞

0
dsφ(s).

The other, weaker and less-used Markoffian approximation [14] stops at takingb
out of the integral, does not take the upper limit of the integral of the memory to be
infinity, and has the form

∫ t

0
dsφ(s)b(t − s) ≈ b(t)

∫ t

0
dsφ(s) = b(t)χ(t).

This partial Markoffian approximation, applied to theφ-formalism, can be said to
be the content of theχ-formalism.

The above discussion should by no means imply that theχ-formalism always
provides a more approximate description than does theφ-formalism. It is possible
that the underlying dynamics of a given system may be precisely that given by Eq.
(1.1). In such a case, it will be Eq. (1.2) that will be the approximation. To make
this clear, let us compare the exact solutions of the two equations. Because there
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are no preferred points in space in the systems considered inthis paper, the solution
of Eq. (1.1) may be computed straightforwardly in Fourier space. It is given by the
Gaussian

P̂(k, τ )

P̂(k,0)
= exp

[
−Dk2

∫ t

0
dsχ(s)

]
, (2.7)

wherek is the Fourier variable and the circumflex denotes the Fourier transform
throughP̂(k) =

∫∞
−∞ dx P(x)eikx.Equation (1.2), on the other hand, may be solved

in the Fourier-Laplace domain as

P̃(k, ε)

P̃(k,0)
= 1

ε + Dφ̃(ε)k2
. (2.8)

Surely, it is impossible to find aφ(t) that would make the right hand side of
Eq. (2.8) identical to the Laplace transform of the right hand side of Eq. (2.7) for
arbitrary χ(t). The reverse is also true: it is impossible to find aχ(t) that would
make the Laplace transform of the right hand side of Eq. (2.7)identical to the right
hand side of Eq. (2.8) forarbitrary φ(t). Is there then no hope of finding a bridge
between the two descriptions? One of the present authors hasargued in the course
of his study of stress distribution in granular materials [8] that a useful bridge might
be constructed by generalizing one or the other of these two formalisms to include
spatially non-localsituations. To understand that argument, let us promote theχ-
formalism by replacing the multiplicative factorDχ(t) in Eq. (1.1) by a spatial
convolution:

∂P(x, t)

∂ t
=
∫ ∞

−∞
dx′ Dχ (x − x′, t)

∂2P(x′, t)

∂x′2
(2.9)

The time rate of change ofP(x, t) is now connected to its second spatial derivative
(Laplacian) not only atx but at all locationsx′ through the connecting function
Dχ (x − x′, t) which incorporates, in addition, the time dependence of the simpler
χ(t) inanon-separable form.OnerecoversEq. (1.1) fromEq. (2.9) if Dχ(x−x′, t) =
Dχ(t)δ(x− x′). Let us similarly generalize theφ-formalism by replacing the factor
Dφ(t−s) inEq. (1.2)byaspatial convolution involving thenewconnecting function
Dφ(x − x′, t − s):

∂P(x, t)

∂ t
=
∫ ∞

−∞
dx′

∫ t

0
dsDφ(x − x′, t − s)

∂2P(x′, s)

∂x′2
. (2.10)

We see that Eq. (1.2) is recovered from Eq. (2.10) ifDφ(x − x′, t − s) = Dφ(t −
s)δ(x − x′).

Whereas it was true that the spatially local equations of theχ- andφ- formalisms
could not be put into equivalence, we now see that their generalizations can be.
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Equating the ratioP̃(k,ε)
P̂(k,0)

as predicted by the two equations, we find that equivalence
can be established provided

∫ ∞

0
e−k2

∫ t
0 Dχ (k,s)dse−εt dt = 1

ε + k2D̃φ(k, ε)
. (2.11)

Equation (2.11)constitutesapracticalbridge topassbetween the two formalisms.
Assumethe (spatially local)χ-formalism tobecorrect, i.e., that thesystemevolution
obeys the original equation (1.1).An entirely equivalent description is thenprovided
by thespatially non-localφ-formalism given by Eq. (2.10) in which

D̃φ(k, ε) = 1

k2





1

L
[
e−Dk2

∫ t
0 χ (s)ds

] − ε



 . (2.12)

Thus, spatially non-locality in theφ-formalism is essential to describe a spatially
localχ situation. Equation (2.12) is the explicit prescription through which we can
find the keyφ-quantity, viz.,Dφ(k, ε), for an arbitrarily givenχ(t).

Conversely, if the (spatially local)φ-formalism provides the correct description,
i.e., the system evolution obeys the original equation (1.2), a fully equivalent de-
scription is provided by thespatially non-localχ-formalism given by Eq. (2.9), the
key quantiyD(k, t) being computed forany givenφ(t) by

Dχ (k, t) =
d

dt

{
−

1

k2
ln

∣∣∣∣L
−1

(
1

ε + k2Dφ̃(ε)

)∣∣∣∣
}
. (2.13)

In the prescriptions (2.12) and (2.13) the symbolsL andL−1 stand, respectively,
for the direct and inverse Laplace transforms, and the argument of the logarithm is
the absolute value as shown.

3. Applications of the General Formalism

In this Section, we present an illustrative application of the prescription we have
developed above in one physical instance in which the spatially local φ-formalism
provides theexactdescriptionof thesystem.Wewill alsomentionbrieflyan instance
of the opposite situation.

3.1. φ to χ : Memory Functions from a Railway-track Model

Coherence issues in exciton transport [15, 16] led to a greatdeal of work based
on memory functions in the seventies [11, 16]. The specific form of the memory
functions often arose from quantum features in the dynamicsof excitons [16]. To
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P�(x,t)

P�(x,t)

a

b

c

Figure 1. Pictorial description of the “railway-track” model naturally addressed
via theφ-formalism.

dispel an incorrect notion held by some that an underlying quantum layer was
essential to memory functions, one of the present authors introduced a trivially
simple model that showed how memory functions could arise purely classically.1

Because the model leads easily to Eq. (1.2), we study it here alongwith its equivalent
spatially nonlocalχ-description.

For reasons that should be obvious, we call it the railway-track model. LetP→

(P←) be the probability that a particle moves to the right (left)with ratec (−c).
The particle is subject to scattering at rateQ, the only effect of scattering being
to change the direction of motion from right to left and vice-versa. This system is
depicted in Fig. 1 and analyzed through the coupled equations

∂P→(x, t)

∂ t
= c

∂P→(x, t)

∂x
+Q[ P←(x, t)− P→(x, t)], (3.1)

∂P←(x, t)

∂ t
= −c

∂P←(x, t)

∂x
+Q[ P→(x, t)− P←(x, t)]. (3.2)

Note the Markoffian nature of equations (3.1), (3.2). By defining P(x, t) ≡ P→ +
P← andR(x, t) ≡ P→ − P←, we get

R(x, t) = R(x,0)e−2Qt + c
∫ t

0
ds e−2Q(t−s) ∂

∂x
P(x, s). (3.3)

For the initial condition∂P(x, t)/∂ t|t=0 = 0, P(x, t) satisfies

∂P(x, t)

∂ t
= c2

∫ t

0
ds e−2Q(t−s) ∂

2P(x, s)

∂x2
. (3.4)

1The utter simplicity of the model meant that there was no needto publish it–it was only discussed
at conferences and private discussions. Its simplicity also means that it has been probably invoked by
others before or since.
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Equation (3.4) is exactly of theφ form of Eq. (1.2) withD = c2/2Q, the memory
φ(t) being equal to the exponential 2Qe−2Qt . This trivial but clear example shows
how a memory function description arises from coarsegraining involved in seeking
the evolution of thecombination P(x, t)= P→+P← without interest in how much
of rightward motion versus leftward motion there is. Needless to say, we have here
a caricature of a system in which particles move and scatter among various velocity
states, only 2 such states being considered in this caricature system.

The solution to the memory equation (3.4) with initial condition P(x, t) = δ(x)
is given explicitly by [8]

P(x, t) = e−Qt

[
δ(x + ct)+ δ(x − ct)

2
+ T(x, t)

]
, (3.5)

whereT(x, t) vanishes identically forct ≤ |x| and equals

T(x, t) =
(
Q

2c

)[
I0

(
Q

c

√
c2t2 − x2

)
+

ct
√

c2t2 − x2
I1

(
Q

c

√
c2t2 − x2

)]
(3.6)

for ct > |x|, Iν (z) being the modifiedI Bessel function of orderν and argument
z. We point out in passing that the moments ofP(x, t) may be computed by just
knowing the Laplace transform of the memory function and using (2.4). Inverting
the Laplace transform, we find

〈x2n(t)〉 = (ct)2n M(n,2n+ 1,−2Qt), (3.7)

whereM(a,b, z) = 1+ az
b +

a(a+1)z2

b(b+1)2! + ...+
a(a+1)···(a+n−1)zn

b(b+1)···(b+n−1)n! + ... is the Kummer
confluent hypergeometric function of argumentz [17].

Our purpose in introducing the “railway-track” model here is to examine how
one may pass from theφ- formalism to the spatially non-localχ-formalism via our
prescription (2.13). A straightforward evaluation after replacingφ̃(ε) by 2Q/(ε +
2Q) leads to

Dχ (k, t)

=
(

c2

Q

) sin
(
Qt
√

k2c2/Q2 − 1
)

sin
(
Qt
√

k2c2/Q2 − 1
)
+
√

k2c2/Q2− 1 cos
(
Qt
√

k2c2/Q2− 1
) .

(3.8)

The Fourier inverse of this expression,Dχ (x− x′, t),when substituted in Eq. (2.9),
allows us to write the desired spatially nonlocalχ-description.
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What new insights does the combination of Eqs (2.9) and (3.8)yield? One answer
is that (2.9) may now be inverted explicitly as an infinite sumof local terms:

∂P(x, t)

∂ t
= D0(t)

∂2

∂x2
P(x, t)+ D2(t)

2!

∂4

∂x4
P(x, t)+ D4(t)

4!

∂6

∂x6
P(x, t)..., (3.9)

where the factorsD2n(t) may be computed as (−1)n
∂2nDχ (k, t)

∂k2n

∣∣∣∣
k=0
. The first

three factors are

D0(t) = D(1− e−2Qt ), (3.10)

D2(t) = D2

Q

[
4Qte−2Qt − (1− e−4Qt )

]
, (3.11)

D4(t) = 6D3

Q2

[
2+ e−2Qt (1− 4Qt − 8Q2t2)− 2e−4Qt (1+ 4Qt)− e−6Qt

]
,

(3.12)

where and henceforth we suppress the symbolc and useD = c2/2Q in addition
to Q.

If we truncate (3.9) by keeping only the first term, the localχ-description
emerges:

∂P(x, t)

∂ t
= D

[∫ t

0
dsφ(s)

]
∂2

∂x2
P(x, t), (3.13)

sinceD0(t) = Dχ(t) = D
∫ t

0 dsφ(s). The solution to Eq. (3.13) is given by the
Gaussian

Q1/2

[
2πD

(
2Qt − (1− e−2Qt )

)]1/2 e
− Qx2

2πD(2Qt−(1−e−2Qt )) ,

and leads, as mentioned above, to precisely the same〈x2(t)〉 as the exact solution.
However, it predicts, for thenext highermoment,

〈x4(t)〉 = 3D2

Q2

[
2Qt − (1− e−2Qt )

]2
, (3.14)

which is only an approximation (see Fig. 1) to the exact fourth moment

〈x4(t)〉 = 6D2

Q2

[
3− 4Qt + 2Q2t2 − e−2Qt (3+ 2Qt)

]
(3.15)

computed from (2.4). Any moment from the spatially-nonlocal χ-formalism may
be computed from the infinite series (3.9). Note that not all the higher order terms
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Figure 2. Fourth moment〈x4(t)〉 in units of (D/Q)2 as function of the dimension-
less timeQt . We compare the exact fourth moment of (3.5) in theφ-formalism
(solid-line) with the one given by the localχ-formalism, i.e., the “half-Markoffian”
approximation (dashed-line). The exact curve lies entirely below the approximate
curve. The lower curve (dotted-line) gives the correction provided by just the second
term of the infinite series (3.9). The dashed and the dotted curves add up precisely
to the solid curve.

are necessary to compute a given moment. Thus, the infinite series collapses into
only the first two terms when computing〈x4(t)〉:

〈x4(t)〉 = 12
∫ t

0
ds D2(s)+ 12

[∫ t

0
ds D0(s)

]2

. (3.16)

In Fig. 2 we show the fourth moment as function of time along with its half-
Markoffian approximation.2

2It might be interesting to observe that the recursive relation for the even moments in the spatially-
local φ-formalism, Eq. (2.1), the 2n-th moment depends on the previous one 2(n − 1)-th while in the
spatially-non-localχ -formalism, described by (3.9), the 2n-th moment depends on all the previous
non-vanishing moments, the explicit relation is given by

d

dt
〈x2n(t)〉 =

n∑

m=1

(2n)!

(2n− 2m)!(2m− 2)!
D2m−2(t)〈x2n−2m〉.
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3.2. Time Dependent Diffusion Constant, a Sketch

Obviously, the localφ-formalism does not provide the more appropriate description
in every physical system. A case in which theχ-formalism appears is in the Master
equation description [18] of the effects of vibrational relaxation on intermolecular
transferofelectronicexcitation.Time-dependent transfer ratesoccurnaturally there.
The probability of occupation of vibrational levels as wellas of site occupation,
denoted byPM

m (t), whereM andm refer to site and vibrational state respectively,
obeys

d

dt
PM

m (t) =
∑

n

[γm,nPM
n (t)− γn,mPM

m (t)] +
∑

N

[F M,N
m PN

m (t)− F N,M
m PM

m (t)].

(3.17)

When the use of a specific form for the relaxation rateγm,n and the assumption
of nearest-neighbor transfer ratesF M,N

m = FmδM,N are made, an effective transfer
equation is seen to emerge which is precisely of the form of the localχ-description.
It is possible to convert that time dependence into appropriate expressions for
quantities such asDχ (x, x′, t) of Eq. (2.9) and cast the problem into a spatially
non-localφ mould. We refrain from showing any of the details here for want of
space.

4. Concluding Remarks

If the phrase "anomalous diffusion" is taken to represent any process that has some
basic features of standard diffusion but also has significant departures from the
latter, one can state confidently that one encounters anomalous diffusion in a rich
varietyofphysical situations.Quantummechanical (quasi)particles, suchasFrenkel
excitons in photosynthetic units and photo-injected electrons in molecular crystals,
obey GME’s [11] whose features are in some regimes similar tothose of the standard
diffusion equation but in others sharply different as when coherence is substantially
present. A description via memory functions [12], i.e., viatheφ- formalism of Eq.
(1.2), is natural in that case. In another extreme example ofanomalous diffusion,
one encounters animal movements [3] that are said to be an example offractional
Brownian motion, which is nothing but Eq. (1.1) representative of theχ-formalism
with a power dependence ofχ(t) ont [10]. There is a large number of other instances
where it is not clear which of the descriptions is appropriate. Prior to 1973, it had
been thought that continuous time random walks representeda description that was
fundamentally different from that provided by memory functions. This viewpoint
held previously (even by some of the originators of one of those descriptions)
was found [7, 13, 16] to be incorrect and led to a trivially simple but important
clarification. Because the demonstration of such an equivalence between methods
of investigation or description can typically save much unnecessary theoretical
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labor, we thought it worthwhile to make that enquiry in the context of theχ- and
theφ-formalisms. This enquiry, begun in part by one of the present authors in the
context of the stress distribution of granular compacts [8], has been extended much
further in the present paper.

The previous observation [8] that, as stated (i.e., in theirspatiallylocal form), the
two descriptions cannot be generally equivalent, except inthe trivial case when both
describe standard diffusion, has been made transparently clear in the present paper
by Eqs. (1.4), (1.5) for the mean square displacement. The latter is formally similar
in the two formalisms but sharply different in content for generalφ(t) orχ(t). The
earlier indication [8] that each of the two formalisms is equivalent to a spatially non-
local form of the other has been extended here through the complete and practical
prescriptions (2.12) and (2.13). These prescriptions allow one, given an arbitrary
form of φ(t) or χ(t), to obtain, at least in principle, the corresponding non-local
quantitiesDχ (x, t) andDφ(x, t) in the other formalism. The prescriptions are given
in k-space and the Laplace domain and are to be followed by a final Fourier-Laplace
inversion if necessary.

We have also examined, in detail, a physical case in which the(spatially local)
φ-formalism (i.e., memory functions) provides the accuratedescription. We have
explicitly shown how our prescription developed in Eq. (3.8) is applied and how
the spatially non-local character develops in theχ-formalism (see Eq. (3.9)). This
is the elucidation of the railway-track model. We have also pointed out how, the
reverse situation, a natural description in terms of theχ-formalism, arises in the
theory of vibrational relaxation of molecular excitationsin the presence of motion
[18]. To avoid lengthy calculations we have refrained from showing the detail of
that opposite situation.

Because the spatial shape of the propagator in the localχ-formalism is always
Gaussian (for instance in fractional Brownian motion), only a generalization from
the timet to τ =

∫ t
0 dsχ(s) being necessary (see Eq. (2.7)), one may tend to believe

that theχ-formalism is not as rich as theφ-formalism–since the latter allows
more freedom in the shape of the propagator. This is, however, not an appropriate
statement. Indeed, there exists a certain “symmetry in richness" as we move from
the Laplace domain to the time domain. For instance, an equation such as (1.1) will
appear as a convolution equation in the Laplace domain.

Since it may not be clear by inspection which of the two formalisms may
be providing a correct description for a given system, we comment in passing
about probing this question experimentally. We draw the attention of the reader to
two observational set-ups in two widely different areas of study: transient grating
observations in molecular crystals (TGO) [11, 19] and nuclear magnetic resonance
microscopy (NMRM) [20, 21]. Both are sensitive not merely tothe mean square
displacement of the moving entities but to the entire Fourier transform of the
probability densityP(x, t). The TGO involve crossed laser beams that are used
to create a sinusoidal spatial distribution of electronic excitations. The decay of
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the amplitude of that distribution is measured and information is thereby extracted
about the motion of the excitations. The NMRM uses the so-called pulsed-gradient
spin echo technique [22]. In the limit of very short durationpulses, that technique,
just as does the TGO, probes directly the Fourier transform of P(x, t) and not its
moments. Clearly, both experiments should be able, in principle, to discriminate
between whether a localχ or localφ formalism is appropriate. More details will be
presented elsewhere.

We have restricted attention in the present paper to spatially homogeneous (not
the same as spatially non-local or local) systems only. Fourier transformation there-
fore diagonalizes the relevant matrices and there is nok − k′ interaction. If spatial
locations were not all equivalent, we would have terms such as Dχ (x, x′, t) and
Dφ(x, x′, t) in Eqs. (2.9) and (2.10) and the difference nature of the spatial kernels
would be destroyed.Transformationvia exp(ikx) would be useless and the problem
would become quite complicated.Because situations where the diffusion coefficient
itself may be spatially varying occur often in physical and biological applications,
it is important to extend our analysis to incorporate them. We plan to do that in a
future study.
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