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Abstract

The influence of spatial dimensionality and particle-antiparticle pair produc-

tion on the thermodynamic properties of the relativistic Fermi gas, at finite

chemical potential, is studied. Resembling a “phase transition”, qualitatively

different behaviors of the thermodynamic susceptibilities, namely the isothermal

compressibility and the specific heat, are markedly observed at different tem-

perature regimes as function of the system dimensionality and of the rest mass

of the particles. A minimum in the temperature dependence of the isothermal

compressibility marks a characteristic temperature, in the range of tenths of the

Fermi temperature, at which the system transit from a “normal” phase, to a

phase where the gas compressibility grows as a power law of the temperature.

1. Introduction

Soon after the discovery of the quantum statistics that incorporates Pauli’s

exclusion principle [1], by Fermi [2] and Dirac [3], the ideal Fermi gas (IFG) has

been extensively used to describe, both qualitatively and quantitatively, many

physical phenomena in a wide range of values of the particles density, from cos-

mological scales to nuclear ones. With the development of atomic trapping and

cooling techniques at the end of the 20th century, quantum degeneration of a

trapped Fermi gas of 40K atoms [4] was experimentally realized, this achieve-
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ment reignited the interest on the theoretical study of the thermodynamical

and dynamical properties of the Fermi gas in the weakly interacting regime

[5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. More recently, the IFG has been considered

in the context of quantum information, where the entanglement entropy of it

has been obtained in Ref. [16], while in Ref. [17] exact relations between the

Renyi entanglement entropies and the particle number fluctuations in a system

of noninteracting fermions have been derived.

On the other hand, Fermi systems at extreme density and/or high tempera-

tures have been of great interest in different fields, from astrophysics to heavy ion

collisions, where the physical processes involved are indeed relativistic [18, 19].

Studies of the relativistic IFG in thermal equilibrium have been made over the

last quarter of the last century and applied as a simple model system to describe

different phenomena, as the stability of white dwarf stars [20], hot quark matter

in a giant MIT bag [21], the properties of the gluon-quark plasma [22] which is

thought to occurred some microseconds after the Bing-Bang at the early stage of

the Universe, etc. [23, 24, 25]. For thermal energies in the nonrelativistic regime

it is safe to neglect particle-antiparticle pair production predicted by quantum

field theory, thus the only relativistic corrections on the thermodynamics of the

IFG to be considered, would correspond to the correct relativistic energy spec-

trum of a single-particle (for large particle densities, energies around the Fermi

energy can be relativistic).

In Refs. [27, 26] P.-H. Chavanis discussed the effects of the spatial dimen-

sionality in the balance between the pressure due to the quantum effects of the

electron degeneracy and gravitational collapse due to self-gravitation in white

dwarf stars, thus extending the work of Chandrasekhar. In his analysis, the

author shows that the collapse or evaporation of the star is unavoidable in di-

mensions larger than four, and unveils the special character of systems of spatial

dimension d ≤ 3 given by the anthropic principle. The equilibrium properties of

the electron gas in the star are rather well approximated by those in the limit of

complete quantum degeneration, i.e. by those at zero temperature, due to the

disparate difference between the system temperature and the Fermi tempera-
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ture, whose ratio T/TF , is in the range 10−3−10−2 and thus it is not necessary

to consider particle-antiparticle pair production.

Moreover, the effects of low spatial-dimensionality on the non-relativistic

IFG at finite temperatures are exhibited in the form of an unusual temperature

dependence of the chemical potential µ(T ) at constant volume [28, and reference

therein]. These effects are markedly shown in an IFG trapped in an impenetra-

ble, one dimensional box potential, for which µ(T ) starts rising quadratically

with T above the Fermi energy instead of decreasing from it, as it does in the

three-dimensional case. Eventually, at larger temperatures, µ(T ) turns to its

usual monotonic decreasing behavior at a characteristic temperature T ∗ that

can be as large as twice the Fermi one. This turn implies a maximum value of µ

at T ∗, which serves as a characteristic temperature that marks a crossover from

a phase (T < T ∗) at which changes of the Helmholtz free energy is dominated

by the internal energy changes, to a “normal” phase (T > T ∗) at which changes

of entropy are the ones that predominantly contribute to the changes of the free

energy [29]. In this paper we show the dramatic changes to this picture due to

the inclusion of particle-antiparticle pair production.

If thermal energies are relativistic, i.e. kBT ∼ mc2, where m is the rest mass

of a single fermion, particle-antiparticle pair production can no be neglected and

becomes important as occurs, for instance, in astrophysical plasmas [30, 31, 32].

Though the inclusion of pair production effects on the equilibrium properties of

the IFG have been addressed in Refs. [33, 34], the effects of dimensionality has

not yet been explored. This contrasts with the case of the relativistic Bose gas,

whose thermodynamics has been thoroughly studied considering pair production

and dimensionality [37, 36, 38, 39, 35].

In this paper we focus our study on the relativistic effects of particle-antiparticle

pair production and spatial dimensionality on the thermodynamic properties of

the Fermi gas in the weakly interacting limit. Though, particular attention

is paid to the temperature dependence of the chemical potential, which has

motivated several discussion of its importance on different levels and contexts

[40, 41, 42, 43, 44, 45, 46, 47, 48, 29], our main results focus on the thermody-
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namic susceptibilities or response functions, namely the specific heat at constant

volume CV and the isothermal compressibility κT , for which there is a great in-

terest at conditions of extreme densities and/or temperatures. Our calculations

reveal the appearance of a crossover between qualitatively different behaviors, as

function of temperature, of CV and κT due to pair production. Such crossover

occurs at a characteristic energy scale corresponding to a thermal energy of a

few tenths of the Fermi temperature. This drastic qualitative change in behav-

ior can be plausibly considered as a phase transition, from a normal phase at

which the compressibility diminishes with temperature, as in standard fermion

systems, to another at which matter becomes arbitrarily compressible.

The paper is organized as follows: In section 2 we describe explicitly the

system of our study and the chemical potential is calculated from the principle

of charge conservation. In section 3 the isothermal compressibility and the

heat capacity at constant volume are calculated. Finally, conclusion and final

remarks are given in section 4.

2. Finite temperature: the effects of pair production

The system under consideration corresponds to a d-dimensional gas of non-

interacting fermions in thermodynamic equilibrium at finite temperature and

chemical potential. Pair production is assumed to occur at thermal equilibrium.

At zero temperature the system consists of N0 spin- 12 fermions (antifermions

may be equally chosen instead), of rest mass m in a volume Vd, with single-

particle relativistic energy spectrum

Ek =
√
c2~2k2 +m2c4, (1)

where ~k is the momentum of the particle and c is the speed of light. For

simplicity we assume the spin balanced case in which the number of fermions

in each spin projection s = ± 1
2~ are equal, and no spin dependent interactions

are considered.

We introduce the ratio m̃ = m/mF of the single-particle rest mass to the

Fermi mass mF ≡ ~kF /c, as the parameter that tunes the system from the
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non-relativistic limit, m̃� 1, Ek ' mc2 + ~2k2/2m, to the ultrarelativistic one

m̃ � 1, Ek ' ~ck, with the Fermi wavevector kF defined through the Fermi

energy EF ≡
√
c2~2k2F +m2c4, that gives the energy of the higher occupied

state at zero temperature. In d dimensions the Fermi mass has the following

explicit dependence on the fixed, particle density n0 = N0/V

mF = 2~π1/2 [Γ(d/2 + 1)/2]
1/d |n0|1/d/c, (2)

which make clear why, for systems of high density, the ultrarelativistic limit

corresponds to m̃� 1 for which we have EF = EURF + m̃2/2 + . . . with EURF =

mF c
2. In the non-relativistc limit EF ' mc2 + ENRF , with ENRF = ~2k2F /2m is

the well known non-relativistic Fermi energy.

According to Quantum Field Theory the relativistic effects of pair production

are expected to be important at temperatures of the order ofmc2/kB [35, 49]. At

equilibrium, the mixture of particles and antiparticles is taken into account by

the condition µ = −µ̄ [49], which is straightforwardly obtained by the thermo-

dynamical equilibrium condition on the Helmholtz free energy F (T, Vd, N,N).

N and N denote the systems’s number of particle and antiparticles, respectively,

at temperature T and volume Vd. Unless otherwise indicated, we denote with

an overbar, those quantities related to antiparticles.

The thermodynamic properties are obtained from the grand partition func-

tion

Ξ(T, Vd, µ) ≡ Tr
{

exp
(
−β
[
H − µ(N −N)

])}
, (3)

where β = (kBT )−1, kB is the constant of Boltzmann and Tr denotes the trace

over all the states |nk1,snk2,s . . .〉⊗|nk1,snk2,s . . .〉 in Fock space. ki denotes the

d-dimensional wavevector and s the value of two possible projections of spin.

H =
∑

k,sEk (nk,s + nk,s) , N =
∑

k,s nk,s and N =
∑

k,s nk,s denote the

Hamiltonian, the total number of particles and a anti-particles operators re-

spectively, in terms of the number operators nk,s = a†k,sak,s, nk,s = a†k,sak,s,

with eigenvalues nk,s, nk,s, where a†k,s (a†k,s) and ak,s (ak,s) are the creation

and annihilation operators of particles (antiparticles), respectively, that sat-

isfy the anti-commutation relations
{
ak′,s′ ,a

†
k,s

}
= δk,k′δs,s′ ,

{
a†k′,s′ ,a

†
k,s

}
=
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{
ak′,s′ , ak,s

}
= 0 for particle operators and analogously,

{
ak′,s′ ,a

†
k,s

}
=

δk,k′δs,s′ ,
{
a†k′,s′ ,a

†
k,s

}
=
{
ak′,s′ ,ak,s

}
= 0 for antiparticle ones. The grand

canonical partition function results

Ξ(T, Vd, µ) =
∏
k,s

(
1 + ze−βEk

) (
1 + ze−βEk

)
, (4)

with z = eβµ, z = z−1, the fugacity of particles and antiparticles, respectively.

From this, we have that

ln Ξ(T, Vd, µ) =
∑
k,s

[
ln
(
1 + ze−βEk

)
+ ln

(
1 + z−1e−βEk

)]
. (5)

The net number of particles in the system at T y Vd is given by

N −N =

[
z
∂ ln Ξ

∂z

]
T,Vd

≡
∑
k,s

[〈nEk
〉 − 〈n̄Ek

〉] , (6)

where 〈nEk
〉 = {exp [β(Ek − µ)] + 1}−1 and 〈n̄Ek

〉 = {exp [β(Ek + µ)] + 1}−1

give, respectively, the average number of fermions and anti-fermions in the en-

ergy state Ek. This equation relates the chemical potential of the system to the

initial density of particles n0 = N0/Vd, where N0 = (N − N) is a conserved

quantity. In the limit of the continuum we have

n0 = Rd

∫ ∞
0

dk kd−1 [〈nEk
〉 − 〈n̄Ek

〉] , (7)

where Rd ≡ 4πd/2/[(2π)dΓ(d/2)] is a constant that depends only on d. Expres-

sion (7) can be written in terms of hyperbolic functions as

n0 = Rd

∫ ∞
0

dk kd−1
sinhβµ

coshβEk + coshβµ
(8)

and simplifies to

n0 = −RdΓ(d)

(β~c)d
[Lid (−z)− Lid

(
−z−1

)
] (9)

in the ultrarelativistic limit and to

n0 =
RdΓ(d/2)

2(β~2/2m)d/2
[
−Lid/2

(
−zNR

)]
(10)
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in the non-relativistic one, with zNR ≡ eβµ
NR

the non-relativistic fugacity and

µNR ≡ µ−mc2. In the last expressions−Liσ (−z) ≡ [1/Γ(σ)]
∫∞
0
dxxσ−1/[exz−1+

1] is the polylogarithm function, which has the series representation−
∑∞
l=1(−z)l/lσ

for |z| < 1.

In the ultra-relativistic regime, equations (9) and (18) (see below), involve

expressions of the kind
[
−Lin (−z)− (−1)nLin

(
−z−1

)]
, which can be written in

terms of a polynomial of degree n in (βµ) by the use of the Bernoulli polynomials,

Bn(x) =
∑n
k=0

(
n
k

)
bn−k x

n [50], as [(2πi)n/n!] Bn(1/2 + βµ/2πi), where the bk’s

are the Bernoulli numbers [51], the first ones being b0 = 1, b1 = −1/2, b2 = 1/6,

b3 = 0 . . . Thus, for odd d, expression (9) can be written as a polynomial in odd

powers of βµ as

n0 =
RdΓ(d)

(β~c)d
d∑

j odd

(βµ)j

j!
ηd,j , (11)

where the coefficients ηn,m are given explicitly by

ηn,m = (2πi)n−m
n∑

k=m

bn−m
2k−m(n− k)!(k −m)!

. (12)

The coefficients are real quantities since n and m are odd integers. We have

then that in the ultra-relativistic regime, µ = mF c
2 for d = 1.

2.1. The chemical potential

Before discussing the temperature dependence of µ in the regime of interest,

we comment in passing that at low enough temperatures, when pair production

is negligible, application of the commonly used Sommerfeld expansion [52] to

Eq. (7), gives for the chemical potential

µ(T )

EF
= 1− π2

6

(
T

TF

)2 [
1 + (d− 2)(1 + m̃2)

]
, (13)

where the sign in front of the factor (T/TF )2 depends explicitly on m̃. From

this expression, a simple analysis shows that a non-monotonic dependence on

T is possible whenever the dimensionality of the system is strictly smaller

than 2 −
(
1 + m̃2

)−1
. This inequality generalizes the one reported in Refs.

[28, 29], in that incorporates the effects of finite rest mass, and reduces to the
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m̃−independent inequalities d < 1 and d < 2, in the ultrarelativistic and non-

relativistic limit respectively. These two values for d correspond to the values

for which the IFG is thermodynamically equivalent—in that the specific heat

has the same temperature dependence—to the ideal Bose gas.

In Fig.1(a), µ(T ) is shown as function of T for the case when pair production

is neglected (dashed lines), for dimensions 1/2, 1 ,2, 3 and 4; and for m̃ = 1. In

this situation, the non-monotonous behavior is exhibited as a local maximum

for d = 1/2 (first dashed line from the far right) and for d = 1 (second dashed

line from the far right). The appearance of maxima persist only for systems

with d < 1 in the ultrarelativistic regime m̃ → 0. On the contrary, when m̃

is increased, the non-monotonic behavior of µ(T ) is expected for systems with

d < 2 if pair production is neglected (dashed lines in Fig.1(b), the expected

maxima for d < 2 are not revealed in the figure since the exact EF has been

chosen as energy scale, however, if ENRF is chosen as energy scale we recover the

non-monotonic behavior of the non-relativistic IFG µNR = µ −mc2 as shown

in Refs. [28, 29]).

In the high temperature regime, without pair production, µ(T ) is given by

−kBT ln

[
Vd
Nλd

2

(
2πkBT

mc2

)(d−1)/2

K(d+1)/2

(
mc2

kBT

)]
,

where λ = h/mc is the Compton wavelength and Kν(z) denotes the Bessel func-

tion of the second kind of order ν. Last expression corresponds to the classical

result for which the chemical potential is negative and decreases monotonically

with temperature (see dashed lines in Fig. 1). In addition, the same expres-

sion is also obtained for N spinless relativistic bosons of mass m in the same

limit [37]. This trivial relationship between the Bose and Fermi gas is simply

established by the loss of quantum degeneracy due to thermal fluctuations.

Effects of pair production.. By solving Eq. (7) at constant volume, we show

that the combined effects of pair production and system dimensionality are

conspicuous on the temperature dependence of µ(Vd, T ) as is shown in Fig. 1

(solid lines with symbols).
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We focus in the high temperature regime, for which the chemical potential

has three distinct asymptotic limits: i) it goes to zero if d > 1; ii) it goes to the

constant value EF
[
1 + m̃2

]−1/2
if d = 1 and iii) diverge sub-linearly as a power

law for 0 < d < 1. These behaviors are accounted for by the expression

µ(T ) ∼ EF
(
T

TF

)1−d

Φ(m̃2 + 1, d), (14)

which is approximately obtained from Eq. (7), with Φ(ξ, d) a temperature-

independent quantity defined through the expression

[Φ(ξ, d)]
−1

= d

∫ ∞
0

dxxd−1

[
1 + cosh

(
x2

ξ

)1/2
]−1

. (15)

In Table 1 explicit functional forms for [Φ(ξ, d)]
−1

are given for d = 4, 3, 2 and

1.

Table 1: Explicit functional forms for [Φ(ξ, d)]−1 which appears in eq. (14).

d = 4 d = 3 d = 2 d = 1

Φ(ξ, d)−1 36 ξ2 ζ(3) π2 ξ3/2 2 ξ ln 4 ξ1/2

In the ultrarelativistic limit, the explicit dependence on temperature can be

obtained for odd dimensions, namely µ(T )/EF = 1 for d = 1, and

µ

EF
=

1

2
+

√(
π√
3

T

TF

)6

+
1

4

1/3

+

1

2
−

√(
π√
3

T

TF

)6

+
1

4

1/3

(16)

for the three-dimensional case [21]. In Fig.1 µ(T ) is shown for the mass ratio

m̃ = 1 [panel (a)] and m̃ = 100 [panel (b)]. In both cases, the solid-red line with

squares, which corresponds to d = 1, marks the division from the two different

behaviors i) and iii).

The effects of pair production on the chemical potential are puzzling for

d < 1, for it makes µ to grow monotonically for all temperature if d < 1 and

m̃ . 2. Though, thermodynamics at these dimensions would seem out of place,
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the limit d → 0 has been analyzed in Ref. [53] for the non-relativistic IFG,

giving a physically consistent interpretation on the meaning of the large values

of the chemical potential as d → 0 [54]. On the other hand, effective low

dimensions do occur in trapped systems [55, 56, 29], where the trapped system

is mapped into a free one but in an effective dimension that is related directly

to the density of states. The monotonic growing of µ with T for d < 1 can

be understood qualitatively in the same line of thought as in Ref. [29]: as the

system temperature is increased so is the number of particles and anti-particles

in the system, in fact pair production for d < 1 increases with T at a more low

rate than for larger dimension (see Fig. 2), thus anti-particles can be neglected.

It is then plausible to assume that the average number of particles in state Ek,

〈nEk
〉, be larger than 1/2, which requires µ to be larger than the Fermi energy,

since the number of particles increases monotonically with temperature, this

growing behavior is expected to happen for all T . These considerations make

clear why the system at high temperature behaves quite differently from the

classical gas counterpart for which 〈nEk
〉 � 1. As the ratio m̃ is increased

above 4, approximately, this last behavior is changed, the chemical potential

goes from a decreasing behavior to an increasing one as can be noticed in Fig.

1(b) for m̃ = 100.

For d > 1, the effects of the original number of particles are outweighed

by pair production, reaching the limit N ≈ N as temperature is increased (see

Fig. 2). This results emerge from the dependence on T of µ, which goes to

zero as T 1−d, this implies z → z. The particular dependence of µ on T, for

different dimensions and values of m̃, leads to different particle-antiparticle pair

production rate as is exhibited in Fig.2, where the ratio of the antiparticles

number to the particles number, N/N , is shown as function of temperature for

m̃ = 1. In the inset, the effects of disparate masses, namely m̃ = 0.01, 1, 100,

are shown for d = 3.
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3. Thermodynamic susceptibilities

It is well known that the thermodynamic susceptibilities play an important

role in equilibrium transformations, such as the cooling by adiabatic compres-

sion or by an isocoric transformation of a gas, in such cases, the constant volume

specific heat CV and the isothermal compressibility κT are of particular impor-

tance. On the one hand, it has been suggested in Ref. [29], on the grounds of

an energy-entropy argument, that the non-monotonic behavior of the chemical

potential of the nonrelativist IFG, indicates a crossover from an unconventional

equilibrium states to standard states of the IFG.

For the non-relativistic IFG, these susceptibilities show a monotonic behavior

as function of T for dimensions d ≥ 2 [28]. CV shows a “hump” for d <

2 that is directly related to the non-monotonic behavior of µ(T ) and means

that, for low dimensional systems, the IFG dissipate thermal fluctuations more

effectively in the temperature region where µ(T ) > EF . On the other hand, the

isothermal compressibility also exhibits a “hump” for d < 2 with a maximum

at a characteristic temperature Tκ [29]. For T > Tκ the system compressibility

diminish, vanishing as the temperature goes to infinity just like the ideal classical

gas, however, below Tκ, the compressibility of the gas rises with T above its

value at zero temperature, κ0 [see Eq. (A.13) in the appendix], the gas turns

to be more compressible than the T = 0 state. In addition, a thermodynamic

“equivalence” between the ideal Bose and Fermi gases in d = 2 has been analyzed

[57, 58] and extended to a more general energy-momentum dispersion relation

[59]. Such equivalence is understood as the fact that both gases have the same

temperature dependence of their respective specific heat at constant volume.

Now we turn to analyze the effects of pair production on κT and CV of

the relativistic IFG. A quantity of interest that is relevant in the study of fluc-

tuations corresponds to ΛEk
≡ 〈nEk

〉 (1− 〈nEk
〉), which gives account of the

variance of the occupation number of particles in the energy-state Ek. The de-

pendence on β and µ has not been made explicit for the economy of writing,

however, it is clear that for a given value of T , ΛE is obtained after substitution
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of the corresponding value of µ computed from Eq. (7). In Fig. 3 we present ΛE

and its counterpart for antiparticles ΛE , as function of E, for d = 3, m̃ = 1, and

for temperatures at which: a) pair production is negligible T/TF = 0.1 (circles)

for which ΛE varies around the Fermi energy as expected, while ΛE ' 0; b)

pair production starts rising T/TF = 0.3 (triangles); and c) T/TF = 0.7 where

antiparticles almost equals the particles number (squares).

3.1. The isothermal compressibility κT

The isothermal compressibility is worth of analysis since is directly related

to the number fluctuations of the system and such quantity can be used to

characterize many situations of the IFG, as entanglement of the IFG [17], for

instance.

At finite temperature, κT can be computed from the expression (1/n20) (∂n0/∂µ)T

which results, after the use of expression (7), into

κT =
Rd

n20kBT

∫ ∞
0

dk kd−1
[
ΛEk

+ ΛEk

]
. (17)

In the ultrarelativistic limit, last expression simplifies in terms of polylogarithm

functions to

κT =
RdΓ(d)

n20(~c)d
(kBT )d−1

[
−Lid−1(−z)− Lid−1(−z−1)

]
(18)

and to

κT = − RdΓ(d/2)

n20 (~2/2m)
d/2−1 (kBT )d/2−1Lid/2−1(−zNR) (19)

in the non-relativistic one.

Expression (18) can be written as an even polynomial of order d− 1 in βµ,

namely

κT =
RdΓ(d)

n20(~c)d
(kBT )d−1

d−1∑
j even

(βµ)j

j!
ηd,j , (20)

where the coefficients ηl,n are given in equation (12). For d = 1 it can be checked

straightforwardly that κT = (π/2)~c/m2
F c

4 = κ0, i.e, in the ultra-relativistic

regime, the isothermal compressibility remains at its value at T = 0 for all T as

effect of pair creation.
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In Fig. 4, κT is shown as function of temperature for: m̃ = 1 [rela-

tivistic case, panel (a)] and m̃ = 100 [non-relativistic case, panel (b)] and

d = 1/2, 1, 2, 3, and 4 in each case. The ultrarelativistic limit m̃ � 1, has

been omitted since analytical expression have been obtained. In the low tem-

perature regime and for values of d and m̃, to be determined, the compressibility

rises and eventually starts diminishing with temperature exhibiting a maximum

at Tκ. A calculation based on the observation that the product 〈nE〉(1− 〈nE〉)

is different from zero only in a narrow interval of energies around µ (see Fig. 3

for T/TF = 0.01) gives, up to second order terms in T/TF ,

κT '
dµ
(
µ2 −m2c4

)d/2−1
n0(mF c2)d

(
1 +

π2

6
(kBT )

2
(d− 2)×(

µ2 −m2c4
)−2 [

3
(
µ2 −m2c4

)
+ (d− 4)µ2

])
(21)

and by using Eq. (13) we have that

κT
κ0
' 1− π2

6

(
T

TF

)2 [
1− 2(d− 2)(1 + m̃2)−

(d− 2)(d− 4)(1 + m̃2)2
]
, (22)

which shows the nonmonotonic dependence with temperature whenever

d <
2 + 3m̃2 −

(
1 + m̃4

)1/2
(1 + m̃2)

. (23)

This raising of the compressibility with temperature is an abnormal feature that

would have important effects on some thermodynamical transformations in low

dimensional systems at low temperatures [60, 61].

In the ultrarelativistic limit, m̃ � 1, such abnormal behavior is presented

for systems in dimensions smaller than 1, as can be checked from the expression

κT
κ0

= 1 +
π2

6
(d− 1)(d− 2)

(
T

TF

)2

(24)

or directly from (23). For d = 1, κT becomes temperature independent as

can be checked straightforwardly from expression (18) getting the value κUR0 =(
π~c n20

)−1
[see Eq. (A.15) in the Appendix]. Note that for the case d = 2, κT
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is proportional to µ, which turns to be a monotonic decreasing function of T for

any value of m̃. In the regime m̃ � 1, condition (23) turns simply into d < 2

[29] .

As temperature is increased and pair production becomes important, κT

suffers a striking change in its temperature dependence when d > 1, namely,

instead of diminishing to zero as occurs if pair creation is neglected (dashed

lines in Fig. 4), it starts to rapidly grow with temperature. This behavior is set

on when the number of antiparticles is of the order of particles, and is marked

by a local minimum T ∗κ in the range of the tenths of the Fermi temperature. At

higher temperatures, κT grows with T asymptotically as

κ0
(
1 + m̃2

)d/2−1
(d− 1)! ζ(d− 1) 2

(
1− 22−d

)( T

TF

)d−1
,

with ζ(x) the Riemann zeta function.

This drastic change of the temperature dependence of κT is not only quan-

titative, but qualitative in essence, the equilibrium properties of the system,

driven by pair production at equilibrium, transit from a normal phase (in that

show standard behavior of the thermodynamic properties), to a phase in which

the system becomes arbitrarily compressible with temperature, as occurs in the

relativistic Bose gas. For the three-dimensional case we have that the minimum

of κT occurs at approximately at T ∗κ = 0.34732 for m̃ = 0.01, T ∗κ = 0.32018 for

m̃ = 1, and T ∗κ = 0.07465 for m̃ = 100.

In small particle densities systems, as those occurring in dwarf white stars

(10−9 electrons per fm−3), the temperatures needed to observe the transition

would be two orders of magnitude larger than the ones in the star core. How-

ever at particle densities of the order of the nuclear matter 0.122 fm−3, the

corresponding Fermi energy is approximately 480.618 MeV in the limit m̃� 1.

With these values we estimate kBT
∗
κ ' 166.928 MeV for m̃ = 0.01. This value

is of the order of the expected crossover temperature to the quark-gluon plasma

[62], which from QCD calculations is expected to be 173±15 MeV for massless

quarks [63].

In contrast, κT /κ0 tends asymptotically with temperature to the constant

14



value (1 + m̃)−1/2 for d = 1, while it goes to zero for d < 1 as can be seen from

Fig. 4 for d = 1/2. In this latter case, though the system behave qualitatively

as standard matter, the effects due to pair creation can be noted quantitatively

from the departure to the case when no pair creation is considered (thin-dashed

lines).

3.2. The specific heat at constant volume CV

The specific heat at constant volume is expressed in terms of the ΛEk
’s as

CV =
RdVd
kBT 2

∫ ∞
0

dk kd−1E2
k

[
ΛEk

+ ΛEk

]
− Vd
κTT

[
Rd

n0kBT

∫ ∞
0

dk kd−1Ek
[
ΛEk

+ ΛEk

]]2
.

(25)

As shown in Fig. 5, the low temperature behavior is given by the well known

linear dependence, with the prefactor dπ2(1+m̃2)/3 which comes only from the

Fermi-Dirac statistics of the particles and the dimensionality of the system.

In the same range of temperatures where a local minimum in κT is found, the

specific heat changes its linear dependence characteristic of the low temperature

regime, to the temperature dependence T d as is shown in Fig. 5. For m̃� 1 (not

shown in Fig. 5) the transition is smooth and becomes more marked as the mass

ratio increases, as is contrasted in panels (a) and (b), where a plateau appears

before the power-law growth. This behavior differs from the case for which only

particles are considered (thin-dashed lines) which reaches the Dulong-Pettit

limit CV /dNkB = 1. The exact result CV /N0kB =
(
π2/3

)
(T/TF ) is found in

the limit m̃→ 0 for d = 1.

In Ref. [65] the authors considered the relativistic Bose and Fermi gases, at

low temperatures, they rightly neglected the antiparticles, and concluded that

in two dimensions both gases are thermodynamically inequivalent, in contrast

to the non-relativistic case in which they do, however it seems they missed that

both gases are thermodynamically equivalent in one dimension in the ultrarela-

tivistic limit. In fact, it is known that the condition for the equivalence between

the two quantum gases consists of the constancy of the single-particle density of

states g(E). In the exact relativistic case, is the finite rest mass of the particle

what avoids such possibility, since there is no value of d which makes the density
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of states g(E) = E(E2 −m2c4)d/2−1θ(E −mc2), θ(x) being the Heaviside step

function, to be a constant as occurs in the non-relativistic and ultrarelativistic

cases, where g(E) ∝ Ed/2−1 and ∝ Ed−1, respectively.

4. Conclusions and final remarks

We have studied the effects of the system dimensionality and quantum-

relativity on the thermodynamics of an ideal Fermi gas. The temperature de-

pendence of the chemical potential is determined by the system dimensionality

and by the particles rest mass. We recovered the unusual low temperature de-

pendence of µ(T ) for d < 2 [28] in the non-relativistic limit m � mF . For

arbitrary values of the rest mass, the nonmonotonic behavior of µ in the low

temperature regime appears if d < 2− (1 + m̃2)−1, which includes the ultrarela-

tivistic case for m̃� 1. Singularly, for dimensions smaller than one, µ increases

monotonically with T. This peculiar behavior occurs since for low dimensional

systems, the creation of particle-antiparticle pairs occurs at a so low rate that

the initial number of fermions dominates the thermodynamic behavior of the

system. This argument is supported from the temperature dependence of κT

which vanishes as T →∞, just as in the case when only particles are considered

(dashed lines in Fig.1). The temperature dependence of µ for high tempera-

tures described in Fig.1(a) is also observed in the relativistic Bose gas with pair

production [37] for d > 1, with the remarkable difference that for the Bose gas,

|µB | ≤ mc2, and therefore the chemical potential vanishes as T → ∞ even for

0 < d < 1. Except in the case d = 1 for which we have µB = 0 for all T where

µB is the chemical potential of the Bose gas.

The effects of pair production are exhibited in the thermodynamical sus-

ceptibilities as a change in their temperature dependence that appears at some

tenths of the Fermi temperature (as shown in Figs. 4 and 5) corresponding

to the temperature range at which the pair production becomes significantly

important. Both susceptibilities start growing without limit as a power law of

T after this crossover. The temperature that points out the crossover T ∗κ could
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be determined from the apparent local minimum exhibited in the isothermal

compressibility.

Our calculations consider the exact thermal behavior of the relativistic IFG

and therefore can describe systems beyond the standard, complete-degeneracy

approximation (T = 0), generally used in situations where a disparate difference

between the system’s and Fermi temperature exists.
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Appendix A. The zero temperature relativistic IFG

The zero point energy per particle, u0 = U0/N0, can be written in terms of

the Gaussian or ordinary hypergeometric function 2F1(a1, a2; b1; z) [66] as

u0 =mc2 2F1

[
−1/2, d/2; 1 + d/2;−m̃−2

]
. (A.1)

that reduces to elementary functions for integer values of d. For m̃� 1 we have

u0 = mc2 +
d/2

1 + d/2
ENRF − d/2

2 + d/2

(
ENRF

)2
mc2

+ . . . (A.2)

In the opposite limit, m̃� 1, we can write

u0 =
d

d+ 1
EURF

[
1 +

1

2

d+ 1

d− 1
m̃2 − 1

8

d+ 1

d− 3
m̃4 + . . .

]
(A.3)

for d 6= 1, 3, 5 . . ..

For d = 3 and 1 we have, respectively

u0 =
3

4
EURF (1 + m̃2)1/2

[
1 +

m̃2

2

(
1− m̃2 arcsinh(m̃−1)

(1 + m̃2)1/2

)]
(A.4)

u0 =
1

2
EURF

[
(1 + m̃2)1/2 + m̃2 arcsinh(m̃−1)

]
, (A.5)

In the m̃� 1 limit, last expressions can approximated by

u0 =
3

4
EURF

[
1 + m̃2 +

1

8
m̃4 ln (m̃) + . . .

]
(A.6)

u0 =
1

2
EURF

[
1− m̃2 ln m̃+

1

8
m̃4 + . . .

]
. (A.7)
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For the zero point pressure P0 we have

P0/n0 =mF c
2
√

1 + m̃2 − u0 (A.8)

which for m̃� 1 last expression reduces to

P0/n0 =
2

d+ 2
ENRF +

d/2

2 + d/2

(
ENRF

)2
mc2

+ . . . (A.9)

where the first term corresponds to the well known non-relativistic case. In the

opposite limit

P0/n0 =
1

d+ 1
EURF − 1

2(d− 1)
EURF m̃2 +

d

8(d− 1)
EURF m̃4 . . . (A.10)

the first term corresponds to the well known result in the ultrarelativistic case,

the next terms are valid always that d is not an odd integer. For d = 3, 1 we

have respectively

P0/n0 =
1

4
EURF − 1

4
EURF m̃2 +

3

25
EURF m̃4 ln m̃ . . . (A.11)

P0/n0 =
1

2
EURF +

1

2
EURF m̃2 [1− ln m̃]− 1

24
EURF m̃4 + . . . (A.12)

The inverse of the isothermal compressibility κT = − (1/Vd) (∂Vd/∂P0)T is

given by

κ−10 =
n0
d

mF c
2

√
1 + m̃2

(A.13)

in the limit of m̃� 1 we have that

κ0 ' κNR0

[
1 +

1

2m̃2

]
(A.14)

where κNR0 = d/[(d+ 2)P0] is the NR isothermal compressibility, which reduces

to the well known result κ0 = (3/5)P−10 for d = 3, and

κ0 ' κUR0

[
1 +

1

2
m̃2

]
(A.15)

in the m̃� 1 case, where κUR0 = d/[(d+ 1)P0]. These results show that the gas

is more compressible than in their respective limits m̃→∞ and m̃ = 0.
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Figure 1: (Color online) Dimensionless chemical potential as function of the dimensionless
temperature T/TF , for different dimensions: 1/2 (circles), 1 (squares), 2 (diamonds), 3 (up-
triangles) and 4 (down-triangles). Panel (a), (b), corresponds to m̃ = 1, 100, respectively. To
exhibit the effects of pair production, the curves of µ(T, Vd) for the case when only particles
are present in the system are also shown (dashed lines). The solid-red triangle in panel (a)
gives the value 1/

√
2 which corresponds to the asymptotic value given by expression (14) for

d = 1.
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Figure 2: (Color online) Ratio of anti-particles number to the particle number as function of
T/TF for dimension 1/2 (circles), 1 (squares), 2 (diamonds), 3 (up-triangles) and 4 (down-
triangles). Inset correspond to the three-dimensional case for the mass ratio values m̃ = 0.01
(dashed-dotted line), 1 (continuous line) and 100 (dashed line).
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for the three-dimensional relativistic IFG and for different temperatures, namely T/TF = 0.1
at which pair production is negligible (circles); T/TF = 0.3 when pair production starts rising
(triangles); and T/TF = 0.7 where antiparticles almost equals the particles number (squares).
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Figure 4: (Color online) Isothermal compressibility κT normalized with its value a T = 0 as
function of the dimensionless temperature T/TF and dimension 1/2 (circles), 1 (squares), 2
(diamonds), 3 (up-triangles) and 4 (down-triangles) for the mass ratio m̃ = 1 [panel (a)] and
m̃ = 100 [panel (b)]. Thin-dashed lines correspond to the cases for which pair production is
neglected.
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Figure 5: (Color online) Dimensionless specific heat at constant volume as function of the
dimensionless temperature T/TF for dimension 1/2 (circles), 1 (squares), 2 (diamonds), 3
(up-triangles) and 4 (down-triangles) and mass ratio m̃ = 1 [panel (a)], m̃ = 100 [panel (b)].
Thin-dashed lines correspond to the cases for which pair production is neglected.27


