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Abstract

The influence of spatial dimensionality and particle-antiparticle pair produc-
tion on the thermodynamic properties of the relativistic Fermi gas, at finite
chemical potential, is studied. Resembling a “phase transition”, qualitatively
different behaviors of the thermodynamic susceptibilities, namely the isothermal
compressibility and the specific heat, are markedly observed at different tem-
perature regimes as function of the system dimensionality and of the rest mass
of the particles. A minimum in the temperature dependence of the isothermal
compressibility marks a characteristic temperature, in the range of tenths of the
Fermi temperature, at which the system transit from a “normal” phase, to a

phase where the gas compressibility grows as a power law of the temperature.

1. Introduction

Soon after the discovery of the quantum statistics that incorporates Pauli’s
exclusion principle [1], by Fermi [2] and Dirac [3], the ideal Fermi gas (IFG) has
been extensively used to describe, both qualitatively and quantitatively, many
physical phenomena in a wide range of values of the particles density, from cos-
mological scales to nuclear ones. With the development of atomic trapping and
cooling techniques at the end of the 20th century, quantum degeneration of a

trapped Fermi gas of “°K atoms [4] was experimentally realized, this achieve-
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ment reignited the interest on the theoretical study of the thermodynamical
and dynamical properties of the Fermi gas in the weakly interacting regime
[5, 6, 7, 8,9, 10, 11, 12, 13, 14, 15]. More recently, the IFG has been considered
in the context of quantum information, where the entanglement entropy of it
has been obtained in Ref. [16], while in Ref. [17] exact relations between the
Renyi entanglement entropies and the particle number fluctuations in a system
of noninteracting fermions have been derived.

On the other hand, Fermi systems at extreme density and/or high tempera-
tures have been of great interest in different fields, from astrophysics to heavy ion
collisions, where the physical processes involved are indeed relativistic [18, 19].
Studies of the relativistic IFG in thermal equilibrium have been made over the
last quarter of the last century and applied as a simple model system to describe
different phenomena, as the stability of white dwarf stars [20], hot quark matter
in a giant MIT bag [21], the properties of the gluon-quark plasma [22] which is
thought to occurred some microseconds after the Bing-Bang at the early stage of
the Universe, etc. [23, 24, 25]. For thermal energies in the nonrelativistic regime
it is safe to neglect particle-antiparticle pair production predicted by quantum
field theory, thus the only relativistic corrections on the thermodynamics of the
IFG to be considered, would correspond to the correct relativistic energy spec-
trum of a single-particle (for large particle densities, energies around the Fermi
energy can be relativistic).

In Refs. [27, 26] P.-H. Chavanis discussed the effects of the spatial dimen-
sionality in the balance between the pressure due to the quantum effects of the
electron degeneracy and gravitational collapse due to self-gravitation in white
dwarf stars, thus extending the work of Chandrasekhar. In his analysis, the
author shows that the collapse or evaporation of the star is unavoidable in di-
mensions larger than four, and unveils the special character of systems of spatial
dimension d < 3 given by the anthropic principle. The equilibrium properties of
the electron gas in the star are rather well approximated by those in the limit of
complete quantum degeneration, i.e. by those at zero temperature, due to the

disparate difference between the system temperature and the Fermi tempera-



ture, whose ratio T'/Tr, is in the range 1072 — 10~2 and thus it is not necessary
to consider particle-antiparticle pair production.

Moreover, the effects of low spatial-dimensionality on the non-relativistic
IFG at finite temperatures are exhibited in the form of an unusual temperature
dependence of the chemical potential p(7T') at constant volume [28, and reference
therein]. These effects are markedly shown in an IFG trapped in an impenetra-
ble, one dimensional box potential, for which pu(7") starts rising quadratically
with T" above the Fermi energy instead of decreasing from it, as it does in the
three-dimensional case. Eventually, at larger temperatures, u(7T") turns to its
usual monotonic decreasing behavior at a characteristic temperature 7 that
can be as large as twice the Fermi one. This turn implies a maximum value of
at 7™, which serves as a characteristic temperature that marks a crossover from
a phase (T < T*) at which changes of the Helmholtz free energy is dominated
by the internal energy changes, to a “normal” phase (T' > T*) at which changes
of entropy are the ones that predominantly contribute to the changes of the free
energy [29]. In this paper we show the dramatic changes to this picture due to
the inclusion of particle-antiparticle pair production.

If thermal energies are relativistic, i.e. kgT ~ mc?, where m is the rest mass
of a single fermion, particle-antiparticle pair production can no be neglected and
becomes important as occurs, for instance, in astrophysical plasmas [30, 31, 32].
Though the inclusion of pair production effects on the equilibrium properties of
the IFG have been addressed in Refs. [33, 34], the effects of dimensionality has
not yet been explored. This contrasts with the case of the relativistic Bose gas,
whose thermodynamics has been thoroughly studied considering pair production
and dimensionality [37, 36, 38, 39, 35].

In this paper we focus our study on the relativistic effects of particle-antiparticle
pair production and spatial dimensionality on the thermodynamic properties of
the Fermi gas in the weakly interacting limit. Though, particular attention
is paid to the temperature dependence of the chemical potential, which has
motivated several discussion of its importance on different levels and contexts

[40, 41, 42, 43, 44, 45, 46, 47, 48, 29], our main results focus on the thermody-



namic susceptibilities or response functions, namely the specific heat at constant
volume Cy and the isothermal compressibility «7, for which there is a great in-
terest at conditions of extreme densities and/or temperatures. Our calculations
reveal the appearance of a crossover between qualitatively different behaviors, as
function of temperature, of Cy and st due to pair production. Such crossover
occurs at a characteristic energy scale corresponding to a thermal energy of a
few tenths of the Fermi temperature. This drastic qualitative change in behav-
ior can be plausibly considered as a phase transition, from a normal phase at
which the compressibility diminishes with temperature, as in standard fermion
systems, to another at which matter becomes arbitrarily compressible.

The paper is organized as follows: In section 2 we describe explicitly the
system of our study and the chemical potential is calculated from the principle
of charge conservation. In section 3 the isothermal compressibility and the
heat capacity at constant volume are calculated. Finally, conclusion and final

remarks are given in section 4.

2. Finite temperature: the effects of pair production

The system under consideration corresponds to a d-dimensional gas of non-
interacting fermions in thermodynamic equilibrium at finite temperature and
chemical potential. Pair production is assumed to occur at thermal equilibrium.
At zero temperature the system consists of Ny spin—% fermions (antifermions
may be equally chosen instead), of rest mass m in a volume Vj, with single-

particle relativistic energy spectrum
Er = v 2h2k? + m2c?, (1)

where Ak is the momentum of the particle and c¢ is the speed of light. For
simplicity we assume the spin balanced case in which the number of fermions
in each spin projection s = :I:%h are equal, and no spin dependent interactions
are considered.

We introduce the ratio m = m/mp of the single-particle rest mass to the

Fermi mass mp = hkp/c, as the parameter that tunes the system from the



non-relativistic limit, m > 1, Ej, ~ mc? + h%k?/2m, to the ultrarelativistic one
m < 1, By ~ hck, with the Fermi wavevector kg defined through the Fermi
energy Ep = \/m, that gives the energy of the higher occupied
state at zero temperature. In d dimensions the Fermi mass has the following

explicit dependence on the fixed, particle density ng = No/V
mp = 2hr"/2 [T(d)2 + 1) /2] |no|Y/4/e, (2)

which make clear why, for systems of high density, the ultrarelativistic limit
corresponds to m < 1 for which we have Er = EYF +m?/2 + ... with EY® =
mpc?. In the non-relativistc limit Er ~ me? + ENT with ENE = A2k% /2m is
the well known non-relativistic Fermi energy.

According to Quantum Field Theory the relativistic effects of pair production
are expected to be important at temperatures of the order of mc?/kp [35, 49]. At
equilibrium, the mixture of particles and antiparticles is taken into account by
the condition p = —f [49], which is straightforwardly obtained by the thermo-
dynamical equilibrium condition on the Helmholtz free energy F(T,Vy, N, N).
N and N denote the systems’s number of particle and antiparticles, respectively,
at temperature T' and volume V. Unless otherwise indicated, we denote with
an overbar, those quantities related to antiparticles.

The thermodynamic properties are obtained from the grand partition func-
tion

E(T, Vg, p) = Tr {exp (-8 [H — p(N = N)]) }, (3)
where 3 = (kpT)™*, kp is the constant of Boltzmann and Tr denotes the trace
over all the states [ng, sNk,.s - - ) @ [Tk, ,sTky,s - - -) i Fock space. k; denotes the
d-dimensional wavevector and s the value of two possible projections of spin.
H =3, Ep(ngs+nks), N =73, ngsand N = > ks Tk,s denote the
Hamiltonian, the total number of particles and a anti-particles operators re-
spectively, in terms of the number operators ng s = a};sak,s, Np,s = E;sﬁk,s,
with eigenvalues ny, s, Tig,s, where a;rm (E};S) and ag s (@g,s) are the creation
and annihilation operators of particles (antiparticles), respectively, that sat-

isfy the anti-commutation relations {akr’sz,aLS} = Ok 0s,s, {a};,’s,,a};’s} =



{ak/’s/, akys} = 0 for particle operators and analogously, {Ek/’S/,EL s} =
Ok k' 05,57 {EL, S,,EL s} = {Ek/}sgﬁk,s} = 0 for antiparticle ones. The grand
canonical partition function results
E(T, Vayp) = [ ] (1 + ze775%) (1 4 ze77x) | (4)
k,s
with z = e##, Z = 271, the fugacity of particles and antiparticles, respectively.
From this, we have that
InE(T, Vg, p) = Z [In (14 ze 7P¥) +1In (142" te PE0)]. (5)
k,s

The net number of particles in the system at Ty Vj is given by

N-N = [z’agf}
= ;[(nm)’—?nmﬂ, (6)

where (np,) = {exp[3(Ex — p)] + 1} 7! and (ag,) = {exp[B(E) +p)] + 1} 71
give, respectively, the average number of fermions and anti-fermions in the en-
ergy state Ey. This equation relates the chemical potential of the system to the
initial density of particles ng = No/Vy, where Ng = (N — N) is a conserved

quantity. In the limit of the continuum we have

mo= 1ty [ TRk (g, ) — ()] (7)

where Ry = 47%/? /[(2m)9T(d/2)] is a constant that depends only on d. Expres-

sion (7) can be written in terms of hyperbolic functions as

> - inh Bu
=Ry [ dkk‘! o 8
1o ¢ /0 cosh BEy + cosh S 8)

and simplifies to

~ R4I'(d)

. . -1
ng = W[le (—z) — Lig (—z )] (9)
in the ultrarelativistic limit and to
I'(d/2
Nnog = 7Rd (d/ ) [—Lid/g (—ZNR)} (10)

7 2(Bn2/2m)dr?



in the non-relativistic one, with zV% = A" the non-relativistic fugacity and
pNE = p—mc?. In the last expressions —Li, (—2) = [1/T(0)] [y~ dwa® ! /[e*27 1+
1] is the polylogarithm function, which has the series representation — Y, (—=2)!/1°
for |z| < 1.

In the ultra-relativistic regime, equations (9) and (18) (see below), involve
expressions of the kind [—Li, (—z) — (—1)"Li, (—z~')], which can be written in
terms of a polynomial of degree n in (Su) by the use of the Bernoulli polynomials,

B (x) = > 1o (1)bp—r x™ [50], as [(2mi)" /n!] B, (1/2 + Bp/27i), where the by’s
are the Bernoulli numbers [51], the first ones being by = 1, by = —1/2, by = 1/6,
b3 = 0 ... Thus, for odd d, expression (9) can be written as a polynomial in odd

powers of Su as
d

_ Ral(d) & (Bp)
o= (/;hcw >

where the coefficients 7, ,, are given explicitly by

Nd,j5 (11)
7odd

n

An—m bn—m
Tn,m = (27”') Z Qk*m(n — k)'(k — m)' ’ (12)

k=m
The coefficients are real quantities since n and m are odd integers. We have

then that in the ultra-relativistic regime, = mpc? for d = 1.

2.1. The chemical potential

Before discussing the temperature dependence of i in the regime of interest,
we comment in passing that at low enough temperatures, when pair production
is negligible, application of the commonly used Sommerfeld expansion [52] to
Eq. (7), gives for the chemical potential

@:1_2<£) [14+(d—2)(1+m%)], (13)

where the sign in front of the factor (7/Tr)? depends explicitly on m. From
this expression, a simple analysis shows that a non-monotonic dependence on
T is possible whenever the dimensionality of the system is strictly smaller
than 2 — (1 +ﬁ12)_1. This inequality generalizes the one reported in Refs.

[28, 29], in that incorporates the effects of finite rest mass, and reduces to the



m—independent inequalities d < 1 and d < 2, in the ultrarelativistic and non-
relativistic limit respectively. These two values for d correspond to the values
for which the IFG is thermodynamically equivalent—in that the specific heat
has the same temperature dependence—to the ideal Bose gas.

In Fig.1(a), u(T') is shown as function of 7" for the case when pair production
is neglected (dashed lines), for dimensions 1/2, 1,2, 3 and 4; and for m = 1. In
this situation, the non-monotonous behavior is exhibited as a local maximum
for d = 1/2 (first dashed line from the far right) and for d = 1 (second dashed
line from the far right). The appearance of maxima persist only for systems
with d < 1 in the ultrarelativistic regime m — 0. On the contrary, when m
is increased, the non-monotonic behavior of u(T) is expected for systems with
d < 2 if pair production is neglected (dashed lines in Fig.1(b), the expected
maxima for d < 2 are not revealed in the figure since the exact Fr has been
chosen as energy scale, however, if EY® is chosen as energy scale we recover the

2

non-monotonic behavior of the non-relativistic IFG puN% = y — me? as shown

in Refs. [28, 29]).

In the high temperature regime, without pair production, u(7) is given by

Va , (2rkpT (d=1)/2 % me
N mc? (d+1)/2 kgT

where A = h/mec is the Compton wavelength and K, (z) denotes the Bessel func-

—kBT In

b

tion of the second kind of order v. Last expression corresponds to the classical
result for which the chemical potential is negative and decreases monotonically
with temperature (see dashed lines in Fig. 1). In addition, the same expres-
sion is also obtained for IV spinless relativistic bosons of mass m in the same
limit [37]. This trivial relationship between the Bose and Fermi gas is simply

established by the loss of quantum degeneracy due to thermal fluctuations.

Effects of pair production.. By solving Eq. (7) at constant volume, we show
that the combined effects of pair production and system dimensionality are
conspicuous on the temperature dependence of u(Vy, T) as is shown in Fig. 1

(solid lines with symbols).



We focus in the high temperature regime, for which the chemical potential
has three distinct asymptotic limits: i) it goes to zero if d > 1; ii) it goes to the
constant value Ep [1 + m?] V25 d=1and iii) diverge sub-linearly as a power

law for 0 < d < 1. These behaviors are accounted for by the expression

1—-d
MH5NEFQ£> ®(m? + 1,d), (14)

which is approximately obtained from Eq. (7), with ®(¢,d) a temperature-
independent quantity defined through the expression

Z‘Q 1/2 -1
1+ cosh (5) . (15)

In Table 1 explicit functional forms for [®(&,d)] ™" are given for d = 4, 3, 2 and
1.

1= - o e
(&, d) " = d /0 d

Table 1: Explicit functional forms for [®(¢,d)] ™! which appears in eq. (14).
d=41 | d=3 [d=2 |d=1
(6, d) 1 | 36€7((3) | i €7 |26 md | &7

In the ultrarelativistic limit, the explicit dependence on temperature can be

obtained for odd dimensions, namely p(7T)/Epr = 1 for d = 1, and

1/3

oL (TN
Er |2 V3 Tk 4

6

SEE

for the three-dimensional case [21]. In Fig.1 u(T) is shown for the mass ratio

m =1 [panel (a)] and m = 100 [panel (b)]. In both cases, the solid-red line with

squares, which corresponds to d = 1, marks the division from the two different
behaviors i) and iii).

The effects of pair production on the chemical potential are puzzling for

d < 1, for it makes u to grow monotonically for all temperature if d < 1 and

m < 2. Though, thermodynamics at these dimensions would seem out of place,



the limit d — 0 has been analyzed in Ref. [53] for the non-relativistic IFG,
giving a physically consistent interpretation on the meaning of the large values
of the chemical potential as d — 0 [54]. On the other hand, effective low
dimensions do occur in trapped systems [55, 56, 29], where the trapped system
is mapped into a free one but in an effective dimension that is related directly
to the density of states. The monotonic growing of p with 7" for d < 1 can
be understood qualitatively in the same line of thought as in Ref. [29]: as the
system temperature is increased so is the number of particles and anti-particles
in the system, in fact pair production for d < 1 increases with T" at a more low
rate than for larger dimension (see Fig. 2), thus anti-particles can be neglected.
It is then plausible to assume that the average number of particles in state Ey,
(ng,), be larger than 1/2, which requires u to be larger than the Fermi energy,
since the number of particles increases monotonically with temperature, this
growing behavior is expected to happen for all T'. These considerations make
clear why the system at high temperature behaves quite differently from the
classical gas counterpart for which (ng,) < 1. As the ratio m is increased
above 4, approximately, this last behavior is changed, the chemical potential
goes from a decreasing behavior to an increasing one as can be noticed in Fig.
1(b) for m = 100.

For d > 1, the effects of the original number of particles are outweighed
by pair production, reaching the limit N ~ N as temperature is increased (see
Fig. 2). This results emerge from the dependence on T' of u, which goes to
zero as T~ this implies 2 — Z. The particular dependence of u on T, for
different dimensions and values of m, leads to different particle-antiparticle pair
production rate as is exhibited in Fig.2, where the ratio of the antiparticles
number to the particles number, N /N, is shown as function of temperature for
m = 1. In the inset, the effects of disparate masses, namely m = 0.01, 1, 100,

are shown for d = 3.
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3. Thermodynamic susceptibilities

It is well known that the thermodynamic susceptibilities play an important
role in equilibrium transformations, such as the cooling by adiabatic compres-
sion or by an isocoric transformation of a gas, in such cases, the constant volume
specific heat Cy and the isothermal compressibility xkp are of particular impor-
tance. On the one hand, it has been suggested in Ref. [29], on the grounds of
an energy-entropy argument, that the non-monotonic behavior of the chemical
potential of the nonrelativist IFG, indicates a crossover from an unconventional
equilibrium states to standard states of the IFG.

For the non-relativistic IFG, these susceptibilities show a monotonic behavior
as function of T for dimensions d > 2 [28]. Cy shows a “hump” for d <
2 that is directly related to the non-monotonic behavior of u(7") and means
that, for low dimensional systems, the IFG dissipate thermal fluctuations more
effectively in the temperature region where p(7T) > Er. On the other hand, the
isothermal compressibility also exhibits a “hump” for d < 2 with a maximum
at a characteristic temperature T, [29]. For T > T, the system compressibility
diminish, vanishing as the temperature goes to infinity just like the ideal classical
gas, however, below T}, the compressibility of the gas rises with 7" above its
value at zero temperature, kg [see Eq. (A.13) in the appendix], the gas turns
to be more compressible than the 7" = 0 state. In addition, a thermodynamic
“equivalence” between the ideal Bose and Fermi gases in d = 2 has been analyzed
[67, 58] and extended to a more general energy-momentum dispersion relation
[59]. Such equivalence is understood as the fact that both gases have the same
temperature dependence of their respective specific heat at constant volume.

Now we turn to analyze the effects of pair production on k7 and Cy of
the relativistic IFG. A quantity of interest that is relevant in the study of fluc-
tuations corresponds to Ag, = (ng,) (1 — (ng,)), which gives account of the
variance of the occupation number of particles in the energy-state Ej. The de-
pendence on S and p has not been made explicit for the economy of writing,

however, it is clear that for a given value of T', Ag is obtained after substitution

11



of the corresponding value of 1 computed from Eq. (7). In Fig. 3 we present Ag
and its counterpart for antiparticles Ag, as function of E, for d = 3, m = 1, and
for temperatures at which: a) pair production is negligible T'//Tr = 0.1 (circles)
for which Ag varies around the Fermi energy as expected, while Ag ~ 0; b)
pair production starts rising T/Tr = 0.3 (triangles); and ¢) T/TrF = 0.7 where

antiparticles almost equals the particles number (squares).

3.1. The isothermal compressibility kp

The isothermal compressibility is worth of analysis since is directly related
to the number fluctuations of the system and such quantity can be used to
characterize many situations of the IFG, as entanglement of the IFG [17], for
instance.

At finite temperature, 7 can be computed from the expression (1/n2) (9no /o),

which results, after the use of expression (7), into

_ Rq > d—1 N
Ky = nngT/O dk k' [Ap, +Ag,] . (17)

In the ultrarelativistic limit, last expression simplifies in terms of polylogarithm

functions to

Kr = R;L(d?i(kBT)dil [—Lig—1(—2) — Lid—l(*zil)} (18)
ng(hc)
and to
oy = Ral(d/2) (kpT)Y? Wigps o (—2VF) (19)

n2 (h2)2m)**~"
in the non-relativistic one.

Expression (18) can be written as an even polynomial of order d — 1 in Sy,

namely )
Rq'(d) 1 = (B
= kgT E j 2
T n%(ﬁC)d( 5T) il TSR (20)

where the coefficients 7, ,, are given in equation (12). For d = 1 it can be checked
straightforwardly that kr = (7/2)he/m%c* = ko, i.e, in the ultra-relativistic
regime, the isothermal compressibility remains at its value at T = 0 for all T as

effect of pair creation.
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In Fig. 4, kr is shown as function of temperature for: m = 1 [rela-
tivistic case, panel (a)] and m = 100 [non-relativistic case, panel (b)] and
d =1/2,1, 2,3, and 4 in each case. The ultrarelativistic limit m < 1, has
been omitted since analytical expression have been obtained. In the low tem-
perature regime and for values of d and m, to be determined, the compressibility
rises and eventually starts diminishing with temperature exhibiting a maximum
at T,;. A calculation based on the observation that the product (ng)(1 — (ng))
is different from zero only in a narrow interval of energies around p (see Fig. 3

for T/Tr = 0.01) gives, up to second order terms in T/Tg,

KT ~ <1 * %2 (kBT>2 (d—2)x
(12 = m2ch) 7 [3 (= m') + (d - p?])  (21)

and by using Eq. (13) we have that

KT w2 ([ T\?
—rl—-— (=) [1-2d-2)(1+m?)—
. G (TF) [ (d—2)(1+m?)

(d—2)(d—4)(1+m*)?], (22)

which shows the nonmonotonic dependence with temperature whenever

2+ 3m2 — (1+m4)"/?

(14 m?2)

d< (23)

This raising of the compressibility with temperature is an abnormal feature that
would have important effects on some thermodynamical transformations in low
dimensional systems at low temperatures [60, 61].

In the ultrarelativistic limit, m < 1, such abnormal behavior is presented
for systems in dimensions smaller than 1, as can be checked from the expression
KT w2 T\?

K—Ozl+€(d—1)(d—2) (TF> (24)
or directly from (23). For d = 1, kp becomes temperature independent as
UR

can be checked straightforwardly from expression (18) getting the value kj " =

(mhe n%)_l [see Eq. (A.15) in the Appendix]. Note that for the case d = 2, k7
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is proportional to p, which turns to be a monotonic decreasing function of T for
any value of m. In the regime m > 1, condition (23) turns simply into d < 2
[29] .

As temperature is increased and pair production becomes important, s
suffers a striking change in its temperature dependence when d > 1, namely,
instead of diminishing to zero as occurs if pair creation is neglected (dashed
lines in Fig. 4), it starts to rapidly grow with temperature. This behavior is set
on when the number of antiparticles is of the order of particles, and is marked
by a local minimum 77} in the range of the tenths of the Fermi temperature. At

higher temperatures, k7 grows with 7" asymptotically as

ko (1+m2) 2 (d=1)1¢d—1)2 (12274 <TTF)d 1 :
with {(z) the Riemann zeta function.

This drastic change of the temperature dependence of k7 is not only quan-
titative, but qualitative in essence, the equilibrium properties of the system,
driven by pair production at equilibrium, transit from a normal phase (in that
show standard behavior of the thermodynamic properties), to a phase in which
the system becomes arbitrarily compressible with temperature, as occurs in the
relativistic Bose gas. For the three-dimensional case we have that the minimum
of kp occurs at approximately at T,; = 0.34732 for m = 0.01, T;¥ = 0.32018 for
m =1, and T7F = 0.07465 for m = 100.

In small particle densities systems, as those occurring in dwarf white stars
(1079 electrons per fm~3), the temperatures needed to observe the transition
would be two orders of magnitude larger than the ones in the star core. How-
ever at particle densities of the order of the nuclear matter 0.122 fm~3, the
corresponding Fermi energy is approximately 480.618 MeV in the limit m < 1.
With these values we estimate kg7, ~ 166.928 MeV for m = 0.01. This value
is of the order of the expected crossover temperature to the quark-gluon plasma
[62], which from QCD calculations is expected to be 173+15 MeV for massless
quarks [63].

In contrast, k7 /ko tends asymptotically with temperature to the constant

14



value (14 m)~1/2 for d = 1, while it goes to zero for d < 1 as can be seen from
Fig. 4 for d = 1/2. In this latter case, though the system behave qualitatively
as standard matter, the effects due to pair creation can be noted quantitatively
from the departure to the case when no pair creation is considered (thin-dashed
lines).
8.2. The specific heat at constant volume Cy,

The specific heat at constant volume is expressed in terms of the Ag,’s as

Va Ry
HTT nokBT

~ RaVy
T kT2

Cv / S an kB [Ag, +Ap, |-
' (25)
As shown in Fig. 5, the low temperature behavior is given by the well known
linear dependence, with the prefactor dw?(1+m?)/3 which comes only from the
Fermi-Dirac statistics of the particles and the dimensionality of the system.

In the same range of temperatures where a local minimum in s is found, the
specific heat changes its linear dependence characteristic of the low temperature
regime, to the temperature dependence T as is shown in Fig. 5. For m < 1 (not
shown in Fig. 5) the transition is smooth and becomes more marked as the mass
ratio increases, as is contrasted in panels (a) and (b), where a plateau appears
before the power-law growth. This behavior differs from the case for which only
particles are considered (thin-dashed lines) which reaches the Dulong-Pettit
limit Cy /dNkp = 1. The exact result Cy /Nokp = (72/3) (T'/Tp) is found in
the limit m — 0 for d = 1.

In Ref. [65] the authors considered the relativistic Bose and Fermi gases, at
low temperatures, they rightly neglected the antiparticles, and concluded that
in two dimensions both gases are thermodynamically inequivalent, in contrast
to the non-relativistic case in which they do, however it seems they missed that
both gases are thermodynamically equivalent in one dimension in the ultrarela-
tivistic limit. In fact, it is known that the condition for the equivalence between
the two quantum gases consists of the constancy of the single-particle density of
states g(F). In the exact relativistic case, is the finite rest mass of the particle

what avoids such possibility, since there is no value of d which makes the density

15

/ dk k' By [Ap, +Ag,]
0
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of states g(E) = E(E? — m2c*)2719(E — mc?), 0(x) being the Heaviside step
function, to be a constant as occurs in the non-relativistic and ultrarelativistic

cases, where g(E) o< E4?~1 and o« E*~!, respectively.
4. Conclusions and final remarks

We have studied the effects of the system dimensionality and quantum-
relativity on the thermodynamics of an ideal Fermi gas. The temperature de-
pendence of the chemical potential is determined by the system dimensionality
and by the particles rest mass. We recovered the unusual low temperature de-
pendence of u(T) for d < 2 [28] in the non-relativistic limit m > mp. For
arbitrary values of the rest mass, the nonmonotonic behavior of y in the low
temperature regime appears if d < 2 — (1+m?)~!, which includes the ultrarela-
tivistic case for m < 1. Singularly, for dimensions smaller than one, p increases
monotonically with 7. This peculiar behavior occurs since for low dimensional
systems, the creation of particle-antiparticle pairs occurs at a so low rate that
the initial number of fermions dominates the thermodynamic behavior of the
system. This argument is supported from the temperature dependence of K
which vanishes as T' — oo, just as in the case when only particles are considered
(dashed lines in Fig.1). The temperature dependence of u for high tempera-
tures described in Fig.1(a) is also observed in the relativistic Bose gas with pair
production [37] for d > 1, with the remarkable difference that for the Bose gas,

2. and therefore the chemical potential vanishes as T — oo even for

lup| < me
0 < d < 1. Except in the case d = 1 for which we have up = 0 for all 7" where
1 p is the chemical potential of the Bose gas.

The effects of pair production are exhibited in the thermodynamical sus-
ceptibilities as a change in their temperature dependence that appears at some
tenths of the Fermi temperature (as shown in Figs. 4 and 5) corresponding
to the temperature range at which the pair production becomes significantly

important. Both susceptibilities start growing without limit as a power law of

T after this crossover. The temperature that points out the crossover T} could
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be determined from the apparent local minimum exhibited in the isothermal
compressibility.

Our calculations consider the exact thermal behavior of the relativistic IFG
and therefore can describe systems beyond the standard, complete-degeneracy
approximation (T = 0), generally used in situations where a disparate difference

between the system’s and Fermi temperature exists.
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Appendix A. The zero temperature relativistic IFG

The zero point energy per particle, ug = Uy/Ny, can be written in terms of

the Gaussian or ordinary hypergeometric function 2 Fy (a1, ag;by; ) [66] as
ug =mc” o Fy [—1/2,d/2;1+ d/2; —m~?] . (A1)

that reduces to elementary functions for integer values of d. For m > 1 we have

Y2 e 42 (B

= 2 A.2
o = me T R R T 5 me (4.2)
In the opposite limit, m < 1, we can write
d g ld+1_, 1d+1_,
= — ——m - —— A.
Rl [ 2d—1" 8d—3" " (4.3)
ford#1,3,5....
For d = 3 and 1 we have, respectively
3 _unr _ov1/2 m? m? arcsinh(m 1)
1 ~ ~ ~
uo = 5 BEE [(1 )2 4w arcsinh(m’l)} , (A.5)
In the m <« 1 limit, last expressions can approximated by
3 _ 1. ~
uo = EYR [1 +m? + §m4 In(m) + .. ] (A.6)
1 - ~ 1
U0=§EgR [1—m21nm+8m4+...]. (A7)
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For the zero point pressure Py we have

Po/no :mF02 V1+m?2 —ug (AS)
which for m > 1 last expression reduces to

2
NR d/2 (EgR)
d+2°F T 2+4d/2 me?

Po/no = (A.9)

where the first term corresponds to the well known non-relativistic case. In the
opposite limit
Py/ng = LEgR - #EU’“2 + LEUR ... (A.10)
d+1 2(d — ) 8(d — )
the first term corresponds to the well known result in the ultrarelativistic case,
the next terms are valid always that d is not an odd integer. For d = 3,1 we

have respectively

1 3

1 _

Py/no :iEgR 4EUR 24 55 EUR m*lnm.. (A.11)
1 1 N 1

Po/no =§EgR + 5E%Rm2 [1—Inm] — Q—EUR ‘il (A.12)

The inverse of the isothermal compressibility kK = — (1/Vy) (0Vy/0F,)p is

given by

2

_1 Mo MmMpc
= D0 TR A.13
T e (A.13)

in the limit of m > 1 we have that
1
Ko =~ K {1 + } (A.14)

where k)’ = d/[(d + 2) Py] is the NR isothermal compressibility, which reduces
to the well known result xg = (3/5)P; " for d = 3, and

1_
ko ~ kY E [1 + 2m2} (A.15)

in the m < 1 case, where x§ ' = d/[(d+ 1)P,]. These results show that the gas

is more compressible than in their respective limits m — oo and m = 0.
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Figure 1: (Color online) Dimensionless chemical potential as function of the dimensionless
temperature T'/TF, for different dimensions: 1/2 (circles), 1 (squares), 2 (diamonds), 3 (up-
triangles) and 4 (down-triangles). Panel (a), !%g, corresponds to m = 1, 100, respectively. To
exhibit the effects of pair production, the cur%€s of (T, V) for the case when only particles
are present in the system are also shown (dashed lines). The solid-red triangle in panel (a)
gives the value 1/\/5 which corresponds to the asymptotic value given by expression (14) for
d=1.
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Figure 2: (Color online) Ratio of anti-particles number to the particle number as function of
T/Tr for dimension 1/2 (circles), 1 (squares), 2 (diamonds), 3 (up-triangles) and 4 (down-
triangles). Inset correspond to the three-dimensional case for the mass ratio values m = 0.01
(dashed-dotted line), 1 (continuous line) and 100 (dashed line).
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Figure 3: (Color online) Az, Ag (as defined in text) vs the normalized energy E/EF are shown
for the three-dimensional relativistic IFG and for different temperatures, namely T/Tr = 0.1
at which pair production is negligible (circles); T'/Tr = 0.3 when pair production starts rising
(triangles); and T'/Tr = 0.7 where antiparticles almost equals the particles number (squares).
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Figure 4: (Color online) Isothermal compressibility k7 normalized with its value a T'= 0 as
function of the dimensionless temperature 7/TF and dimension 1/2 (circles) (squares), 2
(dlamonds) 3 (up-triangles) and 4 (down-triangles) for the mass ratio m = 1 [panel (a)] and
m = 100 [panel (b)]. Thin-dashed llnes corred ond to the cases for which pair production is
neglected.
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Figure 5: (Color online) Dimensionless specific heat at constant volume as function of the
dimensionless temperature T'/TF for dimension 1/2 (circles), 1 (squares), 2 (diamonds), 3
(up-triangles) and 4 (down-triangles) and magss ratio m = 1 [panel (a)], m = 100 [panel (b)].
Thin-dashed lines correspond to the cases for%hich pair production is neglected.



