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Abstract. In this work, we study a system of passive Brownian (non-self-propelled)

particles in two dimensions, interacting only through a social-like force (velocity

alignment in this case) that resembles Kuramoto’s coupling among phase oscillators.

We show that the kinematical stationary states of the system go from a phase in thermal

equilibrium with no net flux of particles, to far-from-equilibrium phases exhibiting

collective motion by increasing the coupling among particles. The mechanism that

leads to the instability of the equilibrium phase relies on the competition between two

time scales, namely, the mean collision time of the Brownian particles in a thermal

bath and the time it takes for a particle to orient its direction of motion along the

direction of motion of the group.
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1. Introduction

The study of the emergence of collective phenomena in systems far from equilibrium

has been developed during the last three decades along different paths. One of

these, corresponds to globally interacting entities which develop in time a variety of

synchronized collective behaviors such as the synchronized flashing in swarms of some

species of fireflies [1] or the chorusing behavior observed in groups of crickets [2, 3].

Another example corresponds to the appearance of collective motion in systems of active

particles interacting through short-ranged velocity-aligning forces as is thought to occur,

in a simplified manner, in flocks of birds [4] or schools of fish [5] among others. Though

motion is not relevant in the first case, it is evidently in the second one.

At a first glance, these two mechanism for collective phenomena may seem to

be unrelated, however, in both cases, individual behavior is changed in favor of a

collective one that emerges from the interactions among individuals. Thus, while

synchronization corresponds to the emergence of a collective rhythm among the many

ones that characterize each element in the system, collective motion results from the

appearance of a global state in which particles move towards a collectively determined

direction.

On the other hand, the collective motion exhibited in many real systems makes us to

think of the whole system (some times formed by thousands of individuals [6]) as a single

self-propelled entity that behaves coherently. In such a case, one may conceive that the

mechanism for the emergence of such behavior lies on the effects of a synchronizing force

among the elements of the system. Thus, a plausible bridge between the synchronizing

behavior and collective motion, if any, must be unveiled.

The synchronized behavior exhibited by a collection of globally interacting phase-

oscillators is described by the paradigmatic model of Kuramoto [7, 8, 9, 10], where the

system suffers a dynamic transition as the intensity of the coupling among the oscillators

is increased, going from phases where the elements oscillate independently with their own

pace, to phases where the elements oscillate synchronously with the same collectively-

developed frequency. As such, collective synchronization of many realistic systems has

been understood in the context of this exhaustively studied model and extensions of it

[10, 11, 12, 13], and one would expect it could be extended to other phenomena such as

collective motion [14].

In general, the onset of collective motion in systems consisting of active or self-

propelled particles is exhibited by the spontaneous emergence of ordered states in which

particles move roughly about the same instantaneous direction. For collective motion,

the counterpart of the model of Kuramoto corresponds to the exhaustively studied model

by Vicsek et al [15], which exhibits the emergence of a collective behavior in a system of

particles that move with constant speed, with dynamics driven by a set of automata-like

rules. The problem of how the information is transmitted through the system when its

elements interact via short-ranged forces has been addressed in many different studies;

see, for example, [16, 17].
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Self-propulsion, in its more general meaning [18, and references therein], refers to

out-of-equilibrium dynamics in which the energy of the surroundings is turned into

particle motion. This mechanism has been thought an essential ingredient for the

existence of phases with coherent motion. Indeed, it is large the number of studies

on flocking behavior where the self-propulsive character of the agents is kept as an

important aspect of the analysis (see for instance [19]), sometimes making the modeling

of this kind of behavior complex, with the use of sophisticated nonlinear friction terms

[20, 21]. This bias may be justified on the basis that the concept of self-propelled

particles captures the natural ability (as seen in many biological systems) for the agents

to develop motion by themselves [19, 22]. Additionally, it has also been thought

to be an important ingredient for pattern formation in models of collective motion

[23, 24, 25, 26, 27]. Thus, a natural question would be, up to what extent self-propulsion

is a necessary feature for a system to develop collective motion?

On the other hand, it seems natural to make an attempt to build a theoretical

framework bridging between the commonly understood concepts of synchronization and

collective motion. For this, we must first take into account the subtle but important

difference between both: in synchronization, a collective frequency emerges from distinct

ones that characterize each one of the globally interacting elements, while collective

motion emerges from identical self-propelled particles that interact through short-ranged

“social forces”. Though, not in its more general scope, such a bridge has been addressed

before in [28] by connecting the Kuramoto model of synchronization with the Vicsek et

al model of collective motion.

In addition, the out-of-equilibrium nature of the steady-states (ordered and

disordered) reached in systems of active particles, which perform out-of-equilibrium

dynamics, are of great interest in modern statistical mechanics [29]. In contrast, here

we put forward the study of the out-of-equilibrium steady-states in systems of passive

particles that emerge due to the sole effects of social interactions, as the aligning force

considered in this work. The transition to these states, marks the breakdown of the

fluctuation-dissipation-relation’s validity that, in general, corresponds to the emergence

of net non-zero probability currents in configuration space.

In the present paper, we focus mainly on three aspects: (i) To make clear that

self-propulsion is an unnecessary non-equilibrium feature of the agents to exhibit phases

of collective motion. We make explicit this by considering only the underlying dynamics

of passive standard Brownian motion in a system of globally interacting particles. In

other words, the inertial effects of Brownian motion in addition to velocity-alignment

interactions suffice to exhibit collective motion in a system of passive Brownian particles.

This conclusion does not rely on the mean field nature of the interaction as will be shown

elsewhere, in a subsequent analysis. In addition, this result suggests the theoretical

possibility for engineering systems of passive particles to display collective motion. (ii)

To show that the model of velocity-alignment among particles introduced in this work,

which separates the dynamics of turning from the dynamics of propulsion (Brownian

in the present case), allows us to discuss the precise relationship of the appearance of
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collective motion with the onset of collective synchronization. Particularly, it allows

us to make a direct connection with the model of Kuramoto, in contrast with other

studies [19, 30], where such relation is just implied. (iii) To show that synchronization

implies collective motion, in other words, considering globally coupled identical movers

is sufficient to exhibit such collective behavior.

Though the emergence of collective motion is indeed expected in the mean-field

situation proposed here (global coupling), our model allows us to analytically study the

transition from steady-states close to equilibrium to steady-states out of equilibrium,

by tuning the velocity-alignment among particles alone. Indeed, the transition

from stationary asynchronous states to stationary synchronous ones corresponds, in

our model, to the transition from close-to-equilibrium stationary phases to out-of-

equilibrium ones, characterized by a particle current and, therefore, the production

of entropy.

We must mention that there has been a relatively recent re-growth of interest in

systems with long-range interactions in which, contrasting with systems that consider

short-range interactions, unusual effects may arise [31]. An example is the so-called

Brownian mean-field model [32] that can be interpreted as a one-dimensional model of

flocking behavior with long-range Kuramoto-like interactions.

We address all these aspects by formulating a model based on Langevin equations,

for globally interacting Brownian particles for which the interacting mechanism avoids

the self-driving characteristic. In section 2 we introduce our model in terms of Langevin-

like equations and the nature of the velocity-alignment force is discussed. In section 3

we analyze the stability of the equilibrium phase, against interactions, by performing

a stability analysis of a nonlinear Fokker-Planck equation for the probability density,

P (v, t), for finding a particle moving with velocity v at time t. We finally summarize

our conclusion in section 4.

2. Model

We consider N two-dimensional Brownian particles in the underdamped limit, that

interact among themselves through a velocity-aligning mechanism that incorporates a

finite aligning rate without affecting the magnitude of the velocity of the particles.

Clearly, this contrasts to other studies in continuous time, in that our approach is

intended to disentangle the effects of active motion (generally included by non-linear

friction forces that drive the particles to move with a speed around a constant value [19]

or, in the overdamped limit, to move with constant speed [30, 33]), from the effects of

velocity alignment.

The velocity-alignment interaction is of particular interest since it involves the

dynamical attraction of the single particle direction of motion, to one collectively

determined by the coupling with the rest of the elements in the system, resembling

the synchronizing force in Kuramoto’s model of globally-interacting phase oscillators.

In this way, two-dimensional systems seem to be important for this matter since a direct
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connection with Kuramoto’s model can be established as shown here.

In the interactionless limit, we assume the dynamics of the Brownian particles to be

constrained by the fluctuation-dissipation relation (FDR) as in the standard description

of Brownian motion, therefore, the stationary state distribution of the single particle

velocities corresponds to that of equilibrium with the highest rotational symmetry

exhibited by the circularly symmetric distribution of velocities that correspond to the

Gaussian one of Maxwell and Boltzmann. When the interaction among agents is turned

on, it is plausible to expect the FDR not to hold and, therefore, there is no guarantee

of acquiring a new stationary state of equilibrium. Indeed, aligning behaviors may

break the rotational symmetry that characterizes the disordered phases if aligning time-

scales are smaller than those related to the FDR. This provides a mechanism for the

emergence of synchronized-like behavior of the entire system [Fig. 1(d)]. In this case, if

initial conditions are compatible with the disordered states, the dynamics exerted by the

ordering force would take the system to a state with less rotational symmetry, implying

the emergence of a far-from-equilibrium state characterized by a net particle-current.

By performing a stability analysis of a nonlinear Kramer-Fokker-Planck equation in the

limit of global coupling, we show that the equilibrium state is stable against the aligning

force up to a critical value Γc, at which, a phase transition takes place.

The model under study is described in terms of generic stochastic differential

equations for underdamped Brownian particles of mass m, restricted to move within

a box of linear size L with periodic boundary conditions, namely

dvi
dt

= F i − γvi + ξi; (1a)

dxi
dt

= vi, (1b)

where F i is the velocity-aligning field that depends only on the velocities of the particles.

The last two terms on the right hand side of (1a) correspond to the linear-dissipative

force per unit mass and the fluctuating one that appear in the Langevin’s description of

Brownian motion. Notice that each term in the right hand side of (1a) has been rescaled

with the mass of the particle, m, thus each term has units of force per unit mass. The

components of the vector ξi are nothing else than Gaussian white noise with vanishing

mean and autocorrelation function 〈ξiµ(t)ξjν(s)〉 = δi,jδµ,ν2kBTγδ(t − s)/m, where ξi,η
is the η-th Cartesian component of ξi, kB is the Boltzmann constant, T the bath’s

temperature and δu,w and δ(τ) are the Kronecker delta and the Dirac delta function,

respectively. This kind of fluctuations are called passive [34], as they do not take part in

any effect of particle-propulsion. In the absence of interactions, the particle dynamics

is driven by thermal fluctuations as occurs in equilibrium phenomena.

It is the underdamped nature of (1a) and (1b) what allows us to consider only

the simple Brownian dynamics exerted by thermal fluctuations, without having to

take into consideration any self-propulsion mechanism (usually constant speeds) as

required in many other models that regard the overdamped limit [33, 35]. On the other

hand, the effects of thermal fluctuations in the interactionless limit are well known,
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and lead (in unbounded space) to a mean squared displacement 〈[x(t) − 〈x(t)〉]2〉 =

(4D/γ) [γt− (1− e−γt)], where the diffusion constant is given by D = kBT/mγ.

The alignment behavior among particles is taken into account by

F i = Γ(vi) [f − v̂i (f · v̂i)] , (2)

which forces the alignment of the vector v̂i to the vector f at the speed-dependent rate

per unit mass and unit velocity Γ(vi). The explicit dependance of Γ(v) on v may vary

from case to case. For instance, one possibility is to chose Γ(v) ∼ v−α with α > 0 to

model the effects of “aligning inertia”, or the effect that speedy particles does no have

enough time to align with sluggish ones. (2) corresponds to the two-dimensional form of

Γ(vi) [v̂i × (f × v̂i)], with v̂i = (cos θi, sin θi), being the unitary vector in the direction

of vi and vi = |vi|, while

f =
1

N

N∑
j=1

v̂j, (3)

corresponds to the instantaneous average direction of motion of the group. As defined,

f corresponds also to the instantaneous order-parameter which can be rewritten in a

suitable manner in the complex plane as

Λ(t) eiψ(t) =
1

N

N∑
j=1

eiθj(t), (4)

with θj(t) being the instantaneous angle between the velocity vector vj and the

horizontal axis. The magnitude of f , Λ(t), ranges between zero and one and measures

the degree of “collectivity”in the system, while ψ(t) denotes the instantaneous direction

of motion of the whole group. This quantities corresponds in an exact way to the order

parameter used in the well known Kuramoto model of collective synchronization [10].

Though (1a) and (1b) are generic for the description of active particles [18], it is

the explicit form of (2) which make them particularly appealing, since the interaction

(2) does not change the speed of the particles, therefore it avoids any self-propulsion

effect. It is straightforward to check the lack of propulsion in the alignment interaction

given in (2) by computing F i · v̂i = 0. Additionally, F i · θ̂i = Γ(vi)f · θ̂i, with θ̂i being

the clockwise orthogonal unitary vector to v̂i. With these considerations, (1a) and (1b)

can be written as

dxi
dt

= viv̂i, (5a)

dvi
dt

= −γvi +
kBTγ

m

1

vi
+ ξvi , (5b)

dθi
dt

=
Γ(vi)

vi

1

N

N∑
j=1

sin[θj − θi] +
1

vi
ξθi , (5c)

where ξv and ξθ are independent Gaussian white noises with autocorrelation function

2kBTγδ(t−s)/m, respectively. The second term in expression (5b) comes from the Ito’s

calculus when performing the change to polar coordinates [36]. Notice that extensions
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of the Kuramoto model that consider inertial effects lead to simplified versions of (5b)

and (5c) [11, 37, 38].

We point out that, written in that way, (5b) and (5c) can be set to consider self-

propulsion and/or active fluctuations [34, 18] instead of the passive ones that originate

in the thermal bath. If necessary, self-propulsion can be incorporated in a simple way

by just replacing the constant friction coefficient γ by the nonlinear one γ(vi). The

term −γ(vi)vi would be able to keep the particle speed around a fixed value v0 [18].

Additionally, the noise terms can be replaced by nonthermal independent stochastic

processes corresponding to active fluctuations. As a simple example, in the overdamped

limit, the speed of the particles can be set to v0 and (5a), (5b) and (5c) reduce to

dxi
dt

= v0v̂i, (6a)

dθi
dt

=
Γ(vi)

vi

1

N

N∑
j=1

sin[θj − θi] +
1

vi
ξ̃θi , (6b)

where ξ̃θi are non-thermal stochastic processes. The last equations, with coupling

functions that also depend on the spatial coordinates to consider short-range

interactions, have been the starting point of some studies of collective motion of active

particles [33, 39]. We want to point out that the use of more general coupling functions—

other than the sinusoidal one that appears in (6b)—can lead to different non-equilibrium

properties of systems consisting of interacting self-propelled particles, a case that will be

treated elsewhere. The diffusion properties of noninteracting active particles, described

by (6a) and (6b) with Γ(v) = 0, have been recently studied in [40] and differ from the

ones close-to-equilibrium considered here.

In addition, notice that by choosing Γ(v) = Γ1v with Γ1 a positive constant,

equations (5b) and (5c) get naturally decoupled, and leads—in the overdamped limit—

to the noisy Kuramoto model of phase oscillators with vanishing natural frequencies

[10, 38]. Instead, in this work we consider the simple case of a speed independent

Γ(v) = Γ.

We choose as time, speed and length scales, the quantities: τ0 = γ−1, v0 =

(2kBT/m)1/2 and r0 = v0τ0, respectively. In this way, the number of parameters in

our model is reduced to one, namely, the dimensionless alignment-coupling constant

Γ̃ = Γ(ṽ) τ0/v0 with ṽ = v/v0. On the other hand, if short-range interactions were to be

considered, two additional parameters appear, namely, the particle density ρ̃ = N/L̃2

and the interaction range R/L with L̃ = L/r0.

Our interest lies on the long-time average of Λ(t) in the stationary state, denoted

here with 〈Λ〉 and given by

〈Λ〉 = lim
T→∞

1

T

∫ T

0

Λ(t) dt. (7)

As for the Kuramoto model, this quantity serves here as an order parameter that

signals (when 〈Λ〉 > 0) the breaking of the rotational symmetry of the equilibrium

phases. Figure 1(a) shows plots of the stationary order parameter 〈Λ〉 as a function of
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Figure 1. (Color online) (a) Stationary order parameter 〈Λ〉 vs the coupling constant

Γ̃ for different ratios of the interaction radius R and the system size L with ρ̃ = 10

and N = 105. The system is driven from the local (R/L < 1) to the global (R/L = 1)

coupling regimes as R/L increases. The rest of the plots consider only the global

coupling regime. (b) Stationary probability distribution functions of the individual

velocity of the particles, ṽi, projected along the direction of the mean velocity of

the group, ṽ‖, and in the transverse direction, ṽ⊥, for a subcritical (Γ̃ = 1.5) and a

supercritical (Γ̃ = 7) cases. Notice the asymmetry of P (ṽ‖) for the case Γ = 7 which

is the only one not centered around zero. In (c) and (d), snapshots of a quarter of the

total space for the configuration of particles for subcritical (c) and supercritical (d)

cases are shown, corresponding to those presented in (b). The big arrow in (d) depicts

the mean direction of motion of the group. The small arrows represent the velocity

vectors ṽi of the particles. In (b), (c) and (d) ρ̃ = 1 and L̃ = 40.

Γ̃, computed from numerical simulations. The curves with different symbols corresponds

to different values of the interaction range R/L, that goes from small values to the global

coupling value R/L = 1, which corresponds to the case we are interested in this paper.

It can be noticed that the system undergoes a phase transition at a critical value, Γ̃c,

that decreases monotonically with the range of the interaction R, approaching the value

2 as the interaction becomes global. We point out that for the globally coupled case of

the Vicsek and Vicsek-related models, the disordered phase (with an order parameter

equal to zero) is achieved only with maximal noise in the thermodynamic limit [27],

(equivalent to the infinite temperature limit of our model); see, for example, Fig. 11 in

the reference provided. This fact contrasts with the model presented here, where the

disordered or equilibrium phase is still stable for finite values of the coupling constant

as our results show.
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Snapshots of the stationary phases for globally interacting particles are shown in

figures 1(c) and 1(d), for the equilibrium phase with Γ̃ = 1.5, and for the ordered

phase showing collective motion with Γ̃ = 7, respectively. The corresponding stationary

probability distribution functions of the individual velocity of the particles, ṽi, projected

along the direction of the mean velocity of the group, ṽ‖, and in the transverse direction,

ṽ⊥, are shown in figure 1(b), as labeled in the figure. Notice the asymmetry of P (ṽ‖)

for the case Γ = 7 which is the only one not centered around zero; here the system

presents a non-zero particle-current. Details regarding the numerical integration of the

equations of motion are given at the end of section 3.

In the following section we perform a stability analysis to show that the equilibrium

distribution is stable in the subcritical regime. This implies a breakdown of the

fluctuation-dissipation relation at the critical point Γ̃c ' 2. From our numerical results

we find that the Maxwellian distribution of velocities still holds for all stationary states

with Γ̃ < Γ̃c as shown for Γ̃ = 1.5 in figure 1(b). Moreover, the single-particle velocity

auto-correlation function decays exponentially (not shown in the figure) with the same

time scale γ, just as it occurs in the interactionless limit, implying that the fluctuation-

dissipation theorem still holds and can be validly applied. These facts ensure that the

system can reach equilibrium in velocity space. In addition, the motion of the particles

in this regime is diffusive, with the same diffusion constant D as in the interactionless

case, as implied by the same arguments.

3. Stability Analysis

By using the rotational invariance of expression (4), it can be written as

Λ(t) =

∫ 2π

0

dθ eiθ

[
1

N

N∑
j=1

δ (θ − θj(t))

]
. (8)

The term within brackets gives precisely the fraction of particles that move along the θ

direction which in the thermodynamic limit (N →∞ and L→∞ such that ρ = N/L2

is kept constant), can be identified with the probability density of finding a particle

moving along the direction θ at time t, P (θ, t). Thus,

Λ(t) =

∫ 2π

0

dθ eiθP (θ, t). (9)

Since the velocity alignment is global, positions and velocities can be trivially

decoupled allowing us to reduce our analysis to a mean-field theory for the single-particle

probability density function P (v, t). A formal derivation of a Fokker-Planck equation for

the single particle probability distribution P (x,v, t), follows standard procedure [41, 38],

namely, one starts by deriving the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy

equations for the N interacting particles, and under the assumption of Boltzmann’s

molecular chaos, we get

∂

∂t
P (v, t) +∇v · [Γ(v) (f − v̂ (f · v̂))P (v, t)] = ∇v ·

[
γv +

γkBT

m
∇v

]
P (v, t), (10)
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where f is computed self-consistently through

f =

∫
d2v v̂P (v, t). (11)

It is precisely this relation the one that leads to the nonlinear character of equation (10).

On the other hand, the probability density that appears in expression (9) is related with

the one in (11) through: P (θ, t) =
∫∞
0
dv vP (v, θ, t), where P (v, θ, t) is obtained from

P (v, t) by changing to polar coordinates.

In the absence of velocity alignment, equation (10) corresponds to the

standard linear Fokker-Planck equation, describing the dynamics of underdamped

particles driven by thermal fluctuations. In thermal equilibrium, its solution

corresponds to the stationary velocity distribution by Maxwell, i.e., P0(v) =

m[2πkBT ]−1 exp {−mv2/2kBT}.
For the case Γ(v) = Γ1v, which decouples the dynamics of v and θ as can

be checked by simple inspection from (5b) and (5c), we have straightforwardly that

P (v, θ, t) = P (v, t)P (θ, t). The stability analysis against velocity-alignment can be done

along the lines of [42].

For the case studied here, Γ equal to a constant, the stability of the Maxwellian

distribution P0(v) against velocity-alignment is proved below, by doing a stability

analysis of the nonlinear Fokker-Planck equation (10). We now introduce the ansatz

[43] for linear stability analysis:

Pans(v, t) = P0(v) + eµtQ(v). (12)

The normalization of Pans(v, t) implies that Q must satisfy the condition∫
d2vQ(v) = 0. (13)

After substituting Pans in (10), neglecting non-linear terms in Q(v), and using the polar

coordinates v and θ for the velocity, we have in dimensionless variables (quantities with

tilde),{
µ̃− 1

ṽ

∂

∂ṽ
ṽ2 − 1

2

(
∂2

∂ṽ2
+

1

ṽ

∂

∂ṽ
+

1

ṽ2
∂2

∂θ2

)}
Q̃(ṽ, θ) =

Γ̃

ṽ
e−ṽ

2 Λ

2π
cos (ψ − θ) . (14)

Since Q̃(ṽ, θ) is a 2π-periodic function in θ, we take its Fourier expansion Q̃(ṽ, θ) =

e−ṽ
2∑∞

n=−∞ fn(ṽ)einθ. By using the variable u = ṽ2 and after substituting in (14),

multiplying by 1
2π
e−inθ and integrating over θ from 0 to 2π we get,

uf̃ ′′n + (1− u)f̃ ′n −
(
n2

4u
+
µ̃

2

)
f̃n = − Γ̃

8
√
u
×[

δn,1

∫ ∞
0

du′ e−u
′
f̃1(u

′) + δn,−1

∫ ∞
0

du′ e−u
′
f̃−1(u

′)

]
, (15)

where we have used that the average of equation (4) implies

〈Λ〉e±i〈ψ〉 = π

∫ ∞
0

du e−uf̃±1(u). (16)
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The condition (13) involves only the n = 0 Fourier mode, explicitly∫ ∞
0

dṽ ṽe−ṽ
2

f0(ṽ) = 0 (17)

and the solution of equation (15) for n = 0 is given by

f0(ṽ) = M(µ̃/2, 1, ṽ2), (18)

M(a, b, z) =
∑∞

n=0
a(n)zn

b(n)n!
= 1F1(a; b; z) being the Kummer’s function of the first kind

and (a)n = a(a+ 1) · · · (a+ n− 1) denote the Pochhammer symbol.

After substituting f0 in (17), one gets
∑∞

n=0 (µ̃/2)n /n! = 0, condition satisfied only

for µ̃ < 0. This corresponds to a necessary, but not sufficient, condition for the stability

of the equilibrium distribution P0(v).

In order to estimate the critical exponents associated with the phase transition as

well as the critical value of the coupling constant, we have performed a standard finite-

size-scaling analysis [44]. For our numerical simulations, we have discretized equations

(1b) and (1a) as well as (2). In its dimensionless form and for the global coupling case,

the control parameter is Γ̃ for any given L̃ and ρ̃. Without any loss of generality,

we choose ρ̃ = 1. All numerical results presented here were obtained integrating

these equations with a modified version of the velocity-Verlet algorithm [45] with an

integration time-step ∆t = 0.01. The results are shown in figure 2, where the stationary

values of the order parameter, 〈Λ〉, the susceptibility χ = L̃d(〈Λ2〉 − 〈Λ〉2), and the

Binder cumulant G = 1− 〈Λ4〉/(3〈Λ2〉2) are plotted, vs Γ̃, in figures 2(a), 2(b) and the

inset of figure 2(b), respectively, for different system sizes. We were not able to determine

uniquely the critical point from the crossing of the Binder cumulant curves. Instead,

its value in the thermodynamic limit, Γ̃∞c , and the critical exponent ν were determined

from the scaling with L̃ of the location Γ̃c(L̃) of the maximum of the susceptibility and

the maximum of the susceptibility itself, χmax(L̃) ∝ (Γ̃c(L̃)− Γ̃∞c )−γ ∝ L̃γ/ν , that lead to

Γ̃c(L̃) = Γ̃∞c + aL̃−1/ν (here, γ refers to the critical exponent). From these expressions,

we estimated Γ̃∞c = 1.991(3), that is compatible with the one obtained for the Kuramoto

model Γ̃∞c = 2, ν = 0.94(4) and γ/ν = 1.02(1) [see figures 2(c) and 2(d)].

Going further with the analysis, the scaling of the moments of the order parameter

〈Λn〉 ∝ L̃−n(β/ν), shown in figure 2(e) for n = 1, 2, 4, yields β/ν = 0.491(5) from which

β = 0.46(2). The so-called hyperscaling relation 2β/ν + γ/ν = d is nicely confirmed

with an estimate d = 2.00(1). We also computed the correlation time τ(Γ̃, L̃) from

the exponential decay of the autocorrelation function of the order parameter. From

the scaling relation τ(Γ̃∞c , L̃) ∝ L̃z, shown in figure 2(f), we estimated the dynamical

exponent z = 1.07(2). It is worth to mention that we accumulated our stationary values

and distributions by integrating the equations of motion in the stationary state at least

103τ .

Clearly, the critical exponents obtained are in agreement with the mean-field values

known for the Kuramoto model, for instance, β = 1
2
. We may attribute this agreement

to the fact that the dynamics of the velocity direction, θ, is weakly coupled to the

dynamics of speed, driven by thermal fluctuations. Notice that the ratios of the critical
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Figure 2. (Color online) (a) Stationary order parameter 〈Λ〉 vs Γ̃ in the globally

coupled regime (R/L = 1) for different system sizes. The solid lines in the curves with

symbols are guides to the eye. The solid black line shows the stationary magnitude

of the velocity of the center of mass, 〈VCM〉, for L̃ = 320. Notice that VCM is a little

smaller than 〈Λ〉 as Γ̃ increases. (b) Log-lin plot of the susceptibility χ vs Γ̃ for the

systems shown in (a). The inset shows the corresponding Binder cumulant G vs Γ̃;

a universal crossing point could not be determined (see text). The log-log plots in

(c) and (d) correspond to the location Γ̃c of the maximum of the susceptibility and

the maximum of the susceptibility χmax itself as a function of L̃, respectively. The

clear circles were calculated from Gaussian fits (thick solid lines) to the crests of the

the curves in (b). The dashed line in (c) corresponds to a power law fit from which

the critical point Γ̃∞
c = 1.991(3) was determined. The inset in (c) shows the same

data from which Γ̃∞
c = 1.99102 has been subtracted, while the dashed line marks a

power-law decay from which the critical exponent ν = 0.94(4) was determined. The

dashed line in (d) has a slope of 1.02(1). (e) Log-log plot of the moments 〈Λn〉 as a

function of L̃ for n = 1, 2, 4. The dashed lines correspond to power law fits that yield

β/ν = 0.491(5). (f) Log-log plot of the critical correlation time τ as a function of L̃.

The dashed line has a slope of 1.07(2). In all cases ρ̃ = N/L̃2 = 1.

exponents β/ν and γ/ν are very close to simple integer ratios as expected for mean field

models.

On a side note, in order to determine the nature of the phase transition displayed

by our model, one has to look at the behavior of the Binder cumulant. As expected,

the Binder cumulant curves, shown in the inset of figure 2(b), approch the values 1
3

on

the disordered (left) side and 2
3

on the ordered (right) one. Moreover, their continuous

behavior that never acquires negative values is a signature that we are dealing here with

a second order (continuous) phase transition [46].
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4. Conclusions

In summary, our results show that non-Hamiltonian interactions that do not preserve

momentum (such as the alignment interaction typically used to model flocking behavior),

drive the system from an equilibrium to an out-of-equilibrium phase. This contrast with

previous results where these transitions occur in systems either in equilibrium or out-

of-equilibrium throughout the transition. Thus, our model is suitable for studying the

passage from equilibrium to non-equilibrium states, in particular, for the study of the

passage from maximum entropy (equilibrium) states to stationary phases where entropy

is produced. It is worth noting that a natural generalization of this study would include

active fluctuations which refer to non-equilibrium fluctuations, along the direction of

motion (speed noise) and perpendicular to it (angular noise), respectively. We are

currently pursuing this line of investigation.

Additionally, we have also shown a clear relation between synchronization and

collective motion, in particular with the Kuramoto model for synchronization. Even

though collective motion is expected for the globally coupled case studied here (the

local case is reported elsewhere), by not neglecting the coupling between synchronizing

behavior and the motion of the particles, we have also shown that the transition exists

for finite values of the control parameter and in contrast to previous results for flocking,

where this transition occurs only at the maximum noise intensity (i.e., in the infinite

temperature limit) but always far from equilibrium.

Beyond the obvious implications in the study of synchronization and flocking

phenomena, we believe our results are relevant in the general context of phase transitions

whether in equilibrium or out-of-equilibrium.
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