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We present an analysis of the stationary distributions of run-and-tumble particles trapped in ex-
ternal potentials in terms of a thermophoretic potential, that emerges when trapped active motion
is mapped to trapped passive Brownian motion in a fictitious inhomogeneous thermal bath. We
elaborate on the meaning of the non-Boltzmann-Gibbs stationary distributions that emerge as a
consequence of the persistent motion of active particles. These stationary distributions are inter-
preted as a class of distributions in nonequilibrium statistical mechanics known as superstatistics.
Our analysis provides an original insight on the link between the intrinsic nonequilibrium nature
of active motion and the well-known concept of local equilibrium used in nonequilibrium statistical
mechanics, and contributes to the understanding of the validity of the concept of effective temper-
ature. Particular cases of interest, regarding specific trapping potentials used in other theoretical
or experimental studies, are discussed. We point out as an unprecedented effect, the emergence of
new modes of the stationary distribution as a consequence of the coupling of persistent motion in a
trapping potential that varies highly enough with position.
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I. INTRODUCTION

Self-propelled or active particles are open systems
driven out of thermal equilibrium by complex internal
mechanisms that locally convert energy from the envi-
ronment into active motion [1–3]. A variety of microor-
ganisms suspended in temperate aqueous environments
use internal motors that allow them to move, undulate,
or rotate flagella or cilia at small Reynolds numbers to
self-propel leading to a variety of patterns of motion that
are of great interest to statistical physicists. On the
other hand, different phoretic mechanisms, such as ther-
mophoresis and diffusiophoresis, have been ingeniously
devised to endow passive Brownian particles with active
motion.

Two main features characterize active motion: first,
the tendency of particles to move at a characteristic speed
as a consequence of self-propulsion, and the other, the
persistence or tendency to maintain the direction of mo-
tion for long enough intervals of time. Though it is clear
that active motion corresponds to the class of intrinsi-
cally out-of-equilibrium phenomena, it is often difficult
to give a measure for the departure from equilibrium [4].
Notwithstanding this, today there has been great effort
made to give a thermodynamic description of active mat-
ter [5, 6]. On this course, the concept of effective temper-
ature Teff is valuable and has been explored theoretically
and experimentally in a variety of systems in nonequilib-
rium situations [7–18], particularly in the dilute regime
[19]. More recently, it has been shown that the effective
temperature in a two-component active Janus particles
can be considered a control parameter (in the sense of a
thermodynamics variable) for the observed kinetics and
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phase behavior [20].
The physical intuition behind the concept of effective

temperature relies on the fulfillment of the fluctuation-
dissipation relation. The trajectories of active particles,
obtained from experiments [10, 13], numerical simula-
tions [11, 16], or analytical results [12, 14], have allowed
to conclude that an effective temperature emerges from
the internal fluctuations of the active motion, which are
of no thermal origin and that effectively emulate thermal
fluctuations. Indeed, Teff can be determined by using
a tracer as thermometer that probes a nonequilibrium
complex media through a diffusion process. Experimen-
tal realizations of this idea are numerous, for instance
the motion of a bead in a bath of bacteria can exhibit
effective temperatures as large as two or three orders of
magnitude of the room temperature [21].

Active particles freely moving at constant speed v with
characteristic persistence time α−1 exhibit normal diffu-
sion in the long-time regime, the diffusion constant being
Deff = v2/α. In this regime the motion of an active par-
ticle can equivalently be thought of as the motion of a
passive one in a fictitious hotter environment with effec-
tive temperature T0 = Deff/kBµ, with µ and kB being
the mobility and the Boltzmann constant, respectively
[12, 22]. For instance, dilute suspensions of self-propelled
particles in sedimentation processes can be considered as
passive Brownian particles in a hotter source of heat with
an effective temperature that scales linearly with the per-
sistence time [13].

In systems of confined active particles, either by im-
penetrable walls or by external potentials [3, 12, 19, 23–
25], the situation is quite different. Indeed, the effects of
persistence are conspicuously revealed in the long time
regime if the persistence length is larger than the char-
acteristic length of confinement. Notoriously, the sta-
tionary distribution of the particle positions shows an
accumulation of particles around the boundaries of con-
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finement (see, for instance, Ref. [26] for trajectories of
worker termites in a circular arena, Ref. [27] for con-
fined colloidal rollers in a circular disk, or Ref. [24] for
active Brownian particles confined in an acoustic trap),
corresponding evidently to non-Boltzmann-Gibbs distri-
butions [28, 29]. Such non-Boltzmann-Gibbs distribu-
tions have also been observed experimentally in optically
trapped passive Brownian particles coupled to a bath of
active ones [30], in theoretically described tracer particles
diffusing in an elastic active gel [31], and in a model of
active glasses [32], which manifestly exhibits the intrinsic
nonequilibrium nature of active baths.

Is it possible to describe the non-Boltzmann-Gibbs sta-
tionary distributions of noninteracting active particles
trapped in an external potential, in terms of passives
ones in a fictitious environment? The answer is in the
positive if the concept of effective temperature (homoge-
neous) is extended to a nonequilibrium (inhomogeneous)
environment. To be more explicit, we found that for
spatially independent parameters that characterize the
active motion under consideration (a situation that can
be thought as an effective homogeneous medium of “nu-
trients”), such a mapping can be identified in terms of
an effective inhomogeneous temperature T (x). The map-
ping allows us to make an analysis based on the stochas-
tic thermodynamics, but, more importantly, it provides
a powerful tool to pinpoint the nonequilibrium nature
of active motion. In particular, it allows us to interpret
these distributions as a class of the distributions that
appear in nonequilibrium statistical mechanics known as
superstatistics [33, 34].

Our theoretical analysis is based on the active motion
described by the run-and-tumble dynamics, a mathemat-
ical framework used by several authors which corresponds
to a generalization of the telegrapher process [22, 28, and
references therein]. Such a framework is presented in
some detail, for the sake of completeness, in Sec. II. In
this same section the mapping between trapped active
motion and trapped passive one in an inhomogeneous
environment is devised and some results are formulated.
In Sec. III, the consequences of the devised mapping are
analyzed within the framework of the stochastic thermo-
dynamics for the case of one-dimensional trapped run-
and-tumble particles with homogeneous swimming speed
and tumbling rate trapped in an external potential U(x).
Without the trapping effects the effective temperature
description results are valid. We present in Sec. IV our
final comments and concluding remarks.

II. THEORETICAL CONSIDERATIONS

A rich variety of patterns of active motion are observed
in nature, and many different mathematical models have

been introduced to describe their dynamics. A recur-
rently mathematical model used to describe the motion
of biological organisms, which takes into account the per-
sistence of motion —characteristic of the active one—
corresponds to the random walk and its variants [35, 36].
One pattern of motion that has received particular atten-
tion is called run-and-tumble [36], observed, for instance,
in the motion of bacteria such as Escherichia Coli [37].
The organism use cilia synchronization to move approx-
imately in straight line and with constant speed for a
random period of time (of the order of seconds), called
the running period. Immediately after a running period,
cilia get desynchronized for short periods of time (tenths
of seconds) at which the bacteria tumbles. Cilia get syn-
chronized again and the particle start a running period in
a randomly chosen direction. Run-and-tumble dynamics
can be considered a paradigm for non-Brownian diffu-
sive motion and has been used to explore some central
aspects of nonequilibrium dynamics, such as the origins
of motility-induced phase separation in systems without
detailed balance [38].

The dynamics of run-and-tumble particles consists of
a particle running at a constant speed v, allowed to ran-
domly change its direction of motion at a constant tum-
bling rate α. The dynamics simplifies in one dimension
where only two directions of motion are possible. If the
speed of the particle and the rate of change of direction
are constants, then the process is well described by the
so-called telegrapher’s equation, which captures in an ex-
act manner this dynamics [39]. A biased motion can be
analyzed straightforwardly if the values of the particle
speed and/or the transition rates depend on the direc-
tion of motion, namely vR, αR when the particle moves
to the right and vL, αL when it moves to the left. This
set of parameters embodies the description of the one-
dimensional run-and-tumble dynamics. A generalization
of this model considers the coupling of the particle’s mo-
tion parameters to the environment causing gradients in
the particle mobility properties [22, 40, 41] or, alterna-
tively, in a mean-field description, it considers the cou-
pling to the local population density that takes into ac-
count many-body effects [28]. In any case such a coupling
makes α and v depend intrinsically on the particle’s po-
sition x. Thus the probability densities of being at x at
the instant t and moving to the right, PR(x, t), and to
the left, PL(x, t), satisfy the equations
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∂

∂t
PR(x, t) +

∂

∂x
vR(x)PR(x, t) =

1

2
[αL(x)PL(x, t)− αR(x)PR(x, t)] , (1a)

∂

∂t
PL(x, t)− ∂

∂x
vL(x)PL(x, t) =

1

2
[αR(x)PR(x, t)− αL(x)PL(x, t)] , (1b)

where the v’s and α’s are positive functions of the particle
position. Equations (1) can be written in an equivalent
form in terms of the coarse-grained probability density
P (x, t) = PR(x, t)+PL(x, t) and the corresponding prob-
ability current J(x, t) = vR(x)PR(x, t) − vL(x)PL(x, t),

both related by the continuity equation

∂

∂t
P (x, t) +

∂

∂x
J(x, t) = 0. (2)

P (x, t) gives the probability density of finding a particle
in a position x at a time t independently of the direction
of motion, while J(x, t) gives the net flux of an ensemble
of particles at x and t, which satisfies the equation

∂

∂t
J(x, t)− vrel(x)

∂

∂x
J(x, t) + [α(x) + γ(x)] J(x, t) = α(x)

[
Vdrift(x)P (x, t)− ∂

∂x
D(x)P (x, t)

]
. (3)

The rate of change in time of J(x, t) is given on the one
hand, by the advection term [second in the left-hand side
of (3)] with velocity field of the probability flow

vrel(x) = vR(x)− vL(x); (4)

by the reaction term [third in the left-hand side of (3)],
with reaction rate α(x) + γ(x), where

α(x) =
1

2
[αR(x) + αL(x)] (5)

is the arithmetic average of the tumbling rates, which
being positive, makes J(x, t) diminish in time due to the
scattering process of the direction of motion, while

γ(x) =
v′R(x)vL(x)− v′L(x)vR(x)

vR(x) + vL(x)
(6)

takes into account the spatial dependence of the v’s.
In the right-hand side of (3), the local drift velocity,

Vdrift(x), is given by

Vdrift(x) =
αL(x)vR(x)− αR(x)vL(x)

αR(x) + αL(x)

+D(x)
d

dx
ln

[
αR(x) + αL(x)

vR(x) + vL(x)

]
(7)

which originates, on the one hand, in the asymme-
try of the spatial dependence of the left-right transi-
tion rates and left-right moving velocities [first term in
the right hand side of Eq. (7)], which vanishes when
vR(x)/αR(x) = vL(x)/αL(x). On the other hand, in

a term that is proportional to the gradient of ln[(αR +
αL)/(vR + vL)], where

D(x) =
vR(x)vL(x)

α(x)
. (8)

is a position-dependent diffusion coefficient [28] that
emerges from the random change of the particle’s di-
rection of motion, as can be deduced from the second
term in the right-hand side of Eq. (3), which gives the
contribution to the current due to inhomogeneity of the
probability density.

For the case of run-and-tumble particles swimming
in an aqueous environment, the effects of thermal
fluctuations on the particle motion might not be ne-
glected. To incorporate them the total probability cur-
rent JT (x, t) considers the standard Fick-like probability
current −DT∂PT (x, t)/∂x that describes thermal diffu-
sion characterized by the diffusion coefficient DT plus the
convolution of the Gaussian propagator of thermal diffu-
sion, GDT

(x, t) = exp{−x2/4DT t}/
√

4πDT t, with the
probability current that describes active motion J(x, t)
given in (3). The total probability density of the parti-
cles positions PT (x, t) must be written as the convolution
of the probability density contribution from active mo-
tion P (x, t) given in (2) with GDT

(x, t). We focus our
analysis on the dynamics of active motion; on the one
hand our analysis is exact in the regime for which the
ratio DT /(v

2
0/α0) � 1 (v0 and α0 being the character-

istic parameters of active motion); otherwise, the effects
of thermal fluctuations can be taken into account easily
as has just been explained.

The general equations (2) and (3), whose boundary
conditions will be specified later, are our starting point.
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In order to connect the nonequilibrium nature of ac-
tive motion to concepts used in standard nonequilibrium
statisical mechanics, we consider the ideal situation for
which active motion is intrinsically described by constant
swimming speed and constant tumbling rate. From this,
we unveil a map that elucidate the connection between
the nonequilibrium nature of active motion under trap-
ping potentials.

A. The diffusive limit: Free active motion and the
emergence of effective temperature

The simplified situation of run-and-tumble particles
moving freely in a uniform source of activity, i.e., in
medium that serves as a uniform source that keeps the
tumbling rates, and the right and left velocities, equal
and space independent, i.e., αR(x) = αL(x) = α and
vR(x) = vL(x) = v, can be understood analogously with
the uniform temperature bath that causes Brownian mo-
tion. For systems in one dimension, these considerations
lead to the simplest model of persistent motion taken
into account by the one-dimensional telegrapher’s equa-
tion [39, 42, 43], which can be obtained straightforwardly
from Eqs. (2) and (3) with natural boundary conditions,
namely that at x→ ±∞ the probability density and the
probability current vanish. This generalizes the diffusion
equation in that it properly accounts for the finite speed
signal propagation that results in a non-Gaussian prob-
ability density function of the particle positions P (x, t).
Such a diffusion process is nonstationary and is character-
ized by ballistic motion in the short-time regime and nor-
mal diffusion in the long-time limit, where P (x, t) asymp-
totically approximates the Gaussian solution of the diffu-
sion equation, and a uniform effective diffusion coefficient
is apparent, namely Dfree = v2/α [13, 39]. Thus, as-
suming uniform swimming velocities and tumbling rates
leads, in the long-time limit, to a uniform effective tem-
perature,

T0 =
v2

αµkB
, (9)

if a kind of Einstein relation is assumed, where µ is a uni-
form parameter that describes the coupling of the particle
to the fictitious heat bath at uniform temperature T0.

B. Trapped active motion: Stationary solutions

We are interested in the physical situations for which
stationary solutions, Pst(x), with vanishing probability
current in a finite region exist, as happens, for instance,
if the particles are trapped either by impenetrable walls
or by some external forces. It is well known that the
persistence effects of run-and-tumble particles makes the
particles to explore the container walls if the persistence
length is larger than or comparable to the confinement
length [44]. This is the case also if confinement is due

to energetic constraints, for instance, when particles are
trapped by an external potential. In this case, stationary
solutions are obtained from Eqs. (2) and (3) by setting
J(x, t) = 0 for all positions in the spatial region allowed
by the confinement, and this leads to

Vdrift(x)Pst(x)− d

dx
D(x)Pst(x) = 0. (10)

Notice that position dependence of the v’s and of the
α’s is a necessary but not sufficient condition for the ex-
istence of stationary solutions. Further, the relations (7)
and (8) lead to a mapping between the stationary solu-
tions of run-and-tumble particles and the corresponding
stationary distributions of a drift-diffusion equation of
Brownian motion in inhomogeneous media, analogously
to the one presented in Ref. [28]. This mapping will
be exploited to give a precise interpretation of confined
active motion as a nonequilibrium feature as will be un-
veiled in the following sections.

The solutions to Eq. (10) describe the flux-free steady
states that can be written, by considering the nonlocality
of the ratio Vdrift(x)/D(x) as [3, 22, 28]

Pst(x) =
N

D(x)
exp

{∫ x

dx′
Vdrift(x

′)

D(x′)

}
, (11)

where N is the required normalization factor [45] that
has units of length over time and the symbol

∫ x
dx′ f(x′)

denotes the antiderivative or indefinite integral of f(x).
Clearly, such solutions do not comply with the well-
known Boltzmann-Gibbs factor that describes thermo-
dynamic equilibrium (homogeneous temperature), and
therefore the set of solutions (11) can be interpreted
as a novel class of nonequilibrium stationary distri-
butions known as superstatics proposed in Ref. [34].
Although the original concept of superstatics encloses
the non-Boltzman-Gibbs stationary distributions that
emerge from the superposition of local Boltzmann-Gibbs
factors [34, 46], the non-Boltzmannian stationary distri-
bution given by Eq. (11) emerges as consequence of a
spatial dependence of the kinematic parameters, namely
the v’s and the α’s. As will be shown in the following
lines, expression (11) can be mapped to the class of sta-
tionary non-Boltzmannian distributions of Brownian mo-
tion in a given random inhomogeneous medium [47, 48].
By pointing out the distinction between these two wide
classes of non-Boltzmannian stationary distributions, we
attempt to elucidate the organization of a rather small
part of the vast nonequilibrium stationary distributions
that occur in an enormous number of domains of physics.

Notice, however, that if the parameters of active mo-
tion satisfy certain conditions, that is, if the coupling
between the particle motion and the environment are de-
vised such that D(x) = D is independent of the particle’s
position and Vdrift(x) = −G′(x) caused by the pseudo po-
tential G(x) is an arbitrary function of x (this can always
be done in one dimension), then Pst(x) given in (11) can
be written as the Boltzmann-Gibbs-like weight,

PB-G(x) = Z−1(D) exp {−G(x)/D} , (12)
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where Z(D) =
∫∞
−∞ dx′ exp {−G(x′)/D} is reminiscent

of the single-particle partition function of the canonical
ensemble and D a homogeneous global parameter that
can be related to an effective thermodynamic quantity,
like the effective temperature T0 as has been demon-
strated experimentally and theoretically [4, 12, 13, 28,
49]. The corresponding free energy, according to the
theory of stochastic thermodynamics [50], is given by
F = −D lnZ(D). If this is the case, then the fluctuation-
dissipation theorem is expected to be valid and the
time-reversal symmetry of the microscopic dynamics is
guaranteed, and thus the ratio of the transition rate
from position x to x′, W (x, x′), to the inverse process
W (x′, x), is given by the well-known equilibrium result
exp {−[G(x′)−G(x)]/D}.

Therefore, we can conclude that the intrinsic nature
of the non-Boltzmann-Gibbs equilibrium solutions of ac-
tive motion resides in the fact that no such homogeneous,
global parameter can be identified, thus leading to a sit-
uation that is intrinsically out of thermodynamic equilib-
rium. This statement is made clear by recognizing that
the solution given in (11) can be formally interpreted as
the stationary solution of an overdamped, passive Brow-
nian particle that diffuses with constant mobility µ in
a fictitious medium of inhomogeneous temperature T (x)
[47, 48, 51, 52] under the influence of an effective external
potential U(x) if the following identifications are made:

T (x) = D(x)/µ kB , (13a)

U ′(x) = −Vdrift(x)/µ. (13b)

In the context of Brownian passive particles, it is well
known that inhomogeneous temperature profiles have a
profound consequence on the local stability of the sta-
tionary solutions, known as the Landauer effect [53, 54].
Certainly, a hot layer can change the relative stability
of equilibrium points of a particle diffusing in a bistable
potential. This observation might have important appli-
cations, namely, by properly choosing a spatial inhomo-
geneity of temperature [namely Eq. (6)], it is possible
to obtain a desired stationary distribution of particles,
as, for example, to mimic the persistence effects of active
motion of biological organisms by the diffusion of trapped
passive particles.

Note, first, that the physical assumptions underlying
the establishment of relations (13) indicates that two el-
ements of nonequilibrium can be identified; the immedi-
ate one refers to the inhomogeneity of the effective tem-
perature, and the other, which is more subtle, refers to
the uniformity of the mobility µ. Indeed, this last el-
ement contrasts with the case when only conditions of
local equilibrium are assumed, for which the mobility of
an overdamped Brownian particle is space dependent and
constrained to the spatial dependence of temperature in
order to satisfy a local fluctuation-dissipation relation
[54, 55]. Though precise information regarding the dis-
sipative coupling of the particle’s motion to the medium
is required to avoid any loose assumption, in the present
analysis a space-independent mobility is assumed.

III. APPLICATION TO A SPECIFIC CASE:
TRAPPED RUN-AND-TUMBLE PARTICLES IN

AN EXTERNAL POTENTIAL

Although the coupling of the particle’s motion to the
medium is in general complex, as when chemotaxis be-
havior is considered, here we analyze the simple situa-
tion for which a particle swims at constant speed v in
a viscous fluid at low Reynolds numbers, such that an
overdamped dynamics is valid. We also assume that the
particle tumbles symmetrically at constant rate α and
that the motion is restricted by an external trapping po-
tential U(x). Under these considerations the effective
right and left swimming speeds become space dependent
and are given by

vR(x) = v − µU ′(x), (14a)

vL(x) = v + µU ′(x), (14b)

where µ is the mobility of the particle in the fluid, which
for simplicity is assumed to be space independent and
finite. With these considerations we have that Eqs. (13)
can be rewritten as

Vdrift(x) = −µU ′(x), (15a)

T (x) = T0

{
1− µ2

v2
[U ′(x)]

2
}
, (15b)

where the effective temperature T0 has been introduced
in Eq. (9). It is clear that in the diffusive limit, v →∞,
α → ∞ such that v2/α = µkBT0 is kept constant [12],
we recover the uniform effective temperature description
given by Eq. (9), since in such a limit the ratio of the
drift velocity (caused by the external potential) to the
particle swimming velocity vanishes. Also in this limit,
the persistence length, lpers ≡ v/α, that characterizes the
length scale of fluctuations, goes to zero, thus satisfying
a kind of fluctuation-dissipation relation that guaranties
equilibrium states characterized by a uniform, effective
temperature T0 [10].

In the persistent regime, on the other hand, the motion
of the particle is sharply bounded by the external poten-
tial. Indeed, the particle cannot swim beyond a charac-
teristic distance xmax from the local stable point of the
trapping potential, where the self-propulsive force µ−1v
equals that of the trapping force −U ′(x), i.e., xmax is de-
fined by the position at which the right speed vR vanishes,
the solution of the equation µ |U ′(xmax)| = v. Thus, in
the case of an even-symmetric potential [U(−x) = U(x)]
with a unique global minimum at the origin, the parti-
cle moves in the region of space defined by [−xmax, xmax],
where −xmax is the position at which vL vanishes. Notice
now that the inhomogeneous temperature (15b) takes its
maximum value, T0, just at the positions correspond-
ing to the minima of the trapping potential U(x) and
vanishes at the positions ±xmax. The fictitious medium,
being “hotter” at the potential minima, “push out” the
particles from the corresponding stable positions of U(x)
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toward the new stable positions given by the local min-
ima of Ueff(x) on the interval [−xmax, xmax], thus chang-
ing the system stable points of the trapping potential for
those at the boundaries (a similar effect was analyzed
by Landauer for the case of a simple hotter layer in be-
tween the local minima of a bistable potential [53] and
extended by van Kampen for a general potential and a
general temperature inhomogeneity [54]). This gives a
precise picture that pinpoints the nonequilibrium nature
of the stationary distribution of trapped run-and-tumble
particles.

The probability distribution (11) can be written as

Pst (x) = Z−1 exp

{
−
∫ x

dx′
U ′eff(x′)

kBT (x′)

}
, (16)

where the effective potential

Ueff(x) = U(x) + kBT (x) (17)

takes into consideration the appearance of the fictitious
thermophoretic force −kBT ′(x) [55], due to the spatial
inhomogeneity of the effective temperature and explicitly
given by −kBT ′(x) = (2kBT0µ

2/v2)U ′(x)U ′′(x).
The stationary distributions given by (16) form a par-

ticular class of the superstatistics given by (11) [47, 48],
whose nonlocal character allows us to interpret it by writ-
ing the indefinite integral in the argument of the expo-
nential as a Riemann sum starting at xmin, for instance,
as a product of locally Boltzmann-Gibbs factors. In the
diffusive limit the nonlocal character of (16) vanishes and
the Boltzmann-Gibbs statistics is recovered as a partic-
ular case. The normalizing constant, Z, corresponds to
the system partition function, which is given explicitly
by

Z =

∫
dx exp

{
−
∫ x

dx′
U ′eff(x′)

kBT (x′)

}
. (18)

Though no homogeneous effective temperature exists, a
local free energy density F(x) can be defined through the
relation

Z = exp

{
−
∫
dx′

F(x′)

kBT (x′)

}
, (19)

which takes into account the nonlocal effects due to the
inhomogeneity of the medium. The detailed discussion
of this aspect will be presented elsewhere.

The effects of the thermophoretic potential, kBT (x),
that incorporates the persistence of active motion in an
effective manner are conspicuously revealed in the sta-
bility nature of the equilibrium positions of Ueff(x). In
the diffusive limit, the effective temperature (15b) be-
comes spatially uniform and therefore the equilibrium
positions of Ueff(x) corresponds to those of U(x). In
this situation, the particles accumulate around the sta-
ble positions (global minima) of the trapping potential
U(x). Furthermore, in the same limit, the Boltzmann-
Gibbs distribution PB−G(x), which describes the thermo-
dynamic equilibrium, emerges from expression (16) [29].

As the effects of persistence become more apparent, new
equilibrium positions besides those of U(x) appear in the
system. These new equilibrium positions are explicitly
given as the solutions of the equation U ′′(x) = α/(2µ),
which explicitly exhibits the dependence on the ratio of
the inverse of the persistence time and the mobility. The
explicit appearance of the second derivative requires an
external potential that varies rapidly enough with po-
sition in order to have new equilibrium positions other
than those given by the minima of U(x).

On the other hand, the sharp accumulation of par-
ticles at the confining boundaries, which is nonequilib-
rium hallmark of dilute active systems, appears just in
the persistent regime, when the persistence length lpers

is larger or of the order of the characteristic length of
confinement. The departure from the well-known equi-
librium Boltzmann-Gibbs distribution can be identified
by rewriting Eq. (16) as

Pst (x) = Z−1 exp

{
−Ueff(x)

kBT0

}
×

exp

{
−
∞∑
l=1

(µ
v

)2l
∫ x

dx′
[U ′(x′)]

2l+1

kBT0

}
, (20)

where the Boltzmann-Gibbs factor, with the effective
potential Ueff(x), is explicitly factorized and expression
(15b) has been explicitly used. Clearly, the stationary
Boltzmann-Gibbs distribution is recovered in the diffu-
sive limit. In the other extreme limit, when the ther-
mophoretic potential dominates, the stationary distribu-
tion that describes the sharp accumulation at the bound-
aries goes asymptotically as

Pst(x) ∝ v

kBT0µ

{
1− µ2

v2
[U ′(x)]

2
}−1

. (21)

Although the stationary distribution given by (16)
does not correspond to the one of Boltzmann and Gibbs,
we maintain the use of the Boltzmann-Gibbs entropy
S = −kB

∫
dxPst(x) lnPst(x) [56], and with the expres-

sion for the flux-free stationary distribution in the form
of (20), we can give an interpretation of the process con-
sidered under the point of view of stochastic thermody-
namics. The free energy F = −kBT0 lnZ can be written
as

F = Eeff − T0S, (22)

where the effective internal energy, Eeff, is defined by

Eeff = 〈U(x)〉+
1

2
meff v

2

[
1−

〈
V2

drift

〉
v2

]

+ U ′(xmax)

∞∑
l=1

(vm
v

)2l
〈∫ x

dx′
[
U ′(x′)

U ′(xmax)

]2l+1
〉
,

(23)
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with meff = 2/µα and 〈·〉 denotes the average using the
stationary distribution Pst(x). Notice that the first two
terms in the right-hand side of the last equation con-
tribute to standard mechanical energy since the second
term, being positive definite, can be interpreted as an
effective kinetic energy. The last term gives the contri-
bution from the effects of persistence in series expansion
in powers of the dimensionless parameter vm/v, vm given
by µU ′(xmax). In the diffusive limit we have simply that
Eeff = 〈U(x)〉B-G, where 〈·〉B-G denotes the average taken
with the Boltzmann-Gibbs distribution.

Numerical simulations.- As stated in the previous
section, the stationary behavior of trapped active motion,
contained in expression (11) and particularly in (16), can
be regarded as the stationary behavior of a passive Brow-
nian particle that moves in an inhomogeneous tempera-
ture medium. Thus, for the cases of interest, stationary
realizations of the particle trajectories can be obtained
directly from the Langevin equation [48, 51, 52]

d

dt
x(t) = −µU ′(x) +

√
T (x) ξ(t), (24)

if initial conditions are compatible with the stationary
solution (16). In Eq. (24), ξ(t) denotes Gaussian white
noise, with vanishing mean 〈ξ(t)〉 = 0 and autocorrela-
tion function 〈ξ(t)ξ(t′)〉 = 2µkBδ(t − t′) and T (x), the
inhomogeneous medium temperature (15b) that encodes
the features of active motion. Ensemble calculations of
realizations of these trajectories lead to all the observable
quantities of interest, in particular those quantities of in-
terest in stochastic thermodynamics (see, for instance,
the review [50]).

We apply the ideas developed up to now to particu-
lar realizations of the potential U(x) that had been con-
sidered before in the literature, both theoretically and
experimentally, namely the linear potential in the sedi-
mentation process of active particles [12–14, 28], the har-
monic potential trapping active particles [12, 24], and the
diffusion of active particles in a double well-potential [59].

A. Sedimentation: Linear potential U(x) = mgx

The simplest physical realization for run-and-tumble
particles in an external potential, corresponds to the case
when U(x) is linear with distance, i.e., when the particles
are subject to a constant force, as is the case of active par-
ticles that swim above a hard wall in the presence of the
gravitational force −mg. The probability density of find-
ing a particle at height x above the wall has been found in
one dimension for run-and-tumble particles [22, 28] and
in higher dimensions in Ref. [12]; further, this situation
has been realized experimentally in three dimensions for
active Brownian particles [13].

From relations (15) we have that the drift velocity
Vdrift = −µmg corresponds to the sedimentation ve-
locity −vsed , and the effective temperature T (x) =
T0(1 − v2

sed/v
2) is spatially homogeneous. The familiar

exponential decrease of the probability density with the
distance from the wall is recovered from Eq. (16),

Pst(x) =
mg

kBT0(1− v2
sed/v

2)
e−mgx/kBT0(1−v2sed/v

2), (25)

The uniformity of the effective temperature allows us to
interpret Eq. (25) as the probability density of a Brow-
nian particle diffusing under the effects of the gravita-
tional force in a medium of homogeneous temperature
T0(1 − v2

sed/v
2) [12, 13, 28], with vsed < v. By self-

propelling, active particles develop higher speeds to over-
come vsed. If vsed/v � 1 the effective temperature corre-
sponds to the maximum value T0. In contrast, the tem-
perature gets arbitrarily close to zero as v gets arbitrarily
close to vsed, if this is the case, the particles accumulate
all over the wall.

B. Power law trapping potentials: The harmonic
external potential

Experiments that analyze the effects of trapping po-
tentials on the diffusion of active particles have been re-
alized. In some approximation the trapping potential can
be approximated by a harmonic potential for which ana-
lytical calculations can be devised; however, the effects of
steeper potential [60] are also of interest since they might
approximate better the experimental trapping potential.

The analysis of the diffusion of active particles con-
fined by a harmonic potential has been considered the-
oretically [12, 61] and, more recently, experimentally in
a two-dimensional systems of active Brownian particles
confined by transverse acoustic forces of a single-beam
transducer [24] and in a two-dimensional system of an
optically trapped passive Brownian particle coupled to a
bath of active particles [30].

In this section we consider run-and-tumble particles
trapped in the following one-dimensional harmonic trap-
ping potential:

U (x) =
1

2
κ1 x

2, (26)

where κ1 is a constant that characterizes the intensity
of the trapping potential. For this potential the local
effective temperature (15b) is

T (x) = T0

[
1− x2/x2

max

]
, (27)

where xmax = v/µκ1 is a length scale related to confine-
ment, which in this case coincides with the maximum dis-
placement for an active particle that moves with speed v.
At the center of the trap, the local temperature acquires
its maximum value, given by the effective temperature
of free diffusion T0 and vanishes at x = ±xmax. In this
case the thermophoretic force is linear in the displace-
ment and repulsive from the center of the trap and can
be written as (2κ2

1µ/α)x. This force opposes to the one
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due to the harmonic potential, giving rise to the effective
force −κ1(1− 2µκ1/α)x. The dimensionless parameter

β0 = µκ1/α, (28)

which is equivalent to the ratio lpers/xmax, measures the
competition between the effects of confinement and per-
sistence and drives the system into qualitatively different
equilibrium distributions. Notice that β0 is equivalent to
the ratio of the energy κ1l

2
pers to the effective thermal

energy kBT0. Thus, the effective potential can be writ-
ten as Ueff(x) = 1

2κ1x
2(1− 2β0) + kBT0, and from it, we

deduce the following bifurcation scheme: For 2β0 < 1,
Pst(x) is unimodal around the center of the trap, which
corresponds to the unique stable equilibrium position of
Ueff(x); for 2β0 = 1 the effects of active motion can-
cel out those of the trapping potential, and thus no net
force acts on the particle giving rise to a uniform distri-
bution into the whole interval [−xmax, xmax] (see Fig. 1),
while for 2β0 > 1 the equilibrium position becomes un-
stable and the distribution Pst(x) exhibits peaks at the
borders ±xmax due to the net force from the center that
pushes outward. This bifurcation is directly shown in the
corresponding equilibrium solution (20)

Pst(x) = Z−1

[
1− x2 β2

0

l2pers

](1−2β0)/2β0

, (29)

where the partition function Z is given by

Z =

√
π Γ
[

1
2β0

]
Γ
[

1
2 + 1

2β0

] lpers

β0
(30)

which depends explicitly on β0, and Γ(z) denotes the
gamma function. It can be shown straightforwardly that
in the diffusive limit, which can be stated equivalently
as β0 → 0, lpers → 0 such that β0/l

2
pers is finite, the

Boltzmann-Gibbs equilibrium distribution PB−G(x) is
recovered, i.e.,

PB-G(x) =

√
β0

2πl2pers

exp

{
−β0

x2

2l2pers

}
. (31)

The stationary distribution (29) corresponds to the
class of probability distributions in statistical physics for
which the Boltzmann-Gibbs distribution is recovered as
a particular limit, in this case, in the limit β0 → 0. In-
deed, the distribution given in Eq. (29) is of the kind of
the so-called q-Gaussian distribution [62], which is of the
form

expq
(
−x2

)
=

[
1−

(
1− q
2− q

)2

x2

] 1
1−q

(32)

from which the usual Gaussian function is recovered as
q → 1. Notice that the definition of the q-exponential
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FIG. 1. (Color online) The stationary probability density
Pst(x) given by (29) (solid lines) for β0 = 2, 1, 0.5, 0.1, 0.001,
and 0.001 is compared with the corresponding one obtained
from the numerical integration of the Langevin equation (24)
with T (x) given by (27).

used in Tsallis statistics differs slightly from the one given
in (32), but in terms of this one we have

Pst(x) = Z−1 expq
[
−x2/(2lpers)

2
]
, (33)

where the q parameter is directly related to β0 through

q =
4β0 − 1

2β0 − 1
. (34)

This last result is one of the main points of the paper,
which belongs to the few systems for which the q pa-
rameter is comprehensibly computed from the time- and
length scales of the system rather than from fitting pro-
cedures.

On the other hand, we prove the validity of Langevin
dynamics given by the prescription (24) by computing
the stationary probability distribution (29) from the en-
semble average 〈δ[x − x(t)]〉st over a set of stationary
trajectories of passive Brownian particles diffusing in an
inhomogeneous thermal bath with temperature profile
T (x) given by Eq. (27). In Fig. 2 we present some
of these trajectories for different realizations of x(t) for a
given value of the parameter β0. In Fig. 1 we compare
the analytical stationary distribution (29) (solid lines)
for different values of β0, with the ones obtained from
the numerical solutions of the Langevin equation (24)
(symbols).

We introduce the quantity

σ(β0) =
d

d(lnβ0)
ln
[
lpers(β0Z)−1

]
, (35)

which can be interpreted, analogously with the thermo-
dynamic relation βE = ∂ lnZ−1/∂ lnβ, as the ratio of
the internal energy [which in the overdamped limit is
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FIG. 2. (Color online) Trajectories in the stationary state for
Brownian particles diffusing within the harmonic potential
with spatially diffusion coefficient given in (27), for different
values of β0, namely 0.001, 0.01, 0.1, and 1. Clearly, for
large values of β0, persistence is conspicuous and the particles
explore more the region around the returning points ±xmax.
The shaded area marks the region of space inaccessible to the
particles.

given solely by the average of the potential energy, E =
〈U(x)〉] to the effective thermal energy of the system,
kBT0, i.e., σ(β0) = E/kBT0. Equation (35) can be writ-
ten in terms of the digamma function, Ψ(x) = [ln Γ(x)]

′
,

as

σ(β0) =
1

2β0

[
Ψ

(
1

2
+

1

2β0

)
−Ψ

(
1

2β0

)]
. (36)

As is apparent from Fig. 3, σ(β0) is a sigmoidlike func-
tion of β0. This characteristic make it suitable as a mea-
sure of the departure from the Boltzmann-Gibbs distri-
bution. Certainly, in the limit of negligible persistence,
i.e., β0 � 1, one can substitute the Gamma functions
that appear in Eq. (30) by their Stirling’s approxima-
tion to get σ(β0) ≈ 1/2 as is shown in Fig. 3. This result
can be interpreted as the fulfillment of the equipartition
theorem. In contrast, it can be shown that in the limit of
large persistence, β0 � 1, σ(β0) saturates to the value 1,
which characterizes the non-Boltzmann-Gibbs distribu-
tion for which the fulfillment of the equipartition theorem
breaks down, we get E = kBT0.

1. Steeper power law trapping potentials

Due to the fact that the harmonic potential (26) satis-
fies that [U ′(x)]2 is proportional to U(x) itself, the ther-
mophoretic force [computed from Eq. (15b)] opposes the
force derived from the trapping potential with the same
dependence on the position, linear in this case, which
leads to the stationary solution (29). It is clear that
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FIG. 3. (Color online) σ as function of β0. It saturates in
the persistent regime (β0 � 1) to the value 1, while in the
diffusive regime (β0 � 1), it characterizes the Boltzmann-
Gibbs distribution with the value 1

2
. The square marks the

value of σ at β0 = 1/2 at which the bifurcation occurs. The
probability density changes from unimodal with maximum at
the trap center in the diffusive regime to a distribution sharply
peaked at the boundaries.

more subtle effects should appear if steeper potentials
are considered. We briefly point out some aspects for a
power-law potential of the form

U(x) =
κn
2n
x2n, n = 1, 2, . . . , (37)

where κn is a parameter with units of energy over
[length]2n that indicates the strength of the potential.
Analogously with the parameter (28), we introduce the
parameter β0,n given by

β0,n = κnµ
v2(n−1)

α2n−1
=

[
lpers

xmax

]2n−1

(38)

that again measures the competence between the con-

finement length, xmax = (v/µκn)
1/(2n−1)

, and the persis-
tence length lpers. A novel effect appears as consequence.
Namely, it can be shown that for the potential as given
in (37), new unstable equilibrium positions for the effec-
tive potential in Eq. (17) emerge for values of β0,n larger

or equal to [2(2n − 1)]−(2n−1) as long as n > 1. The
appearance of this unstable positions lead to multimodal
stationary distributions.

For the sake of clarity and for reasons that will be clear
in the following section, where the symmetric double well
potential is considered, we focus our analysis in the case
n = 2, the so-called quartic potential,

U(x) = κ2x
4/4, (39)

for which β0,2 = µκ2v
2/α3 = (lpers/xmax)

3
. The value

of β0,2 for which the unstable equilibrium positions of
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3
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(β0,2 � 1) σ characterizes the Boltzmann-Gibbs distribution
with the value 1

4
.

the effective potential start to appear is 6−3. This value
also marks a qualitative difference of the effective poten-
tial, namely it has a vanishing slope at the boundaries.
For larger values of β0,2 the effective potential exhibits
the mentioned unstable equilibrium (maxima) positions;
however, the center of the trap is still the stable equilib-
rium position of the effective potential. Thus, the parti-
cles are “pushed away” from the unstable positions accu-
mulating, on the one hand, at the boundaries, and, on the
other, at the center of the trap leading to a multimodal
probability distribution. This feature changes abruptly
for β0,2 > 4−3, since in this regime the effective potential
has its minima at the borders.

In complete analogy with Eq. (35), we consider the
quantity

σ(β0,2) =
d

d(lnβ0,2)
ln
[
lpers(β0,2Z)−1

]
(40)

as a measure of the departure from the stationary dis-
tribution of Boltzmann-Gibbs; however, in contrast with
the case of the harmonic potential, no analytical expres-
sion of the partition function for arbitrary β0,2 exists.
Notwithstanding this, it is straightforward to show that
in the diffusive limit σ(β0,2)→ 1/4, while in the asymp-
totic limit, β0,2 → ∞, we have that σ(β0,2) → 1/3 as is
shown in the Fig. 4.

C. The symmetric double-well potential

A more interesting case corresponds to the one where
the trapping potential has a richer energy landscape as
occur with those that exhibit more than one stable state.
Here, we report on the simplest case when the trapping

potential has only two degenerate stable states. Thus, we
focus our analysis in the effects of persistence of active
particles trapped by the symmetric double-well potential,

U (x) = ∆U

[
x4

L4
− 2

x2

L2
+ 1

]
, (41)

leaving for a further analysis the effects of active motion
on the asymmetric one as the one considered in Ref. [53]
by Landauer. In Eq. (41) ∆U and L are two positive
parameters that characterize the external potential, the
former one denotes the energy height of the barrier, while
the last one corresponds to half the distance between the
two stable states that correspond to the minima of the
external potential (41) located at x = ±L, respectively.

In addition to the characteristic lengths lpers and L,
there is a third one,

L =
8

3
√

3
∆U

µ

v
, (42)

that gives an estimate of the average length the active
particle travels from the center of the potential, when an
energy ∆U is available to swim at a swimming force v/µ.
For convenience we introduce the following two indepen-
dent parameters:

χ =
L
L
, (43a)

η =
lpers

L
. (43b)

Small values of χ refer to either a shallow energy bar-
rier, potential wells far apart, or both. Besides these, we
introduce a third parameter,

βdw = 4
µ∆U

L2α
=

3
√

3

2
χη, (44)

which characterizes the departure from the equilib-
rium regime and allows the transition between the
Boltzmann-Gibbs distribution and its corresponding sta-
tionary superstatistics distribtuion in the active (persis-
tence) regime. Indeed, if the effects of persistence of
active motion are negligible, as occurs in the diffusive
regime, then we have that βdw → 0 and the stationary
distribution corresponds to the one of Boltzmann-Gibbs

PB-G(x) = Z−1 exp

{
−3
√

3

8

χ

η

(
x4

L4
− 2

x2

L2
+ 1

)}
,

(45)
which corresponds to the bimodal distribution that is
symmetric at the stable positions of the external poten-
tial ±L. In this limit (βdw → 0) we are interested in the
quantity analogous to the one given in Eq. (35), in this
case given by

ς(χ/η) =
d

d[ln(χ/η)]
ln(LZ−1), (46)

which is shown in Fig. 5, as function of (χ/η)−1. For
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FIG. 5. (Color online) Susceptibility ς as in Eq. (46), as
function of the dimensionless persistence length (χ/η)−1. For
(χ/η)−1 � 1 the particle is trapped in any of the potential
wells, and in the opposite regime (χ/η)−1 � 1 the quartic
dependence of the potential is the dominant part of the trap-
ping.

large values of χ/η, i.e., ∆U � kBT0, the system is rem-
iniscent of a system of passive Brownian particles that get
trapped at the minima of the potential and ς(χ/η)→ 1

2 .
In the opposite regime ∆U � kBT0, the effects of the
energy barrier are negligible and the stationary distri-
bution corresponds to that of a trapped passive Brow-
nian particle diffusing in a quartic potential leading to
ς(χ/η) = 1

4 . The transition between these limit values is
not monotonous as is clear from the figure.

As has been discussed above, in the stationary regime,
the nonequilibrium nature of trapped active motion can
be mapped into a fictitious inhomogeneous thermal bath
characterized by the temperature profile given by (15b),
where trapped passive Brownian particles diffuse. As was
pointed out by Landauer [53], such effects due to inho-
mogeneity can change the relative stability of the system
stable states. Interestingly, we show that active motion
give rise to the appearance of metastable states if the per-
sistence length overpasses a threshold value of the con-
finement length.

The spatial dependence of the temperature profile as-
sociated to the potential (41) is given by

T (x) = T0

{
1− β2

dw

x2

l2pers

(
x2

l2pers

η2 − 1

)2
}
, (47)

which reduces to the homogeneous effective temperature
T0 as βdw → 0. The temperature profile (47) has a richer
structure (see Fig. 6) in comparison with profiles associ-
ated with external potentials with only one stable state.
By simple inspection it can be seen that the temperature
profile (47) reaches its maximum value T0, at the equi-
librium positions of the external potential either stable

0

0.5

1

χ = 0.9

-x
max

x
max

-L L-L/√3 L/√3

T (x)/T0

FIG. 6. The dimensionless effective temperature T (x)/T0 for
the double well potential (47) with χ = 0.9. The direction of
the thermophoretic force (49) is shown by arrows along the
horizontal axis.

or unstable, namely at x = ±L and at the origin x = 0,
respectively. Additionally, T (x) has two local minima at

the positions x = ±L/
√

3, where the local temperature
acquires the value T0

{
1− χ2

}
.

We focus our analysis to the case for which the in-
equality χ < 1 is valid, first, because this condition
guaranties a positive definite local temperature and, sec-
ond, it avoids the unnecessary difficulty of defining the
flux in the regions of space where this conditions is not
valid. In simple words, this condition assures that the
particle is active enough to overcome the energy barrier
[v > (4/3)3/2 µ∆U/L] and makes it able to freely swim
between the two boundary points ±xmax, given by

xmax =
L√
3

[
χ1/3

(
1 +

√
1− χ2

)−1/3

+

χ−1/3
(

1 +
√

1− χ2
)1/3

]
, (48)

at which the net force on the particle vanishes. As χ→ 1
from below, the local effective temperature vanishes at
±L/
√

3 as also does the net force on the particle.
The thermophoretic force induced by the effective local

temperature (47) is explicitly given by the product of the
swimming force v/µ times a factor that takes into account
the inhomogeneity of the fictitious medium, namely

2
v

µ
βdw

x

lpers

(
x2

l2pers

η2 − 1

)(
3
x2

l2pers

η2 − 1

)
, (49)

which, for finite βdw, pushes the particles away from
the positions of maximum temperature toward either the
boundaries ±xmax or toward ±L/

√
3, at which T (x) has

local minima. Thus there is a competition between the
thermophoretic force that tends to accumulate the par-
ticles at these positions (such a situation is pictorially
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FIG. 7. (Color online) The dimensionless effective potential,
Ueff(x)/∆U , as function of the dimensionless position x/xmax

for χ = 0.9. The blue solid line corresponds to the effective
potential at the critical value βc

dw = 1
4
. The dashed-dotted-

green line corresponds to the value below threshold 1
2
βc

dw = 1
8
,

for which the Ueff(x) has global minima at the positions ±L.
The dashed-red line shows the behavior of Ueff(x) for the value
above threshold 2βc

dw = 1
2
. The emergence of two metastable

states at the positions xmeta given by Eq. (51) is marked with
dotted lines.

shown in Fig. 6 for a temperature profile characterized
by χ = 0.9) and the force due to the external potential
U(x) that tends to accumulate the particles at x = ±L.

An straightforward stability analysis of Ueff(x) shows
that for a given value of χ, the landscape of the effective
potential changes as βdw is varied across the threshold
value

βc
dw =

1

4
. (50)

Indeed, for βdw < βc
dw, the positions ±L correspond

to global minima of Ueff(x) (dashed-dotted green line in
Fig. 7, with χ = 0.9), which coincides with the minima
of U(x). These positions, however, become local max-
ima for βdw > βc

dw, and Ueff(x) acquires local minima at
the positions ±xmax and at the positions ±xmeta, which
emerge as metastable sates (dashed red line in the same
figure), where

xmeta =
L√
3

[
1 +

1

2
β−1

dw

]1/2

. (51)

At the critical value (50) the positions ±L are inflexion
points and ±xmax become the global minima of Ueff(x)
(blue-solid line in Fig. 7).

The dimensionless probability density function in the
stationary state, xmaxPst(x), as function of x/xmax is
shown for the values of χ = 0.9 and 0.1 in Figs. 8 and 9,
respectively. This is computed numerically from the for-
mulas (16) and (41) (shown in solid lines) since no closed
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FIG. 8. (Color online) The dimensionless stationary proba-
bility density function, xmaxPst(x), as function of the dimen-
sionless position x/xmax for χ = 0.9 and different values of
βdw. The solid blue line corresponds to the threshold value
βc

dw = 1
4
. The thin- and thick-dashed green lines correspond

to the values βdw = 1
6

and βdw = 1
8

below the threshold
value, while the thin- and thick-dashed red lines, βdw = 0.5
and βdw = 1, respectively, correspond to the values of βdw

above threshold. The symbols mark the probability density
function calculated from the data obtained from numerical
solution of Eq. (24).

analytical expression is available and it is compared with
the corresponding distribution obtained from the numer-
ical simulations (symbols) using the stationary Brownian
dynamics as has been explained in Sec. III. In each fig-
ure, the mentioned distributions are shown for different
values of the parameter βdw. For the case χ = 0.9 (see
Fig. 8), the thermophoretic force pushes the particles
away from the center of the trap, and thus the proba-
bility density at the center is small. At the threshold
value βc

dw (blue-solid line), the probability density grows
monotonically from the center of the potential toward the
boundaries, where the particles accumulate. For subcrit-
ical values, βdw < βc

dw, the effects of persistent motion
are diminished and the particles accumulate at x = ±L
(see dashed-dotted green lines in Fig. 8 for βdw = 1

6 and

βdw = 1
8 ), as would occur in the equilibrium case. As

βdw is further decreased, the probability distribution of
the particle positions tends to the symmetrically bimodal
distribution, proportional to the Boltzmann-Gibbs fac-
tor exp{−U(x)/kBT0}. In the regime above threshold,
βdw > 1

4 , the landscape of the effective potential changes
and the stationary probability density shows two sym-
metrically pairs of peaks (see dashed red lines in Fig. 8
for βdw = 1

2 and βdw = 1), i.e., by increasing of effects of
persistent motion the modality of the distribution is en-
hanced, going from bimodal to four modes. Indeed, the
most populated modes correspond to the pair located at
the boundaries, while the other pair of modes are located
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FIG. 9. (Color online) The dimensionless stationary proba-
bility density function, xmaxPst(x), as function of the dimen-
sionless position x/xmax for χ = 0.1 and different values of
βdw. The solid blue line corresponds to the threshold value
βc

dw = 1
4
. The thin- and thick-dashed green lines correspond

to the values 4
15
βc

dw = 1
15

and 1
10
βc

dw = 1
40

below threshold,

while 2βc
dw = 1

2
, given by the dashed red line corresponds to

the value of βdw above βc
dw. The symbols mark the probabil-

ity density function calculated from the data obtained from
numerical solution of Eq. (24).

at ±xmeta. In the asymptotic limit βdw → ∞, the po-
sitions of the metastable states, ±xmeta, coincide with
the local minima of the temperature profile x = ±L/

√
3,

while the positions ±L become local minima.

In Fig. 9, the stationary probability density function
is shown for χ = 0.1, a value that corresponds to shal-
low energy barriers for which the particle can explore the
whole space available between −xmax and xmax without
being hindered by the barrier, as occurs in the previ-
ous case. At the threshold value βdw = 1

4 (blue-solid
line), the probability density is almost flat at the center
of the potential and it peaks at the boundaries ±xmax.
As the effect of persistent motion is diminished, i.e., for
βdw < 1

4 , the peaking of the probability density func-
tion at the boundaries is diminished gradually until par-
ticles start to accumulate at ±L. In the diffusive limit,
the region close to the boundaries is visited much less
frequently (see dashed-dotted green lines in Fig. 9 for
βdw = 1

15 and βdw = 1
40 ). If βdw is further decreased as

before, then the probability distribution of the particle
positions tends to the equilibrium distribution charac-
terized by the Boltzmann-Gibbs factor. In contrast to
the cases for which χ . 1, the peaking of the probability
distribution at xmeta is subtle, while the peaking at the
boundaries is conspicuous in the supercritical regime (see
the dashed red line in Fig. 9 for βdw = 1

2 ).

We conclude the analysis of run-and-tumble particles
trapped by the symmetric double-well potential (41) by
computing the analogous quantity introduced in the pre-

10
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β
dw

0.3
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0.8

σ(
β d

w
,χ
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χ = 0.9
χ = 0.5
χ = 0.2
χ = 0.1

Boltzmann-Gibbs

Non-Boltzmann-Gibbs

FIG. 10. (Color online) σ(βdw, χ) as defined in Eq. (52) for
the case of the double-well potential (41), is shown as a func-
tion of βdw for the values χ = 0.1, 0.2, 0.5, and 0.9. In the
diffusive regime (βdw � 1), σ ' 1

2
characterizes the equi-

librium stationary state that corresponds to the Boltzmann-
Gibbs distribution. The persistence regime (βdw � 1), σ ' 1

3
,

characterizes the non-Boltzmann-Gibbs stationary distribu-
tion. These characteristic limiting values have been obtained
analytically from Eq. (52).

vious section [Eq. (35)] given now by

σ(βdw, χ) =
d

d(lnβdw)
ln
{
lpersZ̃−1(βdw, χ)

}
, (52)

where the explicit dependence on χ has been pointed

out and Z̃(βdw, χ) denotes the rescaled partition function
exp {−S(βdw, χ)}Z(βdw, χ), where S(βdw, χ) is a shift
that makes the argument of the exponential in the par-
tition function (18) positive. In Fig. 10, the numerically
computed susceptibility σ(βdw, χ) as function of βdw is
shown for χ = 0.1, 0.2, 0.5 and 0.9. A nonmonotonous
dependence on βdw is observed. In the diffusive limit, for
which the stationary distribution corresponds to that of
Boltzmann-Gibbs, the susceptibility marks the value 1

2
independently of the value of χ. As the effects of persis-
tence become conspicuous, the particle distribution peaks
at the boundaries, and, as such, the details of trapping
potential at the center potential can be neglected mak-
ing the quartic potential the dominant part. Therefore
it is expected that σ(βdw, χ) goes to 1

3 as occurs in Fig.
4. The peaking of the distribution at the boundaries
in this regime makes such a calculation computationally
difficult.

IV. FINAL COMMENTS AND CONCLUDING
REMARKS

As is well known, the coupling between the diffusion
process of active particles of spatially-independent active-
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motion traits and the inhomogeneity induced by the ex-
ternal potential, makes explicit the nonequilibrium as-
pect of active motion revealed in the non-Boltzmann-
Gibbs stationary distributions of the particle position. In
this paper we have established a single-parameter map-
ping between these non-Boltzmann-Gibbs stationary dis-
tributions (16) of run-and-tumble particles constrained
by an external potential and the corresponding ones of
passive Brownian motion under the same trapping poten-
tial but in a fictitious nonuniform-temperature medium.
Such a mapping, given by the prescription (15b), al-
lows a simple interpretation of the intrinsic nonequilib-
rium aspects of active matter marked by the stationary
non-Boltzmann-Gibbs distributions, namely it brings to
mind a passive Brownian particle diffusing in a fictitious
medium at local equilibrium, a concept that extends to
the nonequilibrium realm some fundamental thermody-
namics quantities.

The single parameter that characterizes the mapping
corresponds to the ratio of the potential-dependent con-
finement length and the persistence length lpers. The ho-
mogeneity of the fictitious media is recovered in the dif-
fusive limit, i.e., in the limit when the persistence length
is much smaller than the confinement length, which leads
to the equilibrium distributions of Boltzmann-Gibbs as
the stationary solutions and brings back the concept of
effective temperature. In the persistence regime, when
the persistence length is larger or of the order of the
confinement length, the stationary distributions can be
understood as superstatistics distributions. The partic-
ular superstatistics distributions called q-Gaussians ap-
pear in the case when the trapping potential corresponds
the harmonic one (see Sec. III B).

More specifically, we have considered the simplest run-
and-tumble particles trapped in an external potential,
i.e., particles that swim at constant speed v and tum-
ble at a constant rate α, as a nonequilibrium analog of
the simplest system in equilibrium thermodyanmics, the
trapped ideal gas. We have conveyed that the nonequi-
librium feature corresponds to a specific inhomogeneity
of a fictitious thermal bath whose temperature profile has
the spatial dependence given by Eq. (15b), where the pa-
rameters that characterize self-propulsion (v) and active
fluctuations (α) explicitly appear. A measure of it has
been given by the susceptibilities σ’s, introduced in Eqs.
(35), (40), (46), and (52). In addition, we find an explicit
instance of the mechanism behind superstatistics [34].

We want to point out that the fluctuations in the
swimming speed (not considered in the present analy-
sis) causes a significant change in the nature of the sta-
tionary distributions. For instance, in the case of the

so-called active Ornstein-Uhlenbeck model [17] of active
motion, where the swimming speed fluctuates according
to an Ornstein-Uhlenbeck process, the stationary distri-
bution of the particle position trapped by the harmonic
potential is Gaussian, as in the equilibrium case but with
an effective temperature. In such a case, active motion
does not change the stability positions of the external
trapping potential in contrasts with models that main-
tain the swimming speed constant. In a similar fashion as
the analysis presented in this paper, it has been revealed
that active Ornstein-Uhlenbeck motion, can be mapped
into underdamped passive Brownian motion with a space
dependent friction term, which can be understood as the
coupling of the particle motion with a fictitious inhomo-
geneous medium that causes a local friction term [63].

The extension of the present analysis to higher dimen-
sions is not straightforward, indeed, neither the active
Brownian nor the run-and-tumble model of active mo-
tion have explicit analytical solutions for arbitrary trap-
ping potentials, thus leaving the determination of the
mapping between the trapped active motion to passive
Brownian motion in an inhomogeneous thermal bath as
an open problem. On the other hand, the existence
of the homogeneous effective temperature in the diffu-
sive limit of two-dimensional active motion has been dis-
cussed in Ref. [29] which, as expected, is related with
the equilibrium solution of Boltzmann-Gibbs in the zero-
current stationary state. The existence of such homoge-
neous temperature has been shown to exists in a two-
dimensional trapped system, namely for active Ornstein-
Uhlenbeck particles trapped by a harmonic potential [64].
Further, the analysis presented in this paper can be gen-
eralized to the case of one-dimensional run-and-tumble
particles diffusing within a finite interval with reflecting
boundary conditions (hard walls) at the borders [65], for
which the high accumulation of particles at the bound-
aries can be mapped to passive Brownian motion in an
inhomogeneous thermal bath under the same boundary
conditions. Finally, it would be of broad interest to find
a generalization of the Boltzmann-Gibbs entropy func-
tional from which (11) is derived via the maximization of
entropy principle, as has been shown from many non-
Bolztmann-Gibbs distributions that occur in complex
systems [66].

ACKNOWLEDGMENTS

F.J.S kindly acknowledges support from Grant No.
UNAM-DGAPA-PAPIIT-IN114717 and A.V.A. acknowl-
edges support from Grant No. UNAM-DGAPA-PAPIIT-
IA104917.

[1] S. Ramaswamy, Annual Review of Condensed Matter
Physics 1, 323 (2010), https://doi.org/10.1146/annurev-

conmatphys-070909-104101, URL https://doi.org/10.

1146/annurev-conmatphys-070909-104101.



15

[2] M. C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B.
Liverpool, J. Prost, M. Rao, and R. A. Simha, Rev.
Mod. Phys. 85, 1143 (2013), URL https://link.aps.

org/doi/10.1103/RevModPhys.85.1143.
[3] C. Bechinger, R. Di Leonardo, H. Löwen, C. Reich-
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