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We investigate a one-dimensional model of active motion, which takes into account the effects of
persistent self-propulsion through a memory function in a dissipative-like term of the generalized
Langevin equation for particle swimming velocity. The proposed model is a generalization of the
active Ornstein-Uhlenbeck model introduced by G. Szamel [Phys. Rev. E 90, 012111 (2014)]. We
focus on two different kinds of memory which arise in many natural systems: an exponential decay
and a power law, supplemented with additive colored noise. We provide analytical expressions for
the velocity autocorrelation function and the mean-squared displacement, which are in excellent
agreement with numerical simulations. For both models, damped oscillatory solutions emerge due
to the competition between the memory of the system and the persistence of velocity fluctuations.
In particular, for a power-law model with fractional Brownian noise, we show that long-time active
subdiffusion occurs with increasing long-term memory.

I. INTRODUCTION

Systems in out-of-equilibrium conditions are ubiqui-
tous in nature, among which biological active matter is
the most representative. For instance, motile bacteria
employ diverse swimming patterns to traverse complex
habitats [1, 2]. Recent technological advances have al-
lowed the design of artificial particles that take advan-
tage of different physical and/or chemical mechanisms
to self-induce motion that mimics biological motility [3].
Such mobile entities, either biological [4, 5] or human-
made [6–10], are able to develop autonomously directed
motion by using the locally available energy from the en-
vironment [3]. These particles are called self-propelled or
more generally, active particles.

For nonequilibrium statistical physicists, active mat-
ter provides a rich field of research that has allowed the
rapid progress of different theoretical frameworks. It has
been pointed out that the detailed balance between the
injection and the dissipation of energy is not satisfied at
the microscopic scale in active systems. However, many
of the accomplished advancements in the understanding
of active matter have partly relied on the intuition built
from equilibrium systems [11–13]. For instance, the con-
cept of effective temperature has provided a valuable de-
scription of some out-of-equilibrium systems [14–16], and
in particular in systems of active particles [7, 17–24]. In
general, the possibility of defining an effective tempera-
ture relies on the fulfillment of a nonthermal fluctuation-
dissipation relation. This is the case for timescales larger
than the persistence one, for which the motion of free
active particles is well characterized by an effective dif-
fusion coefficient. Such a behavior can be interpreted as
the motion of a passive Brownian particle diffusing in a
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fictitious environment at an effective temperature higher
than the true equilibrium temperature of the surround-
ings.

A model of active motion that has attracted a great
deal of attention because of its simplicity is the so-called
active Ornstein-Uhlenbeck model (AOUM). It is based
on the assumptions that in the overdamped regime, the
particle position changes in time due to all the potentials
that affect its motion, as well as due to its own self-
propulsion velocity, which is described by an Ornstein-
Uhlenbeck process [22]. The AOUM has been used as a
basis to consider interactions among self-propelled parti-
cles [25, 26] and to study the main nonequilibrium fea-
tures exhibited by active matter, such as motility-induced
phase separation [27, 28]. Also, it has allowed the deriva-
tion of analytical results in the case of independent active
particles confined in simple potentials [29, 30]. Further-
more, within the framework of stochastic thermodynam-
ics, it has permitted the analysis of entropy production,
fluctuation theorems, and Clausius relations for active
matter [31–33].

In this paper we consider a generalization of the
AOUM based on the generalized Langevin equation
(GLE) [34, 35], which endows the standard Langevin
model of Brownian motion with finite time correlations.
The GLE usually models systems in viscoelastic baths
near equilibrium states and includes retarded memory
effects in the viscous drag term of the equation and cor-
related thermal noises [36–43]. Remarkably, these kinds
of models are also of great theoretical interest to de-
scribe nonequilibrium systems, as memory effects can-
not be neglected in many situations. For active matter,
memory effects can significantly alter the directional dy-
namics of individual self-propelled particles when mov-
ing in viscoelastic media. For instance, in polymer so-
lutions the persistence length of flagellated bacteria [44]
and synthetic nanopropellers [45] is enhanced, while self-
propelled spherical colloids exhibit an increase of rota-
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tional diffusion [46] and circular trajectories [47]. Mem-
ory effects are revealed in many other active systems
with long-range temporal correlations that also motivate
our analysis, e.g., self-propelled particles in glassy [48]
or disordered heterogeneous media [49, 50], motile bac-
teria with intricate swimming patterns [1], microorgan-
isms with strong autochemotactic response [51], and ac-
tive liquid-crystal droplets [52].

In Sec. II we present the explicit formulation of the
model that describes the motion of self-propelled par-
ticles subject to thermal and active fluctuations. We
show that the probability density of the complete pro-
cess can be written as the convolution of the diffusion
probability density, due to thermal fluctuations, and the
corresponding probability distribution of the active part
of motion, which is analyzed in Sec. III. In the same
section two relevant examples are discussed in detail,
first, a memory function that models the retarded ef-
fects on the swimming velocity due to viscoelastic-like
effects, and, second, a memory function with power-law
long-lived correlations. Both examples qualitatively cap-
ture the phenomenology observed in a variety of active
systems, namely the occurrence of anticorrelations of the
swimming velocity which lead to self-trapping effects. Fi-
nally, in Sec. IV we summarize the main results of our
work and make some further physical remarks.

II. THE GENERALIZED
ORNSTEIN-UHLENBECK MODEL OF ACTIVE

MOTION

One remarkable aspect of the motion of active par-
ticles is that it is persistent, i.e., the particles approx-
imately retain the state of motion for a characteristic
finite timescale, called the persistence time. This feature
is indeed observed in the patterns of motion of different
microorganisms and some artificially designed self-motile
particles. For instance, the run-and-tumble pattern of
Escherichia coli alternates time intervals at a rather con-
stant speed in a straight line along a randomly chosen di-
rection, interrupted by short time periods during which
the bacterium tumbles almost at rest. On a statistical de-
scription, the run-and-tumble motion can be character-
ized by a finite timescale of persistence, which makes the
motility behavior strongly correlated in time, thus ren-
dering the nonequilibrium signatures conspicuously ob-
servable.

Here we provide a theoretical framework with the pos-
sibility of considering a variety of patterns of persistent
motion. The equations that describe the time evolution
of the particle position x(t) of an overdamped active
Brownian particle diffusing in one dimension, and the
time evolution of its swimming velocity, vs(t), are given

by

d

dt
x(t) = vs(t) + ξx(t), (1a)

d

dt
vs(t) = − 1

τR

∫ t

0

ds γ(t− s)vs(s) + ξvs(t). (1b)

In Eq. (1a), ξx(t) denotes the thermal noise caused by
the medium, which is modeled here as Gaussian white
noise, i.e., with average 〈ξx(t)〉 = 0 and autocorrelation
function 〈ξx(t)ξx(s)〉 = 2DT δ(t − s); DT is the diffu-
sion constant due to translational motion given by µkBT ,
µ being the mobility; kB the Boltzmann constant; and
T the medium temperature. Equation (1b) is the well-
known GLE that in the context of the present paper pro-
vides a generalization of the AOUM of active motion [22],
which takes into account the exponential correlations of
the swimming velocity that gives rise to exponentially
persistent motion. Here, Eq. (1b) opens the door for
taking into account a variety of persistent motions by
properly choosing the memory function γ(t) [53], which
has units of [time]−1. The timescale τR in Eq. (1b) char-
acterizes the persistence of the velocity fluctuations (the
persistence time). For times larger than τR, they relax
to zero, fading out the ballistic motion.

We focus on the physically relevant case where Eqs. (1)
describe a stationary process whose statistical properties
are invariant under temporal translations. For simplic-
ity, the noise term ξvs(t) is assumed to be stationary and
Gaussian with vanishing average 〈ξvs(t)〉 = 0 and auto-
correlation function

〈ξvs(t)ξvs(s)〉 =
v2

0

τR
η(|t− s|). (2)

In Eq. (2), η(t) is a function with physical units of time−1,
whereas v0 determines the variance of the velocity fluc-
tuations, 〈vs(t)vs(t)〉 = 〈vs(0)vs(0)〉 = v2

0 , which de-
fines the characteristic self-propelling speed v0. Although
there are no a priori reasons to establish a relation be-
tween γ(t) and η(t), it is physically plausible that the
relation η(t) = γ(t) may be sustained in some cases of
interest. This relation does not imply thermal equilib-
rium but only expresses the simple situation, described
by linear-response theory, for which the response of the
swimming velocity to active fluctuations is connected by
the square of the self-propelling speed divided by the per-
sistent time [54]. The active Ornstein-Uhlenbeck model
of Szamel [22] is recovered from Eq. (1b) for the zero-
ranged memory function γ(t) = η(t) = 2δ(t), which leads
to an exponentially decaying autocorrelation function,
i.e., 〈vs(t)vs(s)〉 = v2

0 exp(−|t−s|/τR), also considered in
the analysis of a two-dimensional active motion in Ref.
[55].

We pay particular attention to the statistical prop-
erties of active motion induced by finite- and long-
ranged memory functions. We are mainly interested
on the statistics of the particle swimming velocity an
its position, for which the explicit dynamics of the self-
propulsion velocity is implied by the memory function
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γ(t). The formal solutions of Eqs. (1) are given explic-
itly by

x(t) = ⟪x(t)⟫+

∫ t

0

dsΓ(t− s)ξvs(s) +

∫ t

0

ds ξx(s),

(3a)

vs(t) = 〈vs(t)〉+

∫ t

0

dsΓ′(t− s)ξvs(s), (3b)

where

⟪x(t)⟫ = x(0) + vs(0) Γ(t), (4a)

〈vs(t)〉 = vs(0) Γ′(t), (4b)

give the mean position and the mean swimming veloc-
ity, respectively. The average ⟪·⟫ is taken over the inde-
pendent realizations of the Gaussian white noises ξx(t)
and ξvs(t), while 〈·〉 only over realizations of ξvs(t). x(0)
and vs(0) are the corresponding initial values. Γ(t) and
Γ′(t) = dΓ(t)/dt are the solutions of the deterministic
counterpart of Eqs. (1a) and (1b) and given by the in-
verse Laplace transform of

Γ̃(ε) = ε−1Γ̃′(ε), (5a)

Γ̃′(ε) =

[
ε+

1

τR
γ̃(ε)

]−1

, (5b)

respectively. The symbol f̃(ε) denotes the Laplace trans-

form of the function of time f(t), defined by f̃(ε) =∫∞
0
dt e−εtf(t) with ε the Laplace variable, a complex

number.

The long-time regime of the quantities (5) is deter-
mined by the asymptotic behavior of γ(t). It is custom-
ary to require that γ(t) vanishes with increasing t, which
means that in the Laplace domain limε→0 εγ̃(ε) → 0.
A necessary and sufficient condition for a well-defined
asymptotic limit of Γ(t) and Γ′(t), and therefore a well-
behaved time dependence of the average trajectories (4),
is that εγ̃(ε) goes to zero slower than ε2. This is trivially
satisfied by positive monotonically decreasing memory
functions—which maintain the physical interpretation of
persistence—that go exponentially or faster to zero or by
those that go to zero as t−β with 0 < β < 1.

The characteristic function of the probability density
associated to the stochastic process defined by Eqs. (1)
is given by

Ĝ(k, q, t) = ⟪exp

{
−i
∫ t

0

ds k ξx(s)

}
×

exp

{
−i
∫ t

0

ds
[
qΓ′(t− s) + kΓ(t− s)

]
ξvs(s)

}
⟫ . (6)

This quantity can be explicitly written as the product
of the characteristic function of the translational part

ĜDT (k, t) times the corresponding bivariate characteris-

tic function of the active part Ĝ
(2)
act(k, q, t), i.e.,

Ĝ(k, q, t) = ĜDT (k, t) Ĝ
(2)
act(k, q, t), (7)

where

ĜDT (k, t) = exp
{
−DT k

2t
}

(8a)

is the univariate characteristic function of the diffusion
equation, DT the diffusion coefficient linked to thermal
fluctuations, and

Ĝ
(2)
act(k, q, t) = exp

{
−1

2
q2σ2

vsvs(t)

−qkσ2
xvs(t)−

1

2
k2σ2

xx(t)

}
, (8b)

is a bivariate Gaussian that corresponds to the char-
acteristic function of active motion. The expression

for Ĝ
(2)
act(k, q, t) in Eq. (8b) explicitly involves the stan-

dard elements of the active covariance matrix Σact,
i.e., the variance of the particle position σ2

xx(t) ≡〈
[x(t)− 〈x(t)〉]2

〉
, the variance of the particle swim-

ming velocity σ2
vsvs(t) ≡

〈
[vs(t)− 〈vs(t)〉]2

〉
, and the co-

variance of the particle position and swimming velocity

σ2
xvs ≡

〈
[x(t)− 〈x(t)〉] [vs(t)− 〈vs(t)〉]

〉
. Such matrix el-

ements are given by

σ2
vsvs(t) =

v2
0

τR

∫ t

0

ds1

∫ t

0

ds2 Γ′(s1) Γ′(s2) η(|s1 − s2|),

(9a)

σ2
xx(t) =

v2
0

τR

∫ t

0

ds1

∫ t

0

ds2 Γ(s1) Γ(s2) η(|s1 − s2|),

(9b)

σ2
xvs(t) =

v2
0

τR

∫ t

0

ds1

∫ t

0

ds2 Γ′(s1) Γ(s2) η(|s1 − s2|),

(9c)

and are valid for arbitrary γ(t) and η(t).
Thus, the joint probability density of finding a particle

at position x and swimming with velocity vs at time t,
given that initially (t = 0) the particle was located at

x(0) swimming at velocity vs(0), P
(
x, vs, t|x(0), vs(0)

)
,

can be written as the convolution

P
(
x, vs, t|x(0), vs(0)

)
=

∫ ∞
−∞

dx′GDT
(
x−⟪x(t)⟫−x′, t)×

G
(2)
act

(
x′, vs − 〈vs(t)〉, t

)
, (10)

where

GDT (x, t) =
1√

4πDT t
exp

{
− x2

4DT t

}
, (11)

is obtained straightforwardly by inverting the Fourier
transform of Eq. (8a), while
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G
(2)
act (x, vs, t) =

1

2πσxx(t)σvsvs(t)
√

1− C(t)
exp

{
− 1

2[1− C(t)]

(
v2

s

σ2
vsvs(t)

− 2xvs C(t)

σ2
xvs(t)

+
x2

σ2
xx(t)

)}
(12)

is obtained after inverting the Fourier transform of (8b),
where

C(t) =
σ2
xvs(t)

σ2
vsvs(t)

σ2
xvs(t)

σ2
xx(t)

. (13)

III. THE STATISTICS OF THE ACTIVE
COMPONENT OF MOTION

We have shown that the dynamics is explicitly split
into the translational part and the active one [see Eqs.
(7) and (10)]. This allows us to focus on the statisti-
cal properties of the active part of motion. In such a
case, it is equivalent to consider Eq. (1) with DT = 0
[ξx(t) = 0 for all t], which reduces to the standard gener-
alized Langevin equation that describes the persistence
effects of active motion through the memory function in
the dissipative term [53]. In order to unveil the main con-
sequences of the model proposed, we restrict our analysis
to the case of internal noise, i.e., η(t) = γ(t).

In addition to the quantities given in Eqs. (9) [eval-
uated at η(t) = γ(t)], we consider the autocorrelation
function of the swimming velocity 〈vs(t)vs(s)〉 which can
be written as

〈vs(t)vs(s)〉 = v2
s (0)Γ′(t)Γ′(s)

+
v2

0

τR

∫ t

0

ds1

∫ s

0

ds2 Γ′(s1)Γ′(s2)γ(|s1 − s2|), (14)

for s ≤ t.
The asymptotic behavior of the quantities (9) and

(14), is determined by the corresponding one of γ(t),
which is deduced by requiring a well-behaved time de-
pendence of Γ(t) and Γ′(t). Such behavior is fulfilled if
(a) γ(t) vanishes exponentially or faster or if (b) it van-
ishes as t−β with 0 < β < 1. In any case we have that
σ2
vsvs(t) → 2v2

0 , while it can be shown that for case (a)

we have σ2
xx(t)→ 2v2

0τRt, from which the active diffusion
coefficient D = v2

0τR is evident and σ2
xvs(t)→ v2

0τR. For

the case (b) we have σ2
xx(t) → 2v2

0τR (γ0t)
β/Γ(β + 1)γ0

and σ2
xvs(t) → v2

0τR(γ0t)
β−1/Γ(β). γ−1

0 is a timescale
that characterizes the memory function and the relation
σ2
xvs(t) = (1/2)(d/dt)σ2

xx(t) has been used.
Furthermore, in striking contrast with the zero-ranged

memory function, which gives rise to positive correla-
tions of the swimming velocity and to a smooth crossover
between the ballistic superdiffusion and the normal dif-
fusion, finite-ranged memory functions lead to anticor-
relations of the swimming velocity in the intermediate-
time regime. These anticorrelations are conspicuously re-
vealed in the intermediate-time regime of σ2

xx(t), which

are interpreted as a self-trapping effect. This is discussed
in detail in the following subsections.

The corresponding joint probability density of the ac-
tive part of motion, Pact

(
x, vs, t|x(0), vs(0)

)
, is given by

the convolution of G
(2)
act (x, vs, t) with the joint density

induced by the deterministic part of Eqs. (3), namely∫ ∞
−∞

dx′
∫ ∞
−∞

dv′sG
(2)
act (x− x′, vs − v′s, t)

× δ
(
x′ − 〈x(t)〉

)
δ
(
v′s − 〈vs(t)〉

)
. (15)

Using the characteristic function method [56], one can

easily show that G
(2)
act (x, vs, t) satisfies the Fokker-Planck

equation (see Appendix A),(
∂

∂t
+ vs

∂

∂x

)
G

(2)
act (x, vs, t) =(

f(t)
∂

∂vs
vs + g(t)

∂2

∂x∂vs
+ h(t)

∂2

∂v2
s

)
G

(2)
act (x, vs, t)

(16)

where

f(t) =
σ2
vsvs(t)

σ2
xvs(t)

, (17a)

g(t) =
d

dt
σ2
xvs(t), (17b)

h(t) =
1

2

d

dt
σ2
vsvs(t) +

[
σ2
vsvs(t)

]2
σ2
xvs(t)

. (17c)

In the following subsections we analyze the conse-
quences of the present model by considering an instance
of interest for each of the two asymptotic behaviors of
γ(t) considered in this paper. The first example consid-
ers a memory function that decays at least exponentially
faster, while the second assumes the asymptotic behavior
of a power law.

A. Exponential memory kernel

As a first example, we focus on a memory kernel con-
sisting of a δ function plus an exponential decay with
relaxation time τ [57],

γ(t) = 2(1− α)δ(t) +
α

τ
exp

(
−|t|
τ

)
, (18)

where 0 < α < 1 is a dimensionless parameter that
weighs the role of the exponential memory over the δ
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FIG. 1. (a) Examples of trajectories x(t) evolving according to the generalized Ornstein-Uhlenbeck model (1), with
memory kernel given by (18), for α = 0.9 and different values of the memory time τ . From bottom to top: τ =
0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4, 12.8, 25.6, 400. Inset: expanded view the active trajectory with τ = 12.8. (b) Corresponding
velocity autocorrelation function for different values of τ , same color code as in (a). The values of τ increase from left to right.
Inset: expanded view for τ = 400. (c) Mean-squared displacements of the trajectories shown in (a). The values of τ increase
from bottom to top. Inset: expanded view of the intermediate regime around τR. (d) Dependence on the relaxation time τ of
the frequency of the damped oscillations, which emerge only between τ+ (4) and τ− (O), for different values of α increasing
from inner to outer curves: α = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9. (e) Velocity autocorrelation function and (f) mean-squared
displacement, obtained from the analytical expression, for the same parameters plotted in (b) and (c), respectively.

one. This kind of memory kernel describes the rheologi-
cal response of several viscoelastic materials, such as in-
tracellular fluids [58], polymer solutions [59], wormlike
micelles [60], and λ-phage DNA [61], where τ is the re-
laxation time of the elastic microstructure [62]. In the
present work, it represents the retarded effects on the
swimming velocity due to viscoelastic-like effects. More
precisely, it considers two channels of persistence: the
standard one, given by the δ function and considered in
Ref. [22], that leads to exponentially decaying correla-
tions of the swimming velocity, and the other one leads to
long-lived correlations exhibiting intermittently negative
correlations in the intermediate-time regime. For either
α = 0 or τ → 0, Eq. (18) corresponds to the AOUM of
Szamel [22].

In order to simulate trajectories evolving according
to the generalized model presented in this paper, for
0 < α < 1, we express Eq. (1b) in a Markovian form

by introducing the additional variable

u(t) =
1

τ

∫ t

0

ds exp

(
− t− s

τ

)
[vs(s) + τφ2(s)] , (19)

where φ2 is a zero-mean Gaussian noise with autocorre-
lation

〈φ2(t)φ2(s)〉 =
2v2

0τR
ατ2

δ(t− s). (20)

Then, Eq. (1b) can be written as

d

dt
vs(t) = −1− α

τR
vs(t)−

α

τR
u(t) + φ1(t), (21a)

d

dt
u(t) = −1

τ
[u(t)− vs(t)] + φ2(t), (21b)

where φ1(t) is a zero-mean Gaussian noise, which satisfies

〈φ1(t)φ1(s)〉 =
2(1− α)v2

0

τR
δ(t− s). (22)
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In the following, length scales are normalized by the
persistence length v0τR, timescales by τR, velocities by
v0, and translational diffusion coefficients by v2

0τR. In
Fig. 1(a) we plot some simulated trajectories for different
values of the memory τ and constant α = 0.9. As τ in-
creases, the shape of the trajectories change qualitatively,
displaying three distinct kinds of behaviors. To better
appreciate such regimes for different values of τ , we com-
pute the corresponding velocity autocorrelation function
〈vs(t)vs(0)〉. In accordance with our linear-response as-
sumption, this is given by v2

0Γ′(t) [see Eq. (14)], where
Γ′(t) has been introduced in Eqs. (3b) and (4b) and de-
fined in Eq. (5b). As shown in Fig. 1(b), for small values
of τ (τ = 0.1 and τ = 0.2) the velocity autocorrelation
function 〈vs(t)vs(0)〉 exhibits a monotonic decay. Fur-
thermore, damped oscillations of 〈vs(t)vs(0)〉 show up at
larger τ , thus manifesting the appearance of anticorre-
lations with a frequency that strongly depends on τ , as
observed for 0.4 ≤ τ ≤ 25.6. For instance, in the inset of
Fig. 1(a), such oscillations can be clearly observed along
an active trajectory with τ = 12.8. Moreover, the oscilla-
tions vanish at very large τ , where 〈vs(t)vs(0)〉 exhibits a
single global minimum, as shown in the inset of Fig. 1(b)
for τ = 400, where velocity anticorrelations occur. In Fig.
1(c) we show the resulting mean-squared displacements
σ2
xx(t). For all values of the relaxation time τ , a ballistic
σ2
xx(t) ∝ t2 and diffusive regime σ2

xx(t) ∝ t is observed
on timescales t� τR and t� τR, respectively. This is in
contrast to intermediate timescales (comparable to τR),
where a strong dependence on τ is found, see inset of Fig.
1(c).

Indeed, from Eqs. (21), we can derive the following
equation for the autocorrelation function:

d2〈vs(t)vs(0)〉
dt2

+

(
1

τ
+

1− α
τR

)
d〈vs(t)vs(0)〉

dt

+
1

ττR
〈vs(t)vs(0)〉 = 0, (23)

which is formally equivalent to the equation of motion
of a damped harmonic oscillator with undamped angular
frequency ω0 and damping ratio ζ given by

ω0 =
1
√
ττR

, (24a)

ζ =
1

2

√
ττR

(
1

τ
+

1− α
τR

)
, (24b)

respectively. Under the initial conditions 〈vs(0)vs(0)〉 =

v2
0 and d〈vs(t)vs(0)〉

dt |t=0 = − 1−α
τR

v2
0 , Eq. (23) has three

different kinds of solutions, which are determined by two
particular values of the memory time τ

τ+ =
τR

(1 +
√
α)2

, (25a)

τ− =
τR

(1−
√
α)2

. (25b)

Note that τ+ < τR, whereas τ− > τR for all values of
α. In particular, for the value α = 0.9 considered here

in most of our numerical results, τ+ = 0.26 and τ− =
379.74. For 0 ≤ τ < τ+ or τ− < τ , the solution for
〈vs(t)vs(0)〉 is composed of two exponential decays,

〈vs(t)vs(0)〉 =
v2

0

2ω0

√
ζ2 − 1

[
A−e

−ω0

(
ζ−
√
ζ2−1

)
t

+A+e
−ω0

(
ζ+
√
ζ2−1

)
t
]
, (26)

where the amplitudes A± are given by

A± =
1

2

√(
1− α
τR

+
1

τ

)2

− 4

ττR
± 1

2

(
1− α
τR

− 1

τ

)
.

(27)
For 0 ≤ τ < τ+, Eq. (26) represents a double-
exponentially monotonic decay from v2

0 to 0 of the ve-
locity autocorrelation function. This corresponds to the
behavior shown in Fig. 1(b) for τ = 0.1 and 0.2, which
are below τ+. On the other hand, τ− < τ yields a non-
monotonic dependence of 〈vs(t)vs(0)〉 on t, with a single
minimum around which anticorrelations 〈vs(t)vs(0)〉 < 0
happen. This is illustrated in the inset of Fig. 1(b) for
τ = 400, where 〈vs(t)vs(0)〉 < 0 for t > 20.89, while the
minimum is located at t = 40.72.

At τ = τ±, the velocity autocorrelation function takes
the critical damping form

〈vs(t)vs(0)〉 = v2
0e
− t√

τ±τR

[
1 +

(
1

√
τ±τR

− 1− α
τR

)
t

]
,

(28)
The two solutions (28) separate the pure exponential so-
lutions for 0 ≤ τ < τ+ and τ− < τ from those within the
interval τ+ < τ < τ−. For the latter, the velocity auto-
correlation function has the following damped-oscillatory
form:

〈vs(t)vs(0)〉 = v2
0 exp(−ζω0t)

[
cos
(√

1− ζ2ω0t
)

+ B sin
(√

1− ζ2ω0t
)]
, (29)

where the amplitude

B =
1√

1− ζ2ω0

(
ζω0 −

1− α
τR

)
, (30)

and the frequency of the damped oscillations

√
1− ζ2ω0 =

√
1

ττR
− 1

4

(
1

τ
+

1− α
τR

)2

, (31)

has a nonmonotonic dependence on τ . This corresponds
to the behavior observed for τ = 0.4, 0.8, 1.6, 3.2, 6.4, 12.8

and 25.6 in Fig. 1(b). In Fig. 1(d) we plot
√

1− ζ2ω0

as a function of τ for different values of α. While at
small α the interval over which oscillatory solutions are
possible is very narrow and the oscillation frequencies
are low, it broadens and the corresponding frequencies
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are enhanced with increasing α, i.e. when the exponen-
tial memory term in Eq. (18) becomes dominant. In
Fig. 1(e) we show the velocity autocorrelation function
obtained directly from the explicit expressions (24)–(31)
for α = 0.9 and the same values of τ as in 1(b), where ex-
cellent agreement with the numerical results is observed.

Using the previous expressions for 〈vs(t)vs(0)〉, we
can readily derive the corresponding ones for the mean-
squared displacement. For 0 ≤ τ < τ+ or τ− < τ , this
reads

σ2
xx(t) = 2v2

0τR [t− (τR − ατ)]

+
v2

0

ω2
0

√
ζ2 − 1

[
C−e

−ω0

(
ζ−
√
ζ2−1

)
t

+C+e
−ω0

(
ζ+
√
ζ2−1

)
t
]
, (32)

where

C± = ±
−ζ ±

√
ζ2 − 1 + 1−α

ω0τR

2ζ(ζ ±
√
ζ2 − 1)− 1

. (33)

At τ = τ±, the expression for the mean-squared displace-
ment is

σ2
xx(t) = 2v2

0τR

{[
1±

√
α

1±
√
α

exp

(
−1±

√
α

τR
t

)]
t

+
1± 2

√
α

(1±
√
α)2

τR

[
exp

(
−1±

√
α

τR
t

)
− 1

]}
, (34)

while for τ+ < τ < τ−, σ2
xx(t) can be expressed as

σ2
xx(t) = 2v2

0τR

{
t− (τR − ατ)

+ e−ζω0t

[
τR(τR − ατ) cos(

√
1− ζ2ω0t)

− 2ζ
√

1− ζ2 + (1− 2ζ2)B

ω2
0

sin(
√

1− ζ2ω0t)

]}
. (35)

Interestingly, mean-squared displacements which are sim-
ilar to the critical damping (34) and to the damped-
oscillatory case (35) have been observed for bacteria with
run-reverse-flick swimming [1], for microorganisms with
run-reverse locomotion [63], and for more general pat-
terns of active motion [64] or with a strong response to
self-produced chemoattractants [51], respectively. In all
cases, the previous expressions for the mean-squared dis-
placement reduce to a ballistic regime σ2

xx(t)〉 ≈ v2
0t

2 at
short timescales, t � τR. In contrast, at t � τR ac-
tive diffusion σ2

xx(t) ≈ 2Dt is observed, where the active
diffusion coefficient is D = v2

0τR for all values of τ , as
shown in Figs. 1(c) for the numerical trajectories and
in Fig. 1(f) for the analytical expressions. In the insets

of Figs 1(c) and 1(f), we show that the damped oscilla-
tions of 〈vs(t)vs(0)〉 for τ+ < τ < τ− translate into a shift
of the short-time ballistic regime of σ2

xx(t) to timescales
larger than τR. For τ > τ−, the ballistic behavior of
σ2
xx(t) persists for timescales significantly larger than τR.
The effect of a nonzero thermal diffusion coefficient,

DT = kBTµ > 0, is to simply add an amount 2DT t to
the mean-squared displacement of active motion, which
results in a long-time active diffusion with coefficient
DT + v2

0τR. Thus, such a diffusive behavior can be inter-
preted in terms of a nonequilibrium effective temperature

Teff = T +
v20τR
kBµ

. Note that Teff increases quadratically

with v0 regardless of the value of the memory time τ .
This dependence is similar to that obtained from the con-
ventional AOUM [22] and also to that for active Brown-
ian particles [7].

B. Power-law memory kernel

As a second example, we consider a power-law memory
kernel [65],

γ(t) =
γ0t

2H−1

Γ(2H)

[
2H − 1

t
+ 2δ(t)

]
, (36)

where 1
2 < H < 1 guarantees the well-behaved time

dependence of the quantities in Eqs. (5) and γ0 > 0 a
constant with units of time1−2H . This kind of memory
kernel describes several physical situations, such as the
motion of granules within the cytoplasm [66], the mi-
cromechanical response of the cytoskeleton [67], and rhe-
ological properties of soft biological tissues [68]. In this
case, the corresponding stochastic term ξvs(t) in Eq. (1b)
is a fractional Gaussian noise (characterized by the Hurst
exponent H), with autocorrelation function

〈ξvs(t)ξvs(s)〉 =
γ0v

2
0 |t− s|2H−1

τRΓ(2H)

[
2H − 1

|t− s|
+ 2δ(t− s)

]
.

(37)
Note that this model corresponds to the conventional
AOUM [22] if H = 1

2 . By integrating Eq. (1b) over the
time interval [0, t], a straightforward calculation leads to
the following expression for the velocity at time t:

vs(t) = vs(0)− γ0

τRΓ(2H)

∫ t

0

ds
vs(s)

(t− s)1−2H
+χ(t), (38)

where χ(t) =
∫ t

0
dt′ξvs(t

′) is a fractional Brownian motion
[69], which satisfies 〈χ(t)〉 = 0 and

〈χ(t)χ(s)〉 =
γ0v

2
0

2τRHΓ(2H)

(
|t|2H + |s|2H − |t− s|2H

)
.

(39)
We simulate particle trajectories evolving according to
this generalized active Ornstein-Uhlenbeck model for dif-
ferent values of the parametersH and γ0/τR. To this end,
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FIG. 2. (a) Examples of trajectories x(t) evolving according to the generalized Ornstein-Uhlenbeck model (1) with power-
law memory kernel (36) and fractional Brownian noise (37) in the absence of thermal fluctuations, for different values of
the Hurst parameter increasing from bottom to top: H = 0.525, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.975. (b) Velocity
autocorrelation function and (c) corresponding mean-squared displacement for the different values of the Hurst parameter in
(a), same color code. In (b) and (c), the values of H increase from inner to outer curves and from top to bottom, respectively.
The insets in (b) and (c) corresponds to the velocity autocorrelation function and the mean-squared displacement for H = 0.975
and different values of γ0/τR; from left to right and bottom to top, respectively: γ0/τR = 4, 2, 1, 0.5, 0.25. (d) Exponent β
of the long-time behavior (t � τR) of the mean-squared displacement as a function of H. The symbols (�) mark the values
obtained from the numerical solutions, whereas the solid line represents 2 − 2H. Inset: Frequency of the velocity oscillations
for H = 0.975 as a function of γ0/τR. The dashed line represents Eq. (42). (e) Velocity autocorrelation function and (f)
mean-squared displacement, directly computed from the analytical expressions (40) and (43), respectively, for the same values
of H as those shown in (b) and (c).

the integral on the right-hand side of Eq. (38) is evalu-
ated using a modified Adams-Bashforth-Moulton algo-
rithm [70], whereas the fractional Brownian motion χ(t)
is independently generated by means of the circulant em-
bedding method of the covariance matrix [71].

We first study the active motion of a free particle when
no translational diffusion (DT = 0) comes into play, i.e.,
d
dtx(t) = vs(t). The results for different values of H are
plotted in Figs. 2(a)–(f), where length scales, timescales,
velocities, and translational diffusion coefficients are nor-
malized by v0τR, τR, v0, and v2

0τR, respectively. Some
examples of simulated trajectories x(t) for different val-
ues of H and γ0/τR = 1 are plotted in Fig. 2(a). We find
that with increasing H, the active trajectories develop a
behavior ranging from quasidiffusion at H slightly larger

to 1/2, to a strong self-trapping induced by persistent
oscillations when H is close to 1. Indeed, in Fig. 2(b)
we observe that the velocity autocorrelation function,
〈vs(t)vs(0)〉, exhibits a well-defined oscillatory behavior,
alternating between periods of positive correlations and
negative correlations, as H increases. The frequency of
the oscillations depends mainly on the parameter γ0/τR,
as confirmed in the inset of Fig. 2(b) for H = 0.975. This
can be understood from the fact that as H approaches 1,
the oscillations emerge from the competition between the
long-range persistence of self-propulsion, described by
the convolution in Eq. (1b), and the fractional Brownian
noise ξvs . Since the intensity of the former is proportional
to γ0/τR, the quantity (τR/γ0)1/(2H) sets the only charac-
teristic timescale of the system, from which the frequency
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of the oscillations must be proportional to (γ0/τR)1/(2H).
Interestingly, the resulting mean-squared displacements
display the typical ballistic regime σ2

xx(t) ∝ t2 at short
timescales t � τR for all 1

2 < H < 1, as shown in Fig.

2(c). At larger timescales, the behavior of σ2
xx(t) strongly

depends on H. For instance, for H larger, but close to
1
2 , the mean square displacement exhibits approximately
the long-time linear behavior expected for active Brow-
nian motion: σ2

xx(t) ∝ t for t � τR. As H increases,
an intermediate oscillatory behavior at t & τR shows up,
where the amplitude of the oscillations of σ2

xx(t) eventu-
ally vanishes and leads to a subdiffusive growth at suffi-
ciently large timescales, confirming the time dependence
σ2
xx(t) ∝ tβ , with β = 2−2H as shown in Fig. 2(d). We

point out that the previously described behavior is rem-
iniscent of that of soft self-propelled particles with polar
alignment in crowded glassy environments [48] and active
particles in disordered heterogeneous media [49, 50]. In
such cases, interparticle and alignment interactions in-
duce long-range temporal correlations in the swimming
velocity, which in turn lead to local trapping of the parti-
cles, thereby exhibiting transient oscillations followed by
long-time subdiffusion.

An analytical expression for the velocity autocorrela-
tion function can be derived from the general solution of
Eq. (1b), given by Eqs. (3b), (4b), and (5b). In this
case, the Laplace transform of the power-law memory
kernel (36) is explicitly given by γ̃(ε) = γ0ε

1−2H . Then
a straightforward calculation leads to

〈vs(t)vs(0)〉 = v2
0E2H,1

(
−γ0t

2H

τR

)
, (40)

where Eµ,ν(z) is the two-parameter Mittag-Leffler func-
tion, defined by the series expansion

Eµ,ν(z) =

∞∑
k=0

zk

Γ(µk + ν)
, (41)

with µ > 0 and ν > 0. In Fig. 2(e) we demonstrate
that the velocity autocorrelation curves computed from
Eq. (41) reproduce very well the numerical results of
Fig. 2(b) for all the values H. In particular, we note
that E1,1(z) = exp(z), while E2,1(−z2) = cos(z). There-
fore, as H → 1

2 , the velocity autocorrelation tends to the
conventional Ornstein-Uhlenbeck model, 〈vs(t)vs(0)〉 =
v2

0 exp(−γ0t/τR), with relaxation time τR/γ0, where γ0

is a dimensionless parameter. On the other hand, as H
approaches 1, 〈vs(t)vs(0)〉 develops a slow-decaying oscil-
latory behavior with frequency

Ω =

(
γ0

τR

) 1
2H

, (42)

in agreement with the frequencies computed numerically,
as verified in the inset of Fig. 2(b) for H = 0.975.

In a similar manner, using the general solution for the
particle position given by Eq. (3a), we obtain the follow-

ing expression for the mean-squared displacement:

σ2
xx(t) = 2v2

0t
2E2H,3

(
−γ0t

2H

τR

)
. (43)

Once again, Eq. (43) agrees very well with our numerical
results shown in Fig. 2(c) for all H, see Fig. 2(f). For in-

stance, for t� (τR/γ0)
1

2H , E2H,3(−z2H) ≈ 1/Γ(3) = 1/2
regardless of H, and thus Eq. (43) reduces to the short-
time ballistic regime, σ2

xx(t) ≈ v2
0t

2. It should be noted
that the oscillations of σ2

xx(t) for t > τR with increas-
ing H can only be captured when taking into account
the full solution of the velocity autocorrelation function
given in terms of the Mittag-Leffler functions, see Eq.
(40). The oscillatory behavior of σ2

xx(t) is smeared out by
any asymptotic power-law approximation of 〈vs(t)vs(0)〉,
as those considered in Ref. [56]. Furthermore, taking into
account the asymptotic behavior of the general Mittag-
Leffler function Eµ,ν(−z) ≈ z−1/Γ(ν−µ) for z →∞, the

long-time behavior
[
t� (τR/γ0)

1
2H

]
of the mean-squared

displacement is [37, 53]

σ2
xx(t) ≈ 2v2

0τR
γ0Γ(3− 2H)

t2−2H , (44)

thereby reproducing the exponent β of the active sub-
diffusive regime we find numerically, see Fig. 2(d). In
particular, from Eq. (44) we recover the long-time de-
pendence σ2

xx(t) ≈ 2v2
0(τR/γ0)t as H → 1

2 , while the
active motion is subdiffusive with exponent 2 − 2H for
H > 1

2 . Total spatial self-trapping occurs for com-
plete persistence, i.e., for H = 1, for which the mean-
squared displacement saturates to the value σ2

xx(t →
∞) = 2v2

0τR/γ0.
In order to better illustrate the effect of thermal fluctu-

ations on the active trajectories, we focus on a large value
of the Hurst parameter (H = 0.975), for which the veloc-
ity autocorrelation function exhibits a pronounced oscil-
latory behavior, see Fig. 3(a). The overall effect is that
the presence of a nonzero DT > 0 destroys the long-time
subdiffusive behavior, thus leading to trajectories with a
large dispersion compared to the diffusion-free case, as
shown in Fig. 3(b). In fact, in the presence of transla-
tional thermal noise, the mean squared displacement is
supplemented by a diffusive term 2DT t,

σ2
xx(t) = 2v2

0t
2E2H,3

(
−γ0t

2H

τR

)
+ 2DT t. (45)

Thus, depending on the value of DT and the timescale
t, different regimes are observed. Indeed, in Fig. 3(c),
we observe that at short timescales, the mean-squared
displacement has a diffusive part (diffusion coefficient
equal to DT ), because the ballistic motion is negligible
with respect to thermal diffusion. Furthermore, at suf-
ficiently low DT , typically DT . v2

0τR, and intermedi-
ate timescales (comparable to τR), the oscillatory regime
is still observed. On the other hand, for a sufficiently
large thermal diffusion coefficient (DT & v2

0τR), diffu-
sion dominates completely the particle motion over all
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FIG. 3. (a) Velocity autocorrelation function for the active Ornstein-Uhlenbeck model with the power-law memory kernel (36)
and fractional Brownian noise at H = 0.975. (b) Resulting active trajectories for different translational diffusion coefficients,
from top to bottom: DT = 0, 10−3, 10−2, 10−1, 1, 10. (c) Corresponding mean-squared displacements. Same color code as in
Fig. 3(b). The values of DT increase from bottom to top. The solid lines represent Eq. (45).

timescales, thereby hindering the memory-induced oscil-
lations. For all values of DT , the long-time diffusive be-
havior occurs, i.e., σ2

xx(t) ≈ 2DT t for t � τR, due to
the dominance of thermal diffusion over the subdiffusive
growth t2−2H in the mean-squared displacement. In all
cases, Eq. (45) perfectly describes our numerical results
over all timescales and for all values of H, see solid lines
in Fig. 3(c).

We want to point out that in the case of the long-
ranged memory kernel considered here, unlike the case of
the finite-ranged one given in Eq. (18), the interpreta-
tion of the long-time limit of (45) in terms of an effec-
tive temperature is less clear. In fact, if DT = 0, then
an effective temperature cannot be defined in a straight-
forward manner, mainly due to the long-ranged (anti-
)correlations of the swimming velocity that leads to a
self-trapping effect and therefore to the subdiffusive be-
havior of the mean-squared displacement (44). On the
other hand, for DT > 0 and in the long-time regime, the
thermal fluctuations overcome the long-ranged correla-
tions of the swimming velocity induced by the memory
function. Therefore, the effective temperature of the re-
sulting diffusive process exactly equals the temperature
T of the bath regardless of v0, see Eq. (45).

IV. SUMMARY AND FINAL REMARKS

In this work, we have investigated a generalization of
the so-called active Ornstein-Uhlenbeck model for the
motion of self-propelled particles subject to both thermal
and nonequilibrium active fluctuations. The model con-
sidered here is based on the generalized Langevin equa-
tion (1b) for the swimming velocity and incorporates dif-
ferent channels of persistence of the particle swimming
velocity by means of a memory function and additive
colored noise. We have explicitly obtained the joint prob-
ability density of the particle position and its swimming

velocity for the complete process. We have also shown
that such a probability density can be split into a ther-
mally diffusive component and an active one. The latter
satisfies the Fokker-Planck equation (16), which explic-
itly involves the time-dependent elements of the active
covariance matrix.

We have obtained numerical and analytical results
for the velocity autocorrelation function and the mean-
squared displacement for two specific memory functions
that arise in many natural systems: a finite-ranged ex-
ponential decay and a long-ranged power law. In both
cases, damped-oscillatory behavior, that alternates be-
tween positive and negative correlations, of the swim-
ming velocity emerges for certain values of the relevant
parameters. The oscillations are damped in the case of
the exponential decay, which leads to the emergence of
an active diffusion coefficient and allows the definition
of a nonequilibrium effective temperature. In contrast,
oscillations are long lived for the power-law memory,
and, remarkably, long-time subdiffusion is observed. This
provides a simple example of free self-propelled motion
where the concept of nonequilibrium effective tempera-
ture can not be trivially applied.

Although the effects of exponential memory have al-
ready been explicitly considered on the rotational mo-
tion of active Brownian particles [47, 55, 72, 73], to our
knowledge this is the first time that a general formula-
tion encompassing long-lived correlations in the swim-
ming speed has been studied. Our approach has allowed
us to uncover numerous patterns of active motion which
are absent in the conventional AOUM. Therefore, we
expect that our results will be relevant for the under-
standing and modeling of intricate active systems, whose
underlying dynamics, caused either by internal or exter-
nal mechanisms, give rise to strong memory effects. In
fact, our single-particle model is able to qualitatively cap-
ture a variety of behaviors observed in numerous active
systems where long-range memory in the swimming ve-
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locity emerges either from self- or interparticle interac-
tions. Similar effects are also expected to happen for
deformable, asymmetric, or chiral self-propelled particles
swimming in non-Newtonian fluid environments. Under
such conditions, the local rheological properties of the
medium, coupled to the response of the particle, can re-
sult in strongly correlated fluctuations of the propulsion
velocity. A further step will be to investigate the effect of
confining potentials and external flows, as they introduce
additional timescales and correlations that could signifi-
cantly modify the persistence of the active motion.
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Appendix A: Derivation of the Active Fokker-Planck
Equation

We briefly derive the Fokker-Planck equation (16) for
the bivariate probability density, G2

act(x, vs, t), that cor-
responds to the active part of motion. The starting point

is the characteristic function Ĝ
(2)
act(k, q, t) of active mo-

tion, given by Eq. (8b). After applying the advective
derivative in Fourier space, ∂

∂t − k
∂
∂q , to the expression

(8b) we have that(
∂

∂t
− k ∂

∂q

)
Ĝ

(2)
act(k, q, t) =

− qk

(
d

dt
σ2
vsvs(t)− σ

2
xvs(t)

)
Ĝ

(2)
act(k, q, t)

− q2

(
1

2

d

dt
σ2
vsvs(t)

)
Ĝ

(2)
act(k, q, t), (A1)

where σ2
vsvs(t), σ

2
xvs(t) and σ2

xx(t) are the elements of the
active covariance matrix Σact, and we have used that
σ2
xvs(t) = 1

2
d
dtσ

2
xx(t), which makes the proportional terms

to k2 cancel each other. By noticing that

qk Ĝ
(2)
act(k, q, t) = − 1

σ2
xvs(t)

q
∂

∂q
Ĝ

(2)
act(k, q, t)

− q2 σ
2
vsvs(t)

σ2
xvs(t)

Ĝ
(2)
act(k, q, t), (A2)

(as can be checked straightforwardly by direct substitu-
tion), we have that Eq. (A1) can be rewritten as

(
∂

∂t
+ k

∂

∂q

)
Ĝ

(2)
act (k, q, t) = −

(
f(t)q

∂

∂q

+ g(t) qk + h(t)q2

)
Ĝ

(2)
act (k, q, t) , (A3)

whose inverse Fourier transform directly leads to the
Fokker-Planck equation (16), with f(t), g(t), and h(t)
as given in Eqs. (17).
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