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d Instituto de Fı́sica, UNAM, 01000 México, DF, Mexico
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Received 5 August 2006; received in revised form 18 October 2006; accepted 13 December 2006
Available online 20 December 2006

Abstract

We contrast four distinct versions of the BCS–Bose statistical crossover theory according to the form assumed for the electron–num-
ber equation that accompanies the BCS gap equation. The four versions correspond to explicitly accounting for two-hole-(2h) as well as
two-electron-(2e) Cooper pairs (CPs), or both in equal proportions, or only either kind. This follows from a recent generalization of the
Bose–Einstein condensation (GBEC) statistical theory that includes not boson–boson interactions but rather 2e- and also (without loss
of generality) 2h-CPs interacting with unpaired electrons and holes in a single-band model that is easily converted into a two-band model.
The GBEC theory is essentially an extension of the Friedberg–Lee 1989 BEC theory of superconductors that excludes 2h-CPs. It can thus
recover, when the numbers of 2h- and 2e-CPs in both BE-condensed and non-condensed states are separately equal, the BCS gap equa-
tion for all temperatures and couplings as well as the zero-temperature BCS (rigorous-upper-bound) condensation energy for all cou-
plings. But ignoring either 2h- or 2e-CPs it can do neither. In particular, only half the BCS condensation energy is obtained in the
two crossover versions ignoring either kind of CPs. We show how critical temperatures Tc from the original BCS–Bose crossover theory
in 2D require unphysically large couplings for the Cooper/BCS model interaction to differ significantly from the Tcs of ordinary BCS
theory (where the number equation is substituted by the assumption that the chemical potential equals the Fermi energy).
� 2007 Published by Elsevier B.V.
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1. Introduction

Boson–fermion (BF) statistical models of superconduc-
tivity (SC) as a Bose–Einstein condensation (BEC) [1,2]
began to be seriously studied in the mid-1950’s [3–6], pre-
dating even the BCS–Bogoliubov statistical theory [7–9].
Although BCS theory only contemplates the presence of
‘‘Cooper correlations’’ of single-particle states, BF models
[3–6,10–18] posit the existence of actual bosonic CPs. A
drawback of early BF models is the notorious absence of

an electronic gap D(T), with T the absolute temperature.
Perhaps the first BF model with a gap was introduced in
Ref. [19]. Somewhat later, the remarkable relation
DðT Þ /

ffiffiffiffiffiffiffiffiffiffiffiffi
n0ðT Þ

p
, with n0(T) the BEC condensate number

density of electron-pairs, first seems to have appeared
[20]. It resurfaced a year later in the BEC BF model in
3D of Friedberg and Lee [21,22] applied to cuprate super-
conductors. With just one adjustable parameter (the ratio
of perpendicular to CuO2-plane boson masses) this theory
fitted [22] quasi-2D cuprate Tc/TF empirical values [23]
rather well. The ratio turned out to be 66,560 – just under
the 105 anisotropy ratio reported for B2+xSr2�yCuO2±d [24]
almost contemporaneously.
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An extension of the work in Refs. [21,22] is a generalized
BEC (GBEC) statistical single-band theory whereby a
superconducting BCS condensate was recently suggested
[10], and subsequently confirmed [11] (but only to lowest
order in the BF coupling), to be precisely a Bose–Einstein
condensate (BEC) of equal numbers of bosonic two-elec-
tron (2e) and two-hole (2h) Cooper pairs (CPs), at least
inasmuch as the GBEC reproduces the same BCS gap
equation for all temperature and coupling as well as the
same T = 0 condensation energy found from BCS theory.
The holes that make up the 2h-CPs originate precisely from
the Fermi sea associated with the N-electron system in the
simple single-band model studied here. One advantage of
the single-band model is that it allows recovering, among
other theories, the BCS theory as a special case. The dis-
tinction (Ref. [25] pp. 70–72) between single particles and
holes is, in a sense, trivial. Not so for particle-pairs and
hole-pairs, as will be seen shortly.

The BF coupling assumed appears in an interaction
many-body Hamiltonian Hint which defines the GBEC the-
ory. Added to Hint is an unperturbed Hamiltonian H0

describing a free ternary gas of unpaired electrons plus
2e-CPs plus 2h-CPs. The noninteracting ternary gas repre-
sents the normal state of the original, strongly-correlated
many-electron system under study, and is a viable candi-
date for a so-called ‘‘non-Fermi-liquid.’’ The new GBEC
theory embodied in H = H0 + Hint is in essence a complete

BF (statistical) single-band model that, however, admits
departure [11] from the perfect 2e-/2h-CP symmetry that
constrains BCS theory by construction. It can be diagonal-
ized via a Bogoliubov canonical transformation exactly if
one neglects nonzero center-of-mass-momentum (CMM)
CPs in Hint as is done in BCS theory but not in H0 which
in BCS theory represents a pure electron gas. The GBEC
theory is complete only in the sense that 2h-CPs are not
ignored. It reduces to all the known statistical theories of
superconductors (SCs), including the BCS–Bose ‘‘cross-
over’’ picture in the four versions to be distinguished
below. Its practical impact is that it yields [12,13] robustly
higher Tc’s than BCS theory without abandoning electron–
phonon dynamics, when one departs from the perfect 50/50
symmetry of 2e-/2h-CPs in the condensate.

In the literature, electron–phonon dynamics have been
widely mimicked by the s-wave BCS/Cooper model inter-
action V k; k0 [7,26]. It is a nonzero negative constant �V,
if and only if single-particle energies �k; �k0 lie within the
energy interval [max{0,l � �hxD},l + �hxD] where l is the
electron chemical potential and xD the Debye frequency.
We employ this model interaction here. Other pairing sym-
metries beyond pure s-wave can also be accommodated.
Although it sheds considerable light on different possible
crossover schemes, our single-band picture where single-
electron and single-holes are assumed to have the same
effective mass is not as realistic in describing real materials
as a multiband (say, a valence-like band for holes and a
conduction-like one for electrons) theory where these two
masses can differ, as will be discussed later.

A fundamental drawback of early [3–6] BF models,
which took 2e-CPs as analogous to diatomic molecules in
a classical atom–molecule binary gas mixture, is the cum-
bersome introduction of an electron energy gap D(T).
‘‘Gapless’’ models, however, are useful [15,16] in locating
transition-temperature singularities if approached from
above, i.e., from the normal state where T > Tc.

The ‘‘ordinary’’ CP problem [26] for two distinct inter-
fermion interactions (the d-potential well [17,18] or the
Cooper/BCS model [7,26] interactions) neglects the effect
of 2h-CPs treated on an equal footing with 2e [or, in gen-
eral, two-particle (2p)] CPs. On the other hand, Green’s
functions [25] can naturally deal with hole propagation
and thus accommodate both 2e- and 2h-CPs via, e.g., the
Bethe–Salpeter equation [27,28]. In addition to the general-
ized CP problem, a crucial result [10,11] as already men-
tioned is that the BCS condensate consists of equal
numbers of 2e- and 2h-CPs. This was implicitly already
suggested from the perfect symmetry about electron energy
� = l of the well-known Bogoliubov [29] v2(�) and u2(�)
coefficients, with the tail of v2(�) above � = l representing
2e correlations and that of u2(�) below � = l refers to 2h
correlations.

In this paper, we show how: (a) four versions of the
BCS–Bose statistical crossover theory can be obtained by
ignoring either 2h- or 2e-CPs or by including both; (b)
for only two of the four versions can the precise BCS gap
equation for all temperatures T be derived; (c) crossover
picture Tcs, defined self-consistently by both the gap and
fermion–number equations, requires unphysically large
couplings (at least for the Cooper/BCS model interaction
in 2D SCs) to differ significantly from the Tc of ordinary
BCS theory defined without the number equation since here
the chemical potential is assumed equal to the Fermi
energy; and (d) the full T = 0 BCS condensation energy fol-
lows from one crossover version but only half of it from the
two versions ignoring either kind of CPs. The condensation
energy is simply related to the ground-state energy of the
many-fermion system, which in the case of BCS is a rigor-
ous-upper-bound to the exact many-body value for the
given Hamiltonian as BCS theory starts from a variational
wave function for the superconductor ground state. These
results, with the exception of (c) which does not apply as
such, are expected to hold also for neutral-fermion
superfluids (SFs) – such as liquid 3He [30,31], neutron
matter and trapped ultra-cold fermion atomic gases
[32–43] – where the pair-forming two-fermion interaction,
of course, differs from the Cooper/BCS one for SCs.

2. Generalized BEC theory (GBEC)

The GBEC theory is described in detail in Refs. [10–13];
here we summarize its main equations. It applies in d

dimensions and is defined by a Hamiltonian of the form
H = H0 + Hint. The unperturbed Hamiltonian H0 should
ideally be, to quote Leggett [44] ‘‘an appropriate ‘zeroth-
order’ starting point’’ accounting for ‘‘pairs of electronic
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excitations with charge 2e that all have the same ground-
state wavefunction.’’ Thus, our H0 corresponds to a non-
Fermi-liquid ‘‘normal’’ state which, besides just fermions,
is an ideal (i.e., noninteracting) ternary gas mixture of
unpaired fermions and both types of CPs namely, 2e and
2h, the latter introduced without loss of generality.
Specifically

H 0 ¼
X
k1;s1

�k1
aþk1;s1

ak1;s1
þ
X

K

EþðKÞbþKbK

�
X

K

E�ðKÞcþKcK; ð1Þ

where K � k1 + k2 is the CMM wavevector of the pair,
while �k1

� �h2k2
1=2m are the single-electron, and E±(K)

the 2e-/2h-CP phenomenological, energies. Here aþk1;s1

(ak1;s1
) are creation (annihilation) operators for fermions

and similarly bþK (bK) and cþK (cK) for 2e- and 2h-CP bosons,
respectively. These b and c operators depend only on K

and so are distinct from the BCS operators depending on
both K and the relative k � 1

2
ðk1 � k2Þ discussed in Ref.

[7] Eqs. (2.9)–(2.13) for the particular case of K = 0 and
shown there not to satisfy the ordinary Bose commutation
relations. But because two pairs cannot exactly overlap in
real space without violating the Pauli principle, they are
often considered ‘‘hard-core bosons,’’ albeit of hard-core
radii 0+. For this reason, one can probably not expect to
be able to construct the b and c operators directly from
the a operators in order to establish that b and c obey Bose
commutation relations precisely. Nonetheless, these pairs
stand for objects that can easily be seen to obey Bose–
Einstein statistics as, in the thermodynamic limit, an indef-
initely large number of k values correspond to a given K

value defining an energy level E+(K) or E�(K). This is all
that is needed to ensure the BEC (or macroscopic occupa-
tion of a given state that appears below a certain fixed
T = Tc) found [10–13] numerically a posteriori in the
GBEC theory. Furthermore, being noninteracting (except
for the Pauli principle restriction mentioned), CPs satisfy
the Ehrenfest–Oppenheimer [45] criteria for two clusters
of charges to conserve a specific kind of statistics, either
Bose or Fermi. These assumed properties are justified a

posteriori when in the GBEC theory: (a) the BCS gap equa-
tion is recovered for equal numbers of both kinds of pairs,
both in the K = 0 state and in all K 5 0 states taken collec-
tively, and in weak-coupling, regardless of CP overlaps;
and (b) the precise familiar BEC Tc formula emerges [10]
when (i) 2h-CPs are ignored, the Friedberg–Lee model
[21,22] equations are recovered and (ii) one switches off
the BF interaction. The only difference in the recovered
BEC Tc formula is that the boson number density now
depends on Tc, as expected in a boson–fermion mixture
where populations are T-dependent. Finally, we note that
fermion scattering terms [46] are not included in (1) as they
are not expected to be substantial, say, in the BCS limit of
high electron-density where they would be the most
effective, which in turn is included in the GBEC model
as a special case.

Two-hole CPs in (1) are postulated to be distinct and
kinematically independent from both the 2e-CPs and the
unpaired electrons, i.e., operators a, b and c are assumed
to commute with each other. This postulate is grounded
on magnetic-flux-quantization measurements establishing
the presence of pair charge carriers in both conventional
[47,48] as well as cuprate [49] superconductors, and on
the fact that no experiment has yet been done, to our
knowledge [50], that distinguishes between electron and
hole CPs. The latter uncertainty further motivates a Ham-
iltonian such as (1) with both kinds of CPs.

The interaction Hamiltonian Hint in the expression
H = H0 + Hint describes the formation and disintegration
of CPs, respectively, from and into unpaired electrons
and holes. It is further simplified by dropping all K 5 0
terms. This is also done in BCS theory in its full Hamilto-
nian H = H0 + Hint, but kept in the GBEC theory in its
unperturbed H0 portion (1). The GBEC Hint is made up
of four distinct BF interaction vertices each with two-fer-
mion/one-boson creation and/or annihilation operators.
These vertices depict how unpaired electrons (subindex
+) [or holes (subindex �)] are involved in the formation
and disintegration of the 2e- (and 2h-) K = 0 CPs in the
d-dimensional system of size L, namely

H int ¼ L�d=2
X

k

fþðkÞfaþk;"aþ�k;#b0 þ a�k;#ak;"b
þ
0 g

þ L�d=2
X

k

f�ðkÞfaþk;"aþ�k;#c
þ
0 þ a�k;#ak;"c0g; ð2Þ

where k � 1
2
ðk1 � k2Þ is again the relative wavevector of

a CP. The interaction vertex form factors f±(k) in (2) are
essentially the Fourier transforms of the 2e- and 2h-CP
intrinsic wavefunctions, respectively, in the relative coor-
dinate of the two fermions. The GBEC theory is thus
reminiscent of the Sommerfeld theory of the electron
gas combined with the Debye picture of the phonon gas
which together give a binary mixture of noninteracting
electrons and phonons, a picture which describes low-T
specific heats in metals and insulators. But to explain
either resistance and superconductivity, they must then
be allowed to interact via the Fröhlich electron–phonon
interaction [51] of a form analogous to (2) but without
hole terms. In contrast, the full BCS Hamiltonian
HBCS

0 þ HBCS
int consists of only the first (electron) term on

the rhs of (1) namely

HBCS
0 ¼

X
k1;s1

�k1
aþk1;s1

ak1;s1
ð3Þ

and

HBCS
int ¼

X
k1;l1

V k1;l1 aþk1"a
þ
�k1#a�l1#al1": ð4Þ

The BCS H BCS
0 thus represents a Fermi-liquid normal state.

In order to eventually recover BCS theory, in Refs. [10–
13] the corresponding energy form factors were picked
as
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fþð�Þ ¼
f for Ef < � < Ef þ de;

0 otherwise;

�
ð5Þ

f�ð�Þ ¼
f for Ef � de < � < Ef ;

0 otherwise:

�
ð6Þ

This is after one introduces the quantities Ef and de as new

phenomenological dynamical energy parameters (in addi-
tion to the positive BF vertex coupling parameter f) that
replace the previous phenomenological CP energy parame-
ters E±(0), through the definitions

Ef �
1

4
½Eþð0Þ þ E�ð0Þ� and de � 1

2
½Eþð0Þ � E�ð0Þ�P 0;

ð7Þ
where E+(0) and E�(0) are the (empirically unknown) zero-
CMM energies of the 2e- and 2h-CPs, respectively. Note
that 2Ef lies midway between E+(0) and E�(0). Alternately,
instead of (7) one can write the two inverse relations

E�ð0Þ ¼ 2Ef � de: ð8Þ

The quantity Ef serves as a convenient energy scale; it is not
to be confused with the Fermi energy EF ¼ 1

2
mv2

F � kBT F

where TF is the Fermi temperature. The Fermi energy EF

equals p�h2n/m in 2D and (�h2/2m)(3p2n)2/3 in 3D, with
n � N/Ld the total number density of charge-carrier mobile
electrons, while Ef is of the same form but with n replaced
by, say, nf, which in turn serves as convenient electron-den-
sity scale. The quantities Ef and EF coincide only when per-
fect 2e/2h-CP symmetry holds, i.e., when n = nf.

The grand potential X for the full Hamiltonian
H = H0 + Hint given by (1) and (2) is then constructed
via (Ref. [25] Eq. (4.14)) the definition

XðT ; Ld; l;N 0;M0Þ ¼ �kBT ln ½Tr e�bðH�lbN Þ�; ð9Þ

where ‘‘Tr’’ stands for ‘‘trace’’ and b � 1/kBT with T the
absolute temperature. It is related to the system pressure
P, internal energy E and entropy S by X = �PLd =
F � lN = E � TS � lN, where F is the Helmholtz free en-
ergy. Following the Bogoliubov prescription [52], one sets
bþ0 ; b0 equal to

ffiffiffiffiffiffi
N 0

p
and cþ0 , c0 equal to

ffiffiffiffiffiffiffi
M0

p
in (2), where

N0 is the T-dependent number of zero-CMM 2e-CPs and
M0 likewise for 2h-CPs. This allows exact diagonalization
for any coupling, through a Bogoliubov transformation of
the a+,a fermion operators, giving [53] after some algebra

XðT ; Ld; l;N 0;M0Þ=Ld

¼
Z 1

0

d�Nð�Þ½�� l� Eð�Þ�

� 2kBT
Z 1

0

d�Nð�Þ lnf1þ exp½�bEð�Þ�g þ ½Eþð0Þ � 2l�n0

þ kBT
Z 1

0þ
deMðeÞ lnf1� exp½�bfEþð0Þ þ e� 2lg�g

þ ½2l� E�ð0Þ�m0

þ kBT
Z 1

0þ
deMðeÞ lnf1� exp½�bf2l� E�ð0Þ þ eg�g:

ð10Þ

Here N(�) and M(e) are respectively the electronic and bo-
sonic density of states, while

Eð�Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�� lÞ2 þ D2ð�Þ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�� lÞ2 þ n0f 2

þð�Þ þ m0f 2
�ð�Þ

q
; ð11Þ

since Dð�Þ � ffiffiffiffiffi
n0
p

fþð�Þ þ
ffiffiffiffiffiffi
m0
p

f�ð�Þ and f+(�)f�(�) � 0
from (5) and (6) with n0(T) � N0(T)/Ld and m0(T) �
M0(T)/Ld being the 2e-CP and 2h-CP number densities,
respectively, of BE-condensed (i.e., with K = 0) bosons.

Minimizing F with respect to N0 and M0, while simulta-
neously fixing the total number N of electrons by introduc-
ing the electron chemical potential l in the usual way,
namely

oF
oN 0

¼ 0;
oF
oM0

¼ 0; and
oX
ol
¼ �N ð12Þ

ensures an equilibrium thermodynamic state of the system
with volume Ld at temperature T and chemical potential
l. Evidently, N includes both paired and unpaired CP elec-
trons. Some algebra then leads [53] to the three coupled
integral Eqs. (7)–(9) of Ref. [10] which, since from (5)
and (6) one has that f+(�)f�(�) � 0, can be simplified to
the two ‘‘gap-like equations’’

½2Ef þ de� 2lðT Þ�

¼ 1

2
f 2

Z Efþde

Ef

d�Nð�Þ
tanh 1

2
b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½�� lðT Þ�2 þ f 2n0ðT Þ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½�� lðT Þ�2 þ f 2n0ðT Þ

q ;

ð13Þ
½2lðT Þ � 2Ef þ de�

¼ 1

2
f 2

Z Ef

Ef�de
d�Nð�Þ

tanh 1
2
b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½�� lðT Þ�2 þ f 2m0ðT Þ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½�� lðT Þ�2 þ f 2m0ðT Þ

q
ð14Þ

and a single ‘‘number equation’’ (that guarantees charge
conservation)

2nBðT Þ � 2mBðT Þ þ nf ðT Þ ¼ n; ð15Þ
where

nf ðT Þ �
Z 1

0

d�Nð�Þ 1� �� l
Eð�Þ tanh

1

2
bEð�Þ

� �
ð16Þ

is clearly the number of unpaired electrons. This is identical
with 2

P
kv2

kðT Þ with v2
kðT Þ the well-known T-dependent

Bogoliubov v2-coefficient. In (15) n � N/Ld is the number
density of electrons while nB(T) and mB(T) are, respec-
tively, the number densities of 2e- and 2h-CPs in all boso-
nic states (both K = 0 as well as K > 0). The ‘‘complete’’
number Eq. (15) can be rewritten more explicitly as

2n0ðT Þ þ 2nBþðT Þ � 2m0ðT Þ � 2mBþðT Þ þ nf ðT Þ
¼ n crossover version A; ð17Þ
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where nB(T) is [13]

nBðT Þ � n0ðT Þ þ nBþðT Þ;

nBþðT Þ �
Z 1

0þ
deMðeÞ½exp bfEþð0Þ þ e� 2lg � 1��1 ð18Þ

and similarly for mB(T) which is

mBðT Þ � m0ðT Þ þ mBþðT Þ;

mBþðT Þ �
Z 1

0þ
deMðeÞ½exp bf2l� E�ð0Þ þ eg � 1��1

: ð19Þ

Clearly, mB+(T) are precisely the number of ‘‘pre-formed’’
K > 0 2h-CPs, and nB+(T) that of 2e-CPs. These CPs are
non-condensed in contrast with the K = 0 CPs which are
BE-condensed. Evaluating the integrals requires knowing
the bosonic density-of-states M(e) of CPs of energy e,
which in turn requires knowing the dispersion relation e
vs. K, e.g., as has been determined via the Bethe–Salpeter
equation in the ladder approximation in 3D [27] and in
2D [28].

Self-consistent (at worst, numerical) solution of the
three coupled integral Eqs. (13), (14) and (17) then yields
the three thermodynamic variables of the GBEC theory

n0ðT ; n; lÞ; m0ðT ; n; lÞ; and lðT ; nÞ: ð20Þ

Fig. 1 displays the three BE-condensed phases – labelled
s+, s� and ss – along with the normal phase n, that emerge
[11] from the GBEC theory. Phase s+ stands for a pure 2e-
CP BE condensate, s� for a pure 2h-CP such condensate
and ss denotes a mixed phase. Only the two pure phases
were found [11] to display Tc values higher than the corre-
sponding BCS value, while the mixed phase occurs below
this value.

For the two pure phases one can, in principle, shift from
the single-band model implied so far to a two-band model
by allowing the particle (e) masses to differ from hole (h)
masses; this can be done by introducing two different Fermi
energies Ee

F and Eh
F that differ precisely by these two

masses.
The GBEC theory contains [13] the key equations of all

five distinct statistical theories as special cases. These range

from ordinary BCS to ordinary BEC theories, which are
thereby completely unified by the GBEC theory. Per-
fect 2e-/2h-CP symmetry signifies equal numbers of 2e-
and 2h-CPs, more specifically, nB(T) = mB(T) as well as

n0(T) = m0(T). This implies that nB+(T) = mB+(T) for all
T, meaning that the exponents in (18) and (19) coincide so
that with (8) this makes Ef = l. The GBEC theory then
reduces to the gap and number equations [viz., in 2D for
T = Tc both (28) and (29)] of the original [55] BCS–Bose

crossover picture with the Cooper/BCS model interaction –
if its parameters V and �hxD are identified with the BF inter-
action GBEC Hamiltonian Hint parameters f 2/2de and de,
respectively. This one-to-one correspondence between Hint

and HBCS
int defined in (2) and (4) justifies the particular choice

of form factors (5) and (6) for the BF interaction.
The original crossover picture for unknowns D(T) and

l(T) is now supplemented by the central relation

DðT Þ ¼ f
ffiffiffiffiffiffiffiffiffiffiffiffi
n0ðT Þ

p
¼ f

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m0ðT Þ

p
: ð21Þ

All three functions D(T), n0(T) and m0(T) have the familiar
‘‘half-bell-shaped’’ forms. Namely, they are zero above a
certain critical temperature Tc, and rise monotonically
upon cooling (lowering T) to maximum values D(0), n0(0)
and m0(0) at T = 0. The energy gap D(T) is the order
parameter describing the superconducting (or superfluid)
condensed state, while n0(T) and m0(T) are the BEC order
parameters depicting the macroscopic occupation that oc-
curs below Tc in a BE condensate. This D(T) is precisely
the BCS energy gap if the boson–fermion coupling f is
made to correspond to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V �hxD

p
within the GBEC formal-

ism. Evidently, the BCS and BEC Tcs are the same. Writing
(21) for T = 0 and dividing this into (21) gives the much
simpler f-independent relation involving order parameters
normalized to unity in the interval [0,1]

DðT Þ=Dð0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0ðT Þ=n0ð0Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0ðT Þ=m0ð0Þ

p ����!
T ! 0����!
T P T c

1

0:

ð22Þ

The first equality, apparently first obtained in Ref. [20],
connects in a simple way the two heretofore unrelated
‘‘half-bell-shaped’’ order parameters of the BCS and the
BEC theories. The second equality implies [10,11] that a
BCS condensate is precisely a BE condensate of equal num-
bers of 2e- and 2h-CPs. Since (22) is independent of the par-
ticular two-fermion dynamics of the problem, it can be
expected to hold for either SCs and SFs.

3. Gap equation

The standard procedure in all SC and SF theories of
many-fermion systems is to ignore dealing explicitly with
2h-CPs altogether. Neglecting in (10) all terms containing
m0(T), E�(0) and f�(�) leaves an X(T,Ld,l,N0) defining
a binary, instead of ternary, BF model. Minimizing the

S-

SS

n0

SS

S+

n

m
0

Fig. 1. Illustration in the n0–m0 plane of three GBEC theory condensed
phases (the pure 2e-CP s+ and pure 2h-CP s� BE condensate phases and a
mixed phase ss) along with the normal (ternary BF non-Fermi-liquid)
phase n that corresponds to the origin at n0 = 0 = m0.
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associated Helmholtz free energy F(T,Ld,l,N0) = X(T,Ld,
l,N0) + lN over N0 (for fixed total electron number N)
requires that oF/oN0 = 0 = oF/on0, which becomesZ 1

0

d�Nð�Þ �1þ 2 expf�bEð�Þg
1þ expf�bEð�Þg

� �
dEð�Þ
dn0

þ ½Eþð0Þ � 2l�

¼ 0

or

2½2Ef þ de� 2l� ¼ f 2

Z Efþde

Ef

d�Nð�Þ 1

Eð�Þ tanh
1

2
bEð�Þ:

ð23Þ

Using (8) yields precisely the BCS gap equation for all T,
Eq. (3.27) of Ref. [7], provided one picks Ef = l, namely

1 ¼ k
Z �hxD

0

dn
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 þ D2ðT Þ
q tanh

1

2
b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ D2ðT Þ

q
; ð24Þ

where n � � � l, since k � N(EF)V = f2N(EF)/2de while de =
�hxD [see relation between V and f stated just above (21)],
and provided N(�) can be taken outside the integral sign
in (23). This last operation is exact in 2D when N(�) is inde-
pendent of � and is otherwise a good approximation if
�hxD� l.

However, the choice Ef = l cannot be justified, to our
knowledge, without assuming within the GBEC that
nB(T) = mB(T) as well as n0(T) = m0(T), i.e., by explicitly
recognizing the existence of 2h-CPs along with 2e-CPs
and taking them in equal or 50–50 proportions.

4. Number equation

Besides the normal phase consisting of the ideal BF ter-
nary gas described by H0, three different stable BEC phases
emerge [11] when solving all three Eqs. (13), (14) and (17):
two pure phases, a pure 2e-CP BEC and a pure 2h-CP
BEC, as well as a mixed phase consisting of both types
of BECs in varying proportions. For a half-and-half mixed
phase, i.e., n0(T) = m0(T) and nB+(T) = mB+(T), all the
boson number density terms in (17) cancel and the BCS
number equation

n ¼ nf ðT Þ crossover version B ðspecial case of AÞ ð25Þ
is recovered, with nf(T) defined by (16). Crossover version
B does not explicitly neglect either kind of CP, nor does
it draw a distinction between them. It is the version applied
below in 2D to obtain (28)–(30) and the results of Fig. 2.
This is the original crossover version first presented in
1967 in Ref. [55].

If 2h-CPs are ignored altogether, the companion num-
ber equation follows from the last equation of (12) as

n ¼ nf ðT Þ þ 2nBðT Þ crossover version C ð26Þ
where nf(T) is interpreted as the number density of un-
paired but BCS-correlated electrons and is given by (16).

In perhaps the first attempt [19] to discuss BEC in 1969
within the BCS–Bose crossover picture, Eagles [54] im-
posed (26) to accompany the gap equation in what was per-
haps the first BF model with a gap. This differs from the
much simpler number equation of crossover version B,
which gave (29) below as a special case for T = Tc when
D(Tc) = 0 is substituted into (25) and (16) if one uses the
identity 1 � tanh (x/2) � 2/(exp x + 1). It is this version
that corresponds to the Friedberg–Lee model [21,22].

Similarly, ignoring 2e-CPs and keeping only 2h-CPs
leads to X(T,Ld,l,M0) from which to minimize F(T,Ld,
l,M0) over M0 requires that one set oF/oM0 = 0 = oF/
om0. Noting that E(n) � E(�n), this also leads to the gap
Eq. (24) provided, again, one picks Ef = l, but now with
the companion number equation

n ¼ nf ðT Þ � 2mBðT Þ crossover version D ð27Þ

instead of (26) but with the same nf (T) as in (16).

5. BCS–Bose crossover Tc compared with BCS Tc in 2D

The original crossover theory [55] is defined by two
simultaneous coupled equations, the BCS gap and number
equations, without the BCS assumption that the chemical
potential l equals the Fermi energy EF. For subsequent
extensions of the original version, see reviews in Refs.
[56,57]. The critical temperature Tc is defined by
D(Tc) = 0, and is to be determined self-consistently with
l(Tc) by solving both gap and number equations. Because

0.1 10 10

λ

0

0.5

1

1.5

2

2.5

T c
/T F

BCS

BCS-Bose

1/2

BCS (λ      0)

ω D /EF  = 0.05

RTSC

1 0

Fig. 2. Critical SC temperatures Tc in units of TF for the BCS–Bose
crossover theory (full curve) in 2D compared with the BCS value
from the exact implicit Tc equation (see e.g., Ref. [25], p. 447)
1 ¼ k

R �hxD=2kBT c

0
dxx�1 tanh x (upper dashed curve) valid for any d > 0

in any coupling k, and its weak-coupling explicit solution Tc ’
1.134�hxDexp(�1/k) (lower dashed curve). The dot-dashed ‘‘appendage’’
signals a breakdown in the BCS/Cooper interaction model when l(Tc)
turns negative, as the Fermi surface at l then washes out and the interaction
model becomes meaningless. The value of k = 1/2 marked is the maximum
possible value allowed just short of lattice instability in 3D for this
interaction model, at least by one criterion [59]. Unshaded region refers to
room-temperature superconductivity (RTSC) for SCs with TF [ 103 K.
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of its interest in quasi-2D cuprate superconductors [58], in
this section we concentrate on 2D only. For the Cooper/
BCS model interaction, if k � N(EF)V where N(EF) = m/
2p�h2, the two crossover equations to be solved self-consis-
tently reduce to

1 ¼ k
Z �hxD=2kBT c

0

dx
tanh x

x
ðif l > �hxDÞ;

1 ¼ k
Z �hxD=2kBT c

�lðT cÞ=2kBT c

dx
tanh x

2x
ðif l < �hxDÞ ð28ÞZ 1

0

d�

expf½�� lðT cÞ�=2kBT cg þ 1
¼ EF: ð29Þ

The last integral can be done analytically and leaves the ex-
plicit expression

lðT cÞ ¼ kBT c ln ðeEF=kBT c � 1Þ; ð30Þ

which is then eliminated symbolically from (28) to render
Tc as an implicit function of k alone. Using �hxD/
EF = 0.05 as a typical value for cuprates, increasing k
makes l(Tc) decrease from its weak-coupling (where
Tc! 0) value of EF down to �hxD when k ’ 56, an unphys-
ically large value as it well exceeds the Migdal ionic-lattice
stability upper limit [59] of 1/2, although [60] ‘‘there is no
universally accepted, simple, and quantitative stability
criterion’’.

Fig. 2 displays Tc (in units of TF) as function of k. Note
that room-temperature SCs (RTSC) are predicted by BCS–
Bose crossover theory but only for k values definitely larger
than about 10 that are still too unphysical.

6. Condensation energy

The T = 0 condensation energy per unit volume accord-
ing to the GBEC theory, given (10), is

Es � En

Ld
¼ XsðT ¼ 0Þ � XnðT ¼ 0Þ

Ld
; ð31Þ

since for any T the Helmholtz free energy F � E � TS = X
+ lN, with S the entropy, and l is the same for either
superconducting s or normal n phases with internal ener-
gies Es and En, respectively. In the normal phase
n0(T) = 0, m0(T) = 0 so that D(T) = 0 for all T P 0, so that
(10) reduces to

XnðT ¼ 0Þ
Ld

¼
Z 1

0

d�Nð�Þð�� l� j�� ljÞ

¼ 2

Z l

0

d�Nð�Þð�� lÞ ¼ 2

Z 0

�l
dnNðnÞn: ð32Þ

For the superconducting phase, and when n0(T) = m0(T)
and nB(T) = mB(T) hold, i.e., crossover scenario B, one de-
duces from (8) and (10) that l = Ef. Putting D(T = 0) � D
in (10) as well as de � �hxD, while using (8), gives

XsðT ¼ 0Þ
Ld

¼ 2�hxDn0ð0Þ þ
Z 1

�l
dnNðnÞ n�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ D2

q� �
¼ 2�hxDn0ð0Þ þ 2

Z ��hxD

�l
dnNðnÞn

� 2

Z �hxD

0

dnNðnÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ D2

q
: ð33Þ

The first factor of 2 in the last line comes precisely from the
condition n0(T) = m0(T) while the last two factors of 2 arise
from the condition that according to (5) and (6) the magni-
tudes of f+(�) and f�(�) are the same and equal f. Subtract-
ing (32) from (33) and putting N(n) ffi N(0), the density of
electronic states at the Fermi surface [designated before
as N(EF)] yields

Es � En

Ld
¼ 2�hxDn0ð0Þ þ 2Nð0Þ

Z �hxD

0

dn n�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ D2

q� �
¼ 2�hxDn0ð0Þ þ Nð0Þ

"
ð�hxDÞ2 � �hxD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�hxDÞ2 þ D2

q
þD2 ln

D

�hxD þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�hxDÞ2 þ D2

q #
ðGBECÞ ð34Þ

exactly, by standard integrations [61]. Using the expression
that follows from (24) for T = 0 gives Eq. (2.40) of Ref. [7],
namely

D ¼ �hxD

sinh ð1=kÞ ; ð35Þ

where k is related to GBEC BF interaction parameter f

through

k � VNð0Þ ¼ f 2Nð0Þ=2�hxD:

This makes the first term on the rhs of (34) exactly equal to
D2N(0)/k which in turn can be shown to cancel exactly
against the log term if one recalls the hyperbolic-function
identity sinh2 x + 1 � cosh2 x. Thus, the GBEC theory con-
densation energy (34) is identical for any coupling to that
of BCS theory, Eq. (2.42) of Ref. [7], namely

Es � En

Ld
¼ Nð0Þð�hxDÞ2 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ D=�hxDð Þ2

q� �
ðBCSÞ

!
k!0
� 1

2
Nð0ÞD2 1� 1

4

D
�hxD

� �2

þO
D

�hxD

� �4
" #

:

ð36Þ

This energy, associated with the expectation value of the
BCS trial wavefunction gives a rigorous-upper-bound to
the exact ground-state energy of the BCS Hamiltonian.
Empirically, for niobium (Nb, bcc, Tc ’ 9.3 K, critical
magnetic field Hc ’ 160 kA/m) the condensation energy
to be compared with the BCS result (36) works out to be
just 2 · 10�6 eV/atom [62]. The equivalence of (34) and
(36) seems to suggest that, as in the GBEC theory, there
are no pair–pair interactions in the BCS theory either, as
is evident from Hamiltonians (1), (2) and (4).
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What happens on ignoring either 2e- or 2h-CPs, as
seems to be common practice in theories of SCs and SFs?
This gives crossover versions C and D. Starting from (10)
for T = 0, and following a similar procedure to arrive at
(33) but without 2h-CPs such that f� = 0, m0(0) = 0 and
n0(0) = D2/f 2, one gets

XsðT ¼ 0Þ
Ld

� �
þ
¼ �hxDn0ð0Þ þ 2

Z 0

�l
dnNðnÞn

þ Nð0Þ
Z �hxD

0

dn n�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ D2

q� �
: ð37Þ

Subtracting (32) from (37) gives

Es � En

Ld

� �
þ
¼ �hxDn0ð0Þ þ Nð0Þ

Z �hxD

0

dn n�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ D2

q� �
;

ð38Þ

which is just half the full GBEC theory result (34). Further-
more, if [(Es � En)/Ld]� is the contribution from 2h-CPs
alone we may assume that f+ = 0 and n0(0) = 0 and eventu-
ally arrive at precisely the rhs of (38) but with m0(0) =
D2/f 2 in place of n0(0) = D2/f 2. Hence

Es � En

Ld

� �
þ
¼ Es � En

Ld

� �
�

¼ 1

2
Nð0Þð�hxDÞ2 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ D=�hxDð Þ2

q� �
!
k!0
� 1

4
Nð0ÞD2 1� 1

4

D
�hxD

� �2

þO
D

�hxD

� �4
" #

ð39Þ

which again is just one-half the full GBEC theory conden-
sation energy (34) that was found to be identical to the full
BCS condensation energy (36). Though not too surprising

as the function Eð�Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�� lÞ2 þ D2ð�Þ

q
; where Dð�Þ �ffiffiffiffiffi

n0
p

fþð�Þ þ
ffiffiffiffiffiffi
m0
p

f�ð�Þ; becomes ‘‘half-gapless’’ in either
crossover versions C or D, this one-half difference occurs
precisely because either n0 or m0, and f+(�) or f�(�), have
been deleted. Including both 2e- and 2h-CPs gave similarly
striking conclusions on generalizing via the Bethe–Salpeter
equation the ordinary [26] CP problem from unrealistic
infinite-lifetime pairs to the physically expected finite-life-
time ones of Refs. [27,28].

7. Conclusions

The recent generalized BEC (GBEC) statistical single-
band theory was employed to distinguish four different
versions of the BCS–Bose crossover picture. One of these
is the original BCS–Bose crossover theory with number
Eq. (25), crossover version B. For the Cooper/BCS model
interaction predicts in 2D virtually the same Tcs to well
beyond physically unreasonable values of coupling, as
the (allegedly less general) BCS statistical theory where
the number equation becomes trivial on assuming that

the electron chemical potential l = EF, the Fermi energy.
However, Tcs much higher than those of the BCS–Bose
crossover theory have been obtained [63] via the GBEC
number Eq. (17), designated here as crossover version A,
that includes both electron- or hole-pair bosons explicitly
but in different proportions.

The GBEC statistical theory also reveals that the BCS
gap equation for all temperatures follows rigorously only
when neither hole- nor electron-pairs are ignored and occur
in equal proportions, separately for zero- and nonzero-
CMM pairs, and that the resulting GBEC T = 0 condensa-
tion energy equals the entire (rigorous-upper-bound) BCS
value for any coupling. But that it is only half as large when
either kind of pair is ignored. Hence, if a BEC theory that
reduces properly to BCS theory is at all relevant in SCs and
SFs taken as many-fermion systems where pairing into
bosonic CPs can occur, two-hole CPs must play an unam-
biguously crucial role.
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