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In order to controvert the common conviction that non-equilibrium features, such
as self-propulsion and angular (non-thermal) noise, are essential to the emergence of
long-range order (flocking behavior) in a two-dimensional system of self-propelled par-
ticles, we build a minimal, Vicsek’s inspired [1], model based on non-self-propelled
(Brownian) agents subject to thermal noise and argue that such features are not a
requirement for the spontaneous emergence of flocking behavior. Instead, we focus
on the local alignment interaction between agents as the key element that takes the
system out of equilibrium. We found that in the disordered phase, the system can
be described by linear response theory where local mass flows cancel on the whole
system and simplifying its analysis, while by increasing the rate of alignment or the
system’s density, fluctuations induced by the thermal noise are diminished leading to
a far-from-equilibrium phase with a respective breakdown of linear response theory.

1 Introduction

The study of far from equilibrium systems have attracted the attention in many
specialties of science due to its potential applicability that ranges from physics
to biology passing through the social sciences. One of the interests among the
many different aspects of these systems, of particular relevance in physics, is the
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possibility of exhibiting phase transitions to states that present collective behav-
ior. A significant result on this direction, with implications in biological systems,
was given by the well known model of Vicsek et al. [1] or simply Vicsek’s model
as is known nowadays, that describes the dynamics of motion of self-propelled
agents that interact among them by very simple rules, namely, the alignment
of the agents velocity vector along the direction of the mean velocity of their
nearby neighbors. As shown by various numerical simulations [2, 3], such a dy-
namic rule favors the emergence of collective motion at high enough densities
distinguished by long-range order. This remarkable characteristic has made the
concept of self-propelled particles to be considered as a simple, but important,
paradigm that captures the essential ingredients of the collective behavior ob-
served in many systems just like mammalian herds [4], crowds of pedestrians
[5, 6], bird flocks [7], fish schools [8], insect swarms, bacterial organisms and
many others. The model of Vicsek itself has also been subject of a considerable
amount of research on the non-equilibrium aspects of self-propelled particles sys-
tems. One of these is related to the nature of the order-disorder phase transition
which depends essentially on the type of the stochastic perturbation [9, 10, 3]
and many others which presents studies on generalizations an modifications of
it [11].

Theoretical approaches, different from the rule-based of Vicsek, that describe
collective behavior in systems driven far from equilibrium have also appeared in
the literature, see Refs. [12, 13, 14, 15] just to mentions some of them. These
different approaches, generally more involved in that interactions are modeled
as “forces” that perturb the trajectories of agents, allow for a richer description
in that are capable of qualitatively reproducing the spatial-patterns observed in
many systems that develop collective behavior [12, 13, 14] such as vortex-like
structures. These approaches allows for the inclusion of more detailed interac-
tions and are generally used in explicit applications of biological systems. For
instance, recent experimental results suggest that in a more detailed level, differ-
ent mechanisms, like cannibalism, may drive the system to a collective, although
not cooperative, behavior [16]. Another model, that considers the effects of non-
linear noise in a system of self-propelled particles [15], shows the random transit,
back and forth, between a state of collective motion and a vortex-like state, ar-
guable this feature qualitatively describe many processes in biological systems.

Besides these important and interesting applications of the framework just
described, an important conclusion is derived from the simple rule-model of
Vicsek: a phase transition to a state with long-range order in 2-dimensions
via the breaking of a continuous symmetry, rotational in this case, is possible.
Such phase transition is forbidden by the Mermin-Wagner-Hohenberg theorem
[17, 18] in a situation of thermodynamical equilibrium, this is the reason why the
non-equilibrium features of self-propelled particles, namely that they acquire a
finite velocity by themselves [19], are assumed to be the key ingredient for such
phase transition to occur [20], however, the exact mechanism that originates
the long-range-order phase is still not well understood. On this direction, it
has been suggested in Ref. [20] that the Vicsek model can be considered as
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the non-Hamiltonian version of the XY model (which does not exhibit a long-
range phase) in the v0 → 0 limit, being v0 the self-propulsive velocity of the
agents. The major difference is the off-lattice displacements of the particles in
the former, while in the later, the classical spins remain fixed at the points of a
lattice.

Thus, in spite of the common consensus that non-equilibrium features, such
as self-propulsion and angular (non-thermal) noise, are essential ingredients to
the emergence of long-range order collective behavior in two-dimensions, clearly
manifested in the vast amount of literature on flocking behavior that maintain
the self-propulsive nature of the agents, in this paper we present evidence that
the key ingredient that lead to a phase with long-range-order is the alignment
interaction. We arrive at this conclusion by using an alternative model based
on stochastic differential equations with the following assumptions: i) the self-
propelled feature of the particles is absent and ii) fluctuations are due to a
thermal bath kept at the temperature T . The model suggested in this paper
also offers a starting point for the study of different possible mechanisms for the
onset of collective motion.

The paper is organized in the following manner. In section §2 we present
a generic continuous-time model in terms of stochastic differential equations.
The alignment interaction is implemented in order to capture the essence of the
alignment rule of Vicsek’s model. In section §3 we discuss the results found
with respect to the origin of the non-equilibrium phase with long-range-order.
Section §4 embodies our conclusions.

2 The model

The model that meet our purposes consists of N agents on a 2-dimensional
square of sidelength L, subjected to periodic boundary conditions immersed in
an ideal thermal bath. Each agent is characterized by velocity v and position
x and the dynamics of the system is given by the following generic Langevin
equations

dvi

dt
= −γvi + ξi + F i,align, vi =

dxi

dt
, (1)

where vi and xi denote the velocity and position of the i-th agent, respectively.
ξi = (ξx,i, ξy,i) is a two component vector with white noise components, i.e.

〈ξµ,i(t)ξν,j(s)〉 = δµ,νδi,j2kBTγδ(t− s), with T the temperature of the thermal
bath, kB the Boltzmann constant and δ(x) denotes the Dirac δ-function. The
connection between the correlations of the fluctuating “force” ξ and the dissipa-
tive coefficient γ, guaranties that the stationary probability distribution of the
velocities corresponds exactly to that of thermal equilibrium, i.e. fluctuation-

dissipation theorem holds. F i,align denotes the local alignment interaction which
is specified in more detail below. In the non-interacting case, i.e. F i,align = 0,
the N agents systems are in thermal equilibrium with the bath and a well de-
fined temperature can be associated. In addition, our model equations reduce
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to the standard Langevin description of thermal equilibrium of Brownian mo-
tion whose stationary state for the distribution of the single-particle velocities
is given by the Maxwell distribution

Peq(v) =
1

(2πkBT/m)
exp

{
−

mv2

2kBT

}
. (2)

Once the alignment interaction is turned on, the most general situation cor-
responds to that in which the fluctuation-dissipation relation lose its validity,
defining a non-equilibrium condition. In this case, the temperature of the bath
is not the temperature of the interacting N system, but simply a measure for
the fluctuations the bath imparts to the system.

The dispersion
√
〈(v − 〈v〉)2〉 =

√
2kBT/m provides a natural scale for the

speed of the particles, where 〈O〉 denotes the average of O with the probability
distribution given in Eq. (2). This equilibrium characteristic is generally taken
into account in standard physical systems, but is usually disregarded within the
context of non-equilibrium systems described by equations alike Eqs. (1), as is in
the model of “flocking” behavior given in Ref. [16], where fluctuation-dissipation
theorem is violated.

The alignment interaction F i is implemented in order to resemble the original
idea of Vicsek et al. [1] on the interaction mechanism for collective behavior,
however, we avoid its infinite alignment rate1. First, an agent will tend to align
along the direction f i given by the average direction of motion of the neighbors
in the vicinity of radius R denoted with ΩR(i), i.e.,

f i =
1

NR(i)

∑

j∈ΩR(i)

v̂j , (3)

where NR(i) is the number of neighboring agents in ΩR(i), see Fig. 1, and
v̂j = vj/vi gives the direction of motion of the j-th agent with vj = |vj |.

The “force” responsible of the alignment of velocities is implemented in such
a way that: i) is independent of the agents speed (for simplicity), ii) is directly
proportional to fi = |f i| and iii) acts orthogonally to the direction of motion
v̂i. These features are enclosed in

F i,align = Γ [f i − v̂i (f i · v̂i)] , (4)

where Γ is the coupling constant with units of velocity/time that gives the
maximum alignment rate.

interactions We want to remark that the alignment interaction given in Eq.
(4) does not affect the magnitude of the particle’s velocity. Indeed, when Eq.
(4) is split in its components along the direction of motion v̂i, and along the

orthonormal vector θ̂i, it is clear that

Fi,align · v̂i = Γ [f i − v̂i (f i · v̂i)] · v̂i

= 0
1In the model of Vicsek at al. the agents align to the average direction of motion of the

local group just between two successive updating steps.
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Figure 1: Alignment mechanism. Dots represent the particles positions while lines
gives only trace of the direction of motion.

and that

Fi,align · θ̂i = Γ [f i − v̂i (f i · v̂i)] · θ̂i

= Γf i · θ̂i.

This last expression can be be written in a more suitable form as

Fi,align · θ̂i = Γ fi sin(θfi − θi),

where we have used f i = fi (cos θfi , sin θfi) = (fi,x, fi,y), θfi ≡ arctan(fi,x/fi,y)

and θ̂i = (− sin θi, cos θi). Thus, in the absence of dissipation and noise we have

dvi
dt

= 0, (5)

vi
dθi
dt

=
Γ

m
fi sin(θfi − θi). (6)

Note that the alignment mechanism suggested in Eq. (4) leads to equation (6),
which is reminiscent of the Kuramoto’s mean field equations of synchronization
for the velocity’s direction of the particles instead of the phase coupled oscillators
as in Kuramoto’s original model [21]. This aspect has also been considered for
the rule-based model of Vicsek [22], where the alignment rule (with static agents
as for instance in a 2-dimensional lattice) has been taken to the continuous-time
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limit and a relation to the Kuramoto model of synchronization has been devised.
This contrast with the model here presented, where the number of neighbors
in ΩR(i) is, due to the non–trivial coupling to the position of the particles, a
stochastic variable.

By substituting expression (4) in (1) the equations of the model are explicitly
given by

dvi

dt
= −γvi + Γ [f i − v̂i (f i · v̂i)] + ξi (7)

with f i is defined in (3).

Figure 2: Dependence of the stationary values of the order parameter, 〈Λ〉, on the

dimensionless coupling constant Γ̃ for ρ = 3.3×103, 4.4×103, 5.5×103 and 11.12×103

with R̃ = 0.15. In the left graph it is shown the dependence of the critical value of
the coupling constant on the particle density ρ. In the right graph scaling behavior

is exhibited when 〈Λ〉 is plotted as function of the coupling constant scaled with the
critical value.

3 Results and Discussion

In order to analyze the possible solutions of Eqs. (1) we choose γ−1 as the time
scale of the system. In the interactionless case γ−1 corresponds to the relaxation
time to the stable equilibrium state defined by zero average velocity. We set
v0 =

√
2kBT/m as a scale for velocities and from this we form the length scale

r0 =
√
2kBTm/γ2. Thus, the number of relevant parameters in our model are:

the dimensionless alignment-coupling Γ̃ = Γ/γv0, the dimensionless interaction

range R̃ = R/r0 and the dimensionless density of particles ρ = N/(L/r0)
2.

We solve numerically the 4N Eqs. (1) by standard methods. Although a
fourth order integration algorithm is being prepared, all the results presented in
this paper were made with the remarkably fast and simple Euler’s method. Using
high number of particles, ∼ 105, simulations took, depending on the parameters
chosen, an average of ∼ 104 time steps to reach an stationary state, and we
perform data collection in about ∼ 105 time steps. Normally this would translate
in 24 − 48 hours of simulation. To characterize the phase transition we define
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and measure an instantaneous order parameter

Λ(t) =
1

N

∣∣∣∣∣∣

N∑

j=1

v̂i

∣∣∣∣∣∣
. (8)

Our interest is in the stationary value of Λ, denoted with 〈Λ〉 and calculated as

〈Λ〉 = lim
T→∞

1

T

∫ T

0

Λ(t) dt. (9)

It is clear that in the situation above described of thermal equilibrium (Γ =
0), any direction of motion of the agents is possible and in the thermodynamic
limit, the average of the total velocity of the system vanishes identically giving
〈Λ〉 = 0.

With the scales considered above, we find that the system exhibits a contin-

uous phase transition from a disordered state, characterized by 〈Λ〉 = 0 to an

ordered one, 0 < 〈Λ〉 ≤ 1, by varying the coupling constant Γ̃ and fixed values of

R̃ and ρ (see Fig. 2). In the left graph of Fig. 2 it is shown how the critical value

Γ̃c at which the system attains long-range order is affected by the changing the
particle density ρ. In addition, it can be appreciated on the same Fig. 2 that the
system exhibits scaling behavior when 〈Λ〉 is plotted against Γ̃/Γ̃c.

Figure 3: 3D one-body velocity histograms. Left plot is representative of the prob-
ability distribution of velocities in the disordered phase (Γ̃ . 2.2) that coincide (see
next Fig. 4) with the equilibrium probability distribution given by Eq. (2). Right plot
gives the corresponding distribution in the ordered phase with Γ̃ = 10.0.

An interesting result, that might be not so intuitive, is that the single-particle
probability distribution of velocities, Pst(v), for subcritical values of the coupling

constant, i.e. 0 < Γ̃ ≤ Γ̃c, corresponds to the equilibrium one given in Eq. (2).
Thus one must expect the system to be close to equilibrium and mean-field
theory to be valid in this regime. Furthermore, even when the fluctuation-
dissipation relation does not hold a well defined temperature can be assigned to
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the system. This finding is showed in the left graphs of Fig. 3 and Fig. 4. In
Fig. 3 it is shown that the rotationally invariant symmetry of the equilibrium
distribution is preserved for the probability distribution of velocities in the dis-
ordered phase and that this symmetry is spontaneously broken in the ordered
phase as is shown in the right graph on the same figure. In Fig. 4 a quantita-
tive comparison of the velocity distributions with expression (2) is presented for

Γ̃ = 0.1, 1.0 and 2.2 being Γ̃c ∼ 2.2.in the disordered phase and Γ̃ = 10.0 in the
ordered one.
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Figure 4: The left graph shows the probability distribution of velocities proyected
on the vy = 0 plane for Γ̃ = 0.1, 1.0, and 2.2 (disordered phase for R̃ = 0.0169,

ρ = 1.1×104 and Γ̃c ∼ 2.2) that correspond to the rotationally symmetric distribution
in the left graph of Fig. 3. Note the agreement with equilibrium distribution of velocities
given by (2) (thick-black-dashed line) even at values close to the critical point. The

right graph shows the departure from (2) in the order state with Γ̃ = 10.0 corresponding
to the anisotropic distribution shown in the right grapgh of Fig. 3.

As the coupling parameter Γ is varied from small to large values, the system is
self-driven to a far from equilibrium regime when Γc is crossed. In this regime the
probability distribution of velocities departs from the equilibrium one basically
due to the alignment interaction, first the average of the system velocity is finite,
thus leading to a state of collective motion and second it appears an anisotropy in
the distribution due to the preferred direction of motion spontaneously developed
(see right graphs in Fig. 4 and Fig. 3).

The spatial distribution of the local order parameter f(x) defined alike to
Eq. (3) as

f (x) =
1

NR(x)

∑

j∈ΩR(x)

v̂j , (10)

where now x refers not to the agent position but to a point in the 2-dimensional
square of sidelength L, can be related to the local flux of particles j(x). One can
intuitively expect that the alignment interaction would cause the formation of
a local flux whose magnitude would depend on the alignment coupling constant
Γ. In the already described disordered phase (subcritical region, Γ < Γc) finite
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local fluxes form, in contrast to the equilibrium case (Γ = 0) where such fluxes
are negligible for large enough systems. On the global, the fluctuations imparted
by the bath to the system, makes such local fluxes to fluctuate in practically any
direction leading to a vanishing global order parameter. In the ordered state
(supercritical region, Γ > Γc), such local fluxes dominate over the imparted
bath-fluctuations leading to net flux on the global system, i.e. to a “flocking”.
These two situations are explicitly shown in Fig. 5 and Fig. 6, where the 2-
dimensional system square has been divided into cells with indexes lx, ly and a
size of the order of the interaction range. Magnitude and direction of f(lx, ly)
are explicitly exhibited in Fig. 5 and Fig. 6 respectively.

Figure 5: Spatial distribution map of the magnitude f(x) of the local order parameter
f(x), defined as in (3), is shown. The graphs at the top correspond to subcritical values
of Γ while the bottom ones for supercritical values. Dark colors correspond to small
values of f(x) while bright ones to values close to 1.

4 Conclusions and Final Remarks

We have shown that self-propulsion and athermal (non-thermal) noise, two non-
equilibrium characteristics in many model that shows flocking behavior, are non
necessary for the appearance of states of collective motion. Nor even the weaker,
but still out of equilibrium condition presented in Ref. [16] (the fluctuation-
dissipation relation between the dissipative and the random forces is clearly
violated), is necessary for the appearance of collective states. We achieve this
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Figure 6: Spatial distribution map of the direction θ of the local order parameter f (x)
is shown. The graphs at the top correspond to subcritical values of Γ while the bottom
ones for supercritical values. Dark colors correspond to small values of f(x) = |f(x)|
while bright ones to values close to 1.

through the implementation of a model, based on Langevin-like stochastic equa-
tions that consider alignment interactions close related to Vicsek’s original align-
ment mechanism. The explicit model interaction for alignment used in this study,
resulted to be close connected to the Kuramoto’s coupling for synchronization
of phase oscillators [21], thus making our model appealing to establish a relation
between synchronization and collective-motion behavior.

In addition, it has been shown that in the subcritical regime the probability
distribution of single-particle velocities coincides with the equilibrium one (2),
and therefore that a well defined temperature can be assigned to the agents
collection, this however does not mean the agents are in strict thermodynam-
ical equilibrium. This is actually the case of systems close to thermodynamic
equilibrium as is well described by the theory of linear response [23]. In fact a
two-particle correlations of the velocities study should complement the present
analysis, this is the subject of an ongoing work.

Finally, we have found in nature of the interaction, namely, the tendency to
move in the same direction of the neighbors, the origin of the possibility of a
long-range-order phase in a system in 2 dimensions. A similar conclusion have
been suggested in Ref. [24], where extensive Monte Carlo simulations on the
original Vicsek model in the v0 → 0 regime has been performed.
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