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The effects of low dimensionality on the thermodynamics of a Fermi gas trapped by isotropic power-law potentials are analyzed.
Particular attention is given to different characteristic temperatures that emerge, at low dimensionality, in the thermodynamic
functions of state and in the thermodynamic susceptibilities (isothermal compressibility and specific heat). An energy-entropy
argument that physically favors the relevance of one of these characteristic temperatures, namely, the nonvanishing temperature at
which the chemical potential reaches the Fermi energy value, is presented. Such an argument allows interpreting the nonmonotonic
dependence of the chemical potential on temperature, as an indicator of the appearance of a thermodynamic regime, where the
equilibrium states of a trapped Fermi gas are characterized by larger fluctuations in energy and particle density as is revealed in the
corresponding thermodynamics susceptibilities.

1. Introduction

The discovery of the quantum statistics that incorporate
Pauli’s exclusion principle [1], made independently by Fermi
[2] and Dirac [3], allowed the qualitative understanding of
several physical phenomena—in a wide range of values of
the particle density, from astrophysical scales to subnuclear
ones—in terms of the ideal Fermi gas (IFG). The success
of the explicative scope of the ideal Fermi gas model relies
on Landau’s Fermi liquid theory where fermions interacting
repulsively through a short range forces can be described in
some degree as an IFG.The situations change dramatically in
low dimensions, since Fermi systems are inherently unstable
towards any finite interaction [4–6]; thus the IFG in low
dimensions becomes an interesting solvable model to study
the thermodynamics of possible singular behavior.

On the other hand, the experimental realization of
quantum degeneracy in trapped atomic Fermi gases [7–11]
triggered a renewed interest, over the last fifteen years, in
the study not only of interacting fermion systems [12–15]
but also of trapped ideal ones [16–34]. Indeed, the nearly
ideal situation has been experimentally realized by taking
advantage of the suppression of 𝑠-wave scattering in spin-
polarized fermion gases due to Pauli exclusion principle
and of the negligible effects of 𝑝-wave scattering for the

temperature ranges involved. Further, the control achieved
on the experimental settings has opened the possibility of
directly testing a variety of quantum effects such as Pauli
blocking [35] and designing experiments to probe condensed
matter models, though much lower temperatures are needed
to achieve the phenomena of interest. On this trend, exper-
imentally new techniques are being devised to cool further
a cloud of atomic fermions [36–39]. Techniques based on
the giving-away of entropy by changing the shape of the
trapping potential have become of great importance and,
as in many instances, a complete understanding of trapped
noninteracting fermionic atomswould become of great value.

In distinction with the ideal Bose gas (IBG), which
suffers the so-called Bose-Einstein condensation (BEC) in
three dimensions, the IFG shows a smooth thermodynamic
behavior as function of the particle density and temperature;
this, however, does not preclude interesting behavior as has
been pointed out in [28, 40], where it is suggested that the
IFG can suffer a condensation-like process at a characteristic
temperature 𝑇0. Arguments based on a thermodynamic
approach in support of this phenomenon are presented in
[40], where the author suggests that the change of sign
of the chemical potential, which defines the characteristic
temperature 𝑇0, marks the appearance of the condensed
phase when the gas is cooled.
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Figure 1: (a) Dimensionless chemical potential 𝜇/𝐸𝐹 as function of the dimensionless temperature 𝑇/𝑇𝐹 for different values of 𝑑/𝑠. The
crossings with the horizontal lines 𝜇/𝐸𝐹 = 1 and 𝜇/𝐸𝐹 = 0mark the temperatures𝑇∗ and𝑇0, respectively. (b)The temperature𝑇∗ as function
of 𝑠/𝑑 (solid line). Additionally the temperatures 𝑇0 (dashed line) and 𝑇𝜇 (dash-dotted line) are included for comparison.

Truly, the significance of𝜇hasmotivated the discussion of
itsmeaning and/or importance at different levels and contexts
[41–52]. For the widely discussed—textbook—case, namely,
the three-dimensional IFG confined by an impenetrable box
potential, the chemical potential results to be a monotonic
decreasing function of the temperature, diminishing from
the Fermi energy, 𝐸𝐹, at zero temperature, to the values of
the ideal classical gas for temperatures much larger than𝑘−1𝐵 (ℏ2/𝑚𝜆2𝑇), where 𝑘𝐵 is Boltzmann’s constant, ℏ is Planck’s
constant divided by 2𝜋, 𝑚 is the mass of the particle, and
𝜆𝑇 = √2𝜋ℏ2/𝑚𝑘𝐵𝑇 is the thermal wavelength of de Broglie,
where 𝑇 denotes the system’s absolute temperature. A clear,
qualitative, physical argument of this behavior is presented
by Cook and Dickerson in [41]. In comparison, the chem-
ical potential of the IBG vanishes below a characteristic
temperature, called the critical temperature of BEC, 𝑇𝑐, and
decreases monotonically for larger temperatures converging
asymptotically to the values of the classical ideal gas.

This picture changes dramatically as the dimensionality
of the system 𝑑 is lowered. In two dimensions the IBG shows
no off-diagonal-long-range order at any finite temperature
[53] and therefore the BEC transition does not occur. At this
quirky dimension, the chemical potential of both, the Fermi
and Bose ideal gases, decreases monotonically with tem-
perature essentially in the same functional way [54], being
different only by an additive constant, expressly, the Fermi
energy. This results in the same temperature dependence of
their respective specific heats at constant volume𝐶V [54–56].
In general, this last outstanding feature occurs whenever the
number of energy levels per energy interval is uniform as in
the case of a one-dimensional gas in a harmonic trap [57, 58],
or the case 𝑠 = 𝑑where 𝑠 is the exponent of the single-particle

energy spectrum of the form 𝜀 ∝ 𝑝𝑠, 𝑝 being the particle
momentum [59].

In one dimension, the chemical potential of the IBG
decreases monotonically with temperature, and as in the two
dimensional case, this behavior is related to the impossibility
of BEC as shown by Hohenberg [53], at finite, nonzero,
temperature. In contrast, the chemical potential of the IFG
exhibits a nonmonotonic behavior: which starts rising quad-
ratically with 𝑇 above the Fermi energy instead of decreas-
ing from it and returns to its usual monotonic decreasing
behavior at temperatures that can be as large as twice the
Fermi temperature (see Figure 1; see also Figure 1 in [60]).
This unexpected, and not well understood behavior, can be
exhibited mathematically by the Sommerfeld expansion [60,
61] or by othermethods [62–64], though no intuitive physical
explanation of it, which predicts its appearance in the more
general case, seems to have been given before. (Indeed, the
precise argument presented in [41] is only valid for the
free IFG in three dimensions.) This forms the basis for the
motivation of the present paper.

After this excursus, one may conceive dimension two as
a crossover value for which the thermodynamic properties of
ideal quantum gases are conspicuously distinct for 𝑑 > 2 than
those for 𝑑 < 2. This can be seen in the specific heat, which
in the case of the IFG exhibits a no-bump→ bump transition
as dimension is varied from 3 to 1 [60] analogous to the well-
known cusp→ no-cusp transition of the IBG specific heat. In
the latter case, the cuspmarks the BEC phase transition while
no physical meaning is yet given for the bump in the former
case.

In this paper we provide an analysis that attempts to
explain the various features that are observed in the low-
dimensional, trapped IFG, focusing in the nonmonotonic
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dependence on 𝑇 of the chemical potential. In Section 2 the
system under consideration is described, thermodynamics
quantities are calculated, and characteristics temperatures
are introduced. In Section 3 a heuristic explanation of the
nonmonotonic dependence of the IFG chemical potential on
temperature is given. In Sections 4 and 5 the physicalmeaning
of two relevant characteristic temperatures is given. Finally,
conclusions and final remarks conform Section 6.

2. General Relations, Calculation of
the Chemical Potential, and the
Thermodynamical Susceptibilities

We consider an IFG of 𝑁, conserved, spinless fermions in
arbitrary dimension 𝑑 > 0. We assume a single-particle
density of states (DOS) of the form [28, 59]

𝑔 (𝜀) = 𝐺𝑑,𝑠𝜀𝑑/𝑠−1, (1)

where 𝜀 denotes the energy, 𝐺𝑑,𝑠 and 𝑠 are positive constants,
and the former depends on 𝑑 and on the specific energy
spectrum of the system, while the latter is determined by the
particular system dynamics.

Two instances lead to the power-law dependance in
expression (1): the first one is based on the generalized energy-
momentum relation [59, 65] 𝜀𝑘 = C𝑠𝑘𝑠, 𝑘 being themagnitude
of the particle wave-vector k and C𝑠 > 0 being a constant
whose particular form depends on 𝑠. The physical cases 𝑠 =2, 1 correspond, respectively, to the nonrelativistic IFG with𝐶2 = ℏ2/2𝑚 and to the ultrarelativistic IFG for which 𝐶1 =𝑐ℏ, 𝑐 being the speed of light. In this case 𝐺𝑑,𝑠 takes the
form V/[2𝑑−1𝜋𝑑/2Γ(𝑑/2)𝑠𝐶𝑑/𝑠𝑠 ], with Γ(𝜎) the gamma func-
tion and V = 𝐿𝑑 the volume of the system. The second
instance is based on the 𝑑-dimensional IFG trapped by an
isotropic potential of the form 𝑈(r) = 𝑈0(𝑟/𝑟0)𝛼, where𝑈0, 𝑟0 are two constants that characterize the energy and
length scales of the trap. This trapping potential leads, in the
semiclassical approximation [66], to𝐺𝑑,𝑠 = ((2/𝑠−1)Γ[𝑑(1/𝑠−1/2)]/Γ(𝑑/2)Γ[𝑑/𝑠]ℏ𝑑)(𝑚𝑟20/2)𝑑/2𝑈𝑑(1/2−1/𝑠)0 with 𝑠−1 = 1/2 +
𝛼−1. Notice that in the latter case, one can immediately
establish the thermodynamic equivalence between the IBG
and the IFG; namely, 𝛼 = 2𝑑/(2 − 𝑑), implying that no such
equivalence is possible in dimensions𝑑 > 2 for positive𝛼.The
equivalence does occur in two dimensions if 𝛼 → ∞, which
corresponds to the infinite well potential and in one dimen-
sion if 𝛼 = 2, which corresponds to the harmonic potential.

The thermodynamical properties of the ideal quan-
tum gases are easily computed from the grand potentialΩ(𝑇,V, 𝜇) ≡ 𝑈 − 𝑇𝑆 − 𝜇𝑁 [67, 68], where 𝑈 and 𝑆 denote
the internal energy and entropy, respectively. For the trapped
gas,V denotes the appropriate thermodynamic variable that
generalizes the volume of a fluid in a rigid-walls container (see
[69] for the case of the three-dimensional harmonic trap),
which in this paper is taken as V = (𝑚𝑟20/2)𝑑/2𝑈𝑑(1/2−1/𝑠)0

which reduces to V = 𝜔−𝑑 for the isotropic harmonic trap
𝑈(r) = ℏ𝜔(𝑟/𝑟0)2 with 𝑟0 = (2ℏ/𝑚𝜔)1/2. For a gas of
noninteracting fermions, Ω(𝑇,V, 𝜇) can be written in the

thermodynamic limit, 𝑁 → ∞ and V → ∞ with 𝑁/V =
constant, [70] as

Ω(𝑇,V, 𝜇) = −𝑘𝐵𝑇∫
∞

0
𝑑𝜀 𝑔 (𝜀)

× ln [exp {𝛽 (𝜀 − 𝜇)} 𝑓FD (𝜀, 𝑇)] ,
(2)

where 𝑓FD(𝜀, 𝑇) = {exp[𝛽(𝜀 − 𝜇)] + 1}−1 is the Fermi-Dirac
distribution function that gives the average occupation of
the single-particle energy state 𝜀 at absolute temperature 𝑇.
As usual, 𝛽 denotes the inverse of the product of 𝑇 and 𝑘𝐵
Boltzmann’s constant.

The average number of fermions𝑁(𝑇,V, 𝜇) in the system
is given by −(𝜕Ω/𝜕𝜇)𝑇,V [67] which gives

𝑁
V

= −𝐺𝑑,𝑠Γ(𝑑𝑠 ) (𝑘𝐵𝑇)
𝑑/𝑠 Li𝑑/𝑠 (−𝑒𝛽𝜇) , (3)

where Li𝜎(𝑧) = ∑∞𝑙=1 𝑧𝑙/𝑙𝜎 is the polylogarithm function of
order 𝜎 [71] and 𝐺𝑑,𝑠 = 𝐺𝑑,𝑠/V. Expression (3) relates 𝑁
and 𝜇, and for fixed 𝑁, the chemical potential is a function
of the system temperature and volume. The internal energy𝑈(𝑇,V, 𝜇) per volume is given by

𝑈
V

= −𝐺𝑑,𝑠Γ(𝑑𝑠 + 1) (𝑘𝐵𝑇)
𝑑/𝑠+1 Li𝑑/𝑠+1 (−𝑒𝛽𝜇) , (4)

while the entropy 𝑆(𝑇,V, 𝜇) = −(𝜕Ω/𝜕𝑇)V,𝜇 per volume by

𝑆
V

= −𝑘𝐵𝐺𝑑,𝑠Γ(𝑑𝑠 ) (𝑘𝐵𝑇)
𝑑/𝑠

⋅ [(𝑑𝑠 + 1) × Li𝑑/𝑠+1 (−𝑒𝛽𝜇) − 𝜇
𝑘𝐵𝑇Li𝑑/𝑠 (−𝑒

𝛽𝜇)] .
(5)

In Figure 1(a) the temperature dependence of the ratio𝜇/𝐸𝐹 is shown for different values of the ratio 𝑑/𝑠 and for𝑁/V fixed, where 𝑇𝐹 denotes the Fermi temperature defined
through the relation 𝐸𝐹 = 𝑘𝐵𝑇𝐹, where 𝐸𝐹 is explicitly given
by (𝑑/𝑠𝐺𝑑,𝑠)𝑠/𝑑(𝑁/V)𝑠/𝑑 in 𝑑 dimensions. For 𝑑/𝑠 < 1 the
nonmonotonic dependence on temperature is clearly shown
(the dashed line corresponds to the case 𝑑/𝑠 = 1/2, while𝑑/𝑠 = 1/4 is presented with the only purpose of making the
effects of the system dimensionality more conspicuous). In
the limit of high temperatures, 𝑇 ≫ 𝑇𝐹, the classical result𝜇 → 𝑘𝐵𝑇 ln[(𝑇/𝑇𝐹)𝑑/𝑠Γ(𝑑/𝑠 + 1)] is recovered.

As occurs for the 2D ideal gas in a box potential (𝑠 =𝑑 = 2), the DOS is a constant whenever 𝑠 = 𝑑, and the
chemical potential has thewell-known analytical dependence
on the temperature 𝜇 = 𝐸𝐹 + 𝑘𝐵𝑇 ln[1 − 𝑒−𝑇𝐹/𝑇]. For 𝑇 ≪𝑇𝐹, the chemical potential lies below the Fermi energy by a
negligible, exponentially small correction. The low tempera-
ture behavior of 𝜇 for 𝑑 ̸= 𝑠 can be obtained approxi-
mately as a direct application of the Sommerfeld expansion
for 𝑇 ≪ 𝑇𝐹 (see [72, pp. 45-46]); namely,

𝜇 ≃ 𝐸𝐹 [1 − 𝜋
2

6 (𝑑𝑠 − 1)(
𝑇
𝑇𝐹)
2] + O([ 𝑇𝑇𝐹 ]

4) . (6)
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The power-law dependence on 𝜀 in expression (1) is mani-
fested itself in the last expression, where the ratio 𝑑/𝑠 appears
explicitly. Clearly, for 𝑑/𝑠 < 1, the chemical potential rises
from the Fermi energy quadratically with 𝑇, and the non-
monotonousness is a result of the fact that, for large enough
temperatures, 𝜇(𝑇) falls down with temperature to negative
values close to those of the classical gas. As a consequence
of this “turning around,” 𝜇(𝑇) develops a maximum at
temperature 𝑇𝜇 and equals 𝐸𝐹 at two distinct temperatures,
at 𝑇∗ and 0, if 𝑑/𝑠 < 1, and only at 𝑇 = 0 otherwise.Thus, the
solution to the equation 𝜇(𝑇) = 𝐸𝐹 as function of the para-
meter 𝑑/𝑠 bifurcates at the critical value 𝑑 = 𝑠 as is shown
in Figure 1(b). Note that, for 𝑠 = 2 and 𝑑 = 1, 𝑇∗ is as
large as 1.896𝑇𝐹 and diverges as 𝑑/𝑠 → 0. This can be shown
straightforwardly from (3) by putting 𝜇 = 𝐸𝐹, since then 𝑇∗
must satisfy the equation 1 = [1 + 𝑒−𝑇𝐹/𝑇∗]−1 in that limit.

In addition, the temperatures 𝑇0 and 𝑇𝜇 that mark the
change of sign of 𝜇 and its maximum, respectively, are also
shown in Figure 1(b) (dashed line and dashed-dotted line).𝑇0
is determined from the equation 𝜇(𝑇0) = 0, which explicitly
gives

𝑇0 = [Γ(𝑑𝑠 + 1) 𝜁(
𝑑
𝑠 ) (1 − 21−𝑑/𝑠)]

−𝑠/𝑑 𝑇𝐹; (7)

this expression gives the approximated values 3.48𝑇𝐹, 1.44𝑇𝐹,
and 0.989𝑇𝐹 for 𝑑/𝑠 = 1/2, 1, 3/2, respectively. The tempera-
ture 𝑇0 diverges as exp{(𝑠/𝑑) ln 2} as 𝑑/𝑠 → 0 and goes to
zero as [𝑒/(𝑑/𝑠)]/√2𝜋𝑑/𝑠𝑠/𝑑 as 𝑑/𝑠 ≫ 1, where 𝑒 is the Euler-
Napier number.

It is clear from expression (6) that 𝑑 < 𝑠 is required for
the anomalous behavior of 𝜇(𝑇) to take place; however, for
physical systems with positive integer dimensions less than
three impose severe restrictions on how fast the trapping
potentialmust growwith the system size, that is, on the values
of the exponent 𝛼. For fermions in a box-like trap (𝑠 = 2)
the anomaly will be observed if 𝑑 = 1, a case where the
effects are conspicuously revealed even at large temperatures.
This case indeed poses a challenge to trap designing, though,
it could be realized experimentally by using the optical trap
developed by Meyrath et al. [73]. In the typical experimental
situation of harmonically trapped Fermi gases (𝛼 = 2 and
therefore 𝑠 = 1) studied intensively [16, 23, 26, 31] expression
(6) tells us that the anomaly is not observed for any integer𝑑 ≥ 1. On the other hand, if one assumes 𝑑 = 1 as the
minimum system dimensionality realizable experimentally
(cigar shaped traps), then one should go beyond harmonic
trapping; that is, one has to choose 𝛼 > 2.

The nonmonotonicity of the chemical potential, just
referred to during the previous paragraphs, is revealed in the
thermodynamic susceptibilities. In this work we focus on the
specific heat at constant volume 𝐶V = (𝜕𝑈/𝜕𝑇)V and the
isothermal compressibility 𝜅𝑇 = (1/𝑛2)(𝜕𝑛/𝜕𝜇)𝑇, given by

𝐶V𝑁𝑘𝐵 =
𝑑
𝑠 (

𝑑
𝑠 + 1)

Li𝑑/𝑠+1 (−𝑒𝛽𝜇)
Li𝑑/𝑠 (−𝑒𝛽𝜇)

− (𝑑𝑠 )
2 Li𝑑/𝑠 (−𝑒𝛽𝜇)
Li𝑑/𝑠−1 (−𝑒𝛽𝜇) ,

(8a)

Table 1: The temperatures 𝑇0, 𝑇∗, 𝑇𝜇, 𝑇𝐶V , and 𝑇𝜅𝑇 for which
𝜇(𝑇0) = 0, 𝜇(𝑇∗) = 𝐸𝐹, 𝜇(𝑇𝜇) is maximum, 𝐶V(𝑇𝐶V ) is maximum,
and 𝜅𝑇(𝑇𝜅𝑇) is maximum, for three characteristic values of 𝑑/𝑠,
namely, 1/4, 1/2, and 3/4, at which a nonmonotonic behavior is
observed.

𝑑/𝑠 𝑇0 𝑇∗ 𝑇𝜇 𝑇𝐶V 𝑇𝜅𝑇
0.25 15.6729 13.2260 5.0286 0.6532 0.3751
0.5 3.4797 1.8960 0.9365 0.8632 0.2906
0.75 1.9830 0.6666 0.4086 1.3893 0.2080

𝜅𝑇 = V

𝑁𝑘𝐵𝑇
Li𝑑/𝑠−1 (−𝑒𝛽𝜇)
Li𝑑/𝑠 (−𝑒𝛽𝜇) , (8b)

respectively.
In Figure 2 the dimensionless 𝐶V(𝑇) 𝑠/𝑑𝑁𝑘𝐵 (a) and𝜅𝑇/𝜅0 (b) are shown as function of the dimensionless tem-

perature 𝑇/𝑇𝐹 for different values of 𝑑/𝑠; clearly, for 𝑑/𝑠 <1, both quantities exhibit a nonmonotonous dependence
on 𝑇. The specific heat clearly exhibits the universal linear
dependence on 𝑇 in the low temperature regime and rises
with temperature evidencing the effects of dimensionality.
In the high temperature regime all the curves converge to
the classical result 𝑑𝑁𝑘𝐵/𝑠. Analogously, the isothermal com-
pressibility exhibits the universal behavior in the low tem-
perature regime, namely, a finite value due to the degeneracy
pressure. As temperature rises the effects of dimensionality
are uncovered but are hidden again in the high temperature
regime, where the classical dependence on temperature
appears.

The nonmonotonic dependencewith temperature of both
thermodynamic susceptibilities is manifested as a global
maximum at the temperatures 𝑇𝐶V and 𝑇𝜅𝑇 , respectively (see
solid lines in Figures 2(a) and 2(b)). One would be tempted to
propose that either of these temperatures would distinguish
between two distinct behaviors of the IFG: one where the
corresponding susceptibility behaves anomalously and the
other where it behaves standardly. Notice, nevertheless, that
such temperatures do not match between them or with
either the temperature 𝑇𝜇 or the temperature 𝑇∗, as can
be quantitatively appreciated in Table 1 and in Figure 2,
where solid triangles in both panels identify the values of
the corresponding susceptibility evaluated at 𝑇𝜇, solid circles
in (a) indicate the values of 𝐶V at 𝑇𝜅𝑇 , and, analogously,
solid squares in (b) mark the value of 𝜅𝑇 at 𝑇𝐶V for 𝑑/𝑠 =1/4, 1/2, and 3/4. Such discrepancy among all these tem-
peratures makes it difficult to consider them as points that
mark the separation of two distinct thermodynamic behav-
iors.

For the signal value 𝑑/𝑠 = 1, expressions in terms of ele-
mentary functions are possible (black-dashed lines in Fig-
ure 2); namely,

𝐶V𝑁𝑘𝐵 = 2
Li2 (𝑒𝛽𝜇)
ln (1 + 𝑒𝛽𝜇) − (1 + 𝑒−𝛽𝜇) ln (1 + 𝑒𝛽𝜇) (9a)
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Figure 2: Normalized thermodynamic susceptibilities as function of the dimensionless temperature 𝑇/𝑇𝐹 for different values of 𝑑/𝑠, say,
1/4, 1/2, 3/4, 1, 3/2, 2, and 3. (a) Specific heat per particle at constant generalized volume; the circles mark the corresponding values of 𝐶V

at 𝑇𝜅𝑇 , that is, at the temperature at which 𝜅𝑇 has a maximum value; analogously, the triangles do the same at 𝑇𝜇 where 𝜇 has a maximum.
(b) Isothermal compressibility scaled with 𝜅0 = (𝑑/𝑠)2(𝜋𝑑Γ(𝑑/2)/2𝜋𝑑/2)𝑠𝐶 𝑑/𝑠𝑠 𝐸−(𝑑/𝑠+1)𝐹 ; rhombus marks the corresponding values of 𝜅𝑇 at 𝑇𝐶V
that corresponds to the temperature at which 𝜅𝑇 has a maximum value and the triangles do the same as in (a). Notice the nonmonotonic
dependence on 𝑇 for 𝑑/𝑠 < 1.

𝜅𝑇 = V

𝑁𝑘𝐵𝑇
𝑒𝛽𝜇

(1 + 𝑒𝛽𝜇) ln (1 + 𝑒𝛽𝜇) , (9b)

where we have used the fact that the polylogarithm functions
of order 0, 1, 2 correspond to the elementary functions
Li0(𝑧) = ln(1 + 𝑥), Li1(𝑧) = 𝑧/1 + 𝑧, and Li2(𝑧) =
∫𝑧
0
𝑥d𝑥/1 + 𝑥, respectively. For 𝑑/𝑠 > 1, the variation with

temperature of the thermodynamic susceptibilities is stand-
ard.

3. Heuristic Explanation of the Nonmonotonic
Dependence of 𝜇 on 𝑇 for 𝑑/𝑠 < 1

Themonotonic decreasing behavior of the chemical potential
with temperature for 𝑑/𝑠 ≥ 1 is understood from the argu-
ment based on the fact that the internal energy𝑈 diminishes
from its zero temperature value 𝐸𝐹 after adiabatically adding
a fermion at the small temperatures 𝑇 ≪ 𝑇𝐹. Quoting Cook
and Dickerson [41], the system cools by redistributing the
particles into the available energy states in such a way that
the particle added goes into “. . . a low lying, vacant single
particle state, which will be a little below 𝐸𝐹,” This is a
consequence, as we will show below that in the three-dimen-
sional case the change of the Helmholtz free energy is
dominated by the change of entropy in the low temperature
limit; however, the argument provided in [41] does not give
the amount of the energy change involved in the process
or the change in temperature, making the nature of the

argument just qualitative. In fact, the difficulty in quantifying
those quantities arises from the use of the thermodynamic
relation

𝜇 (𝑆,V, 𝑁) = ( 𝜕𝑈𝜕𝑁)
𝑆,V

(10)

which requires the knowledge of 𝑈(𝑆,V, 𝑁), rarely con-
sidered for analysis in the variables 𝑆,V, 𝑁. From (2) the
functions 𝑁 = 𝑁(𝜇, 𝑇,V) (3) and 𝑆 = 𝑆(𝜇, 𝑇,V) (5) are
obtained and solved in order to obtain𝑈(𝑆,V, 𝑁). In Figure 3
the internal energy at constant entropy is plotted as function
of the particle density𝑁/V for 𝑆/𝑘𝐵V = 0.1 and for different
values of the ratio 𝑑/𝑠. The slope of the curves gives the
value of the chemical potential as given by expression (10).
Also in the same Figure 3, but in (b), the temperature of the
system, scaled with the Fermi temperature, as function of
the particle density is shown for 𝑆/𝑘𝐵V = 0.1. Clearly, the
systems cool regardless of the ratio𝑑/𝑠, when adding particles
to the system in an isentropic way.

It is possible to obtain an expression for 𝜇(𝑆,V, 𝑁)
from (10) by the use of the asymptotic behavior of the
Polylogarithm functions −Li𝜎(−𝑧) ≃ ln(𝑧)𝜎/Γ(𝜎 + 1) + (𝜋2/6) ln(𝑧)𝜎−2/Γ(𝜎−1)+⋅ ⋅ ⋅ ; after some algebrawe have expressed
that in the degenerate regime

𝜇 (𝑆,V, 𝑁)
≃ 𝐸𝐹 [1 + 3

2𝜋2 (
𝑆

𝑘𝐵V)2 (V𝑁)2 𝑠𝑑 (
𝑠
𝑑 − 1)] ,

(11)
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Figure 3:The dependence of the scaled internal energy𝑈/V𝐸𝐹 (a) and scaled temperature𝑇/𝑇𝐹 (b) as function of the dimensionless particle
density𝑁/V, whereV denotes the systems volume scaled with an arbitrary volumeV0.

where the nonmonotonic dependence on 𝑇 is evident when𝑑/𝑠 < 1. On the other hand, for the sake of completeness we
compute the system temperature as function of the particle
density, in the degenerate limit, which is given by

𝑇 (𝑆,V, 𝑁) ≃ 3
𝜋2

𝑠
𝑑𝑇𝐹

𝑆
𝑘𝐵V

V

𝑁 (12)

and, as is shown in Figure 3(b), decreases as (𝑁/V)−1.
How can we understand the rising of the chemical

potential when 𝑑/𝑠 < 1? Consider the number of particles
that can be excited by the energy 𝑘𝐵𝑇 ≪ 𝐸𝐹 from the𝑑-dimensional Fermi sphere. This number is approximately
given by𝑁𝑘𝐵𝑇/𝐸𝐹 while the number of available states above
the Fermi energy can be approximated by 𝑔(𝐸𝐹)𝑘𝐵𝑇. The
quotient between both quantities is exactly 𝑠/𝑑. This simple
and heuristic argument shows that there are more single-
particle excited states than excitable particles for 𝑑/𝑠 > 1,
which is evident because of the monotonic increasing behav-
ior of the DOS. In principle all the excited particles can
be accommodated into the available states without violating
Pauli’s principle. The accommodation, however, is not arbi-
trary. The probability of occupation of the available states in
thermal equilibrium must follow the Fermi-Dirac distribu-
tion and therefore just a fraction of the excitable fermions
are excited into the interval [𝐸𝐹, 𝐸𝐹 + 𝑘𝐵𝑇] (in fact, the occu-
pation probability for the states with energy larger than 𝜇 is
smaller than 1/2). For this case we can certainly apply the
argument given by Cook and Dickerson in [41] to infer that
when adding adiabatically an extra particle to the system, the
internal energy will decrease from 𝐸𝐹.

In contrast, Pauli exclusion principle prohibits complete
accommodation when 𝑑/𝑠 < 1, since in this case the DOS
has a monotonic decreasing dependence on energy and,

as a consequence, the number of available excited states is
reduced considerably in comparison with excitable number
of particles. We may conclude that when adding a particle in
an adiabatically way, the probability of occupying an energy
state below 𝐸𝐹 is very small and therefore, it will occupy an
energy state above 𝐸𝐹.

In order to quantitatively characterize the incomplete
accommodation described above, we consider the ratio 𝑅(𝑇)
of the number of particles in the energy interval [𝐸𝐹, 𝐸𝐹 + Δ]
to the number of available states in the same energy interval,

𝑅 (𝑇) = ∫𝐸𝐹+Δ
𝐸𝐹

𝑑𝜀 𝑔 (𝜀) 𝑓FD (𝜀, 𝑇)
∫𝐸𝐹+Δ
𝐸𝐹

𝑑𝜀 𝑔 (𝜀) . (13)

This quantity is shown in Figure 4 as function of temperature
with ratio Δ/𝐸𝐹 = 0.001, for different values of 𝑑/𝑠. The
choice Δ ∼ 𝑘𝐵𝑇 ≪ 𝐸𝐹 guarantees that a negligible number of
particles occupy states out of the interval [𝐸𝐹, 𝐸𝐹 +Δ]. Under
this condition we can approximate 𝑅(𝑇) by 𝑓FD(𝐸𝐹, 𝑇) and
for temperatures 0 < 𝑇 ≪ 𝑇𝐹 we have that 𝑅(𝑇) ≃ (1/2)[1 −(𝜋2/12)(𝑑/𝑠 − 1)(𝑇/𝑇𝐹)], and, therefore, the occupation
probability of the energy states in [𝐸𝐹, 𝐸𝐹 +Δ] is smaller than1/2 for 𝑑/𝑠 > 1, greater than 1/2 for 𝑑/𝑠 < 1, and equal to 1/2
for 𝑑 = 𝑠.
4. The Physical Meaning of 𝑇0
A condensation-like phenomenon has been suggested to
occur in the IFG in [28, 40]; this can be understood as the
formation of a “core” in momentum-space, reminiscent of
the Fermi sea, that starts forming at 𝑇0 and that grows up to
form the Fermi sea as temperature is diminished to absolute
zero. The number of particles in the core, 𝑛core, is computed
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isotherms lying in the region 𝜇 > 0 but below the zero temperature
isotherm it is possible to find 𝑛core.

as follows [40]: for a given value of the system density, let
us say 𝑛 and a temperature 𝑇𝑛core are found on the 𝜇-𝑛
plane as the value of 𝑛 that corresponds to the intersection
of the horizontal line 𝜇(𝑇, 𝑛) with the isotherm 𝜇0(𝑛) =𝜇(𝑇 = 0, 𝑛) (thick line in Figure 5 corresponds to 𝑑/𝑠 = 1/2).
Necessarily, such a process cannot be performed at constant
density implying an exchange of particles with and external
reservoir in thermodynamic equilibrium with the system.

It is evident that no such intersection exists if 𝜇(𝑇, 𝑛) <0; that is, no interpretation of a core can be formulated in the
nondegenerate regime; however, a solution 𝑛core ≤ 𝑛 always
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Figure 6: Fraction of particles in the Fermi-sphere-like condensate
as function of temperature scaled with 𝑇0 for different values of 𝑑/𝑠.

exists for 𝜇(𝑇, 𝑛) > 0 and 𝑑/𝑠 ≥ 1, since the isotherm 𝜇0(𝑛)
is a concave function of the particle density; in other words,
isotherms 𝜇(𝑇, 𝑛) of higher temperature are situated below𝜇0(𝑛) (see [40] where the case 𝑑/𝑠 = 3/2 is discussed). In con-
trast, for 𝑑/𝑠 < 1, the zero temperature isotherm is a convex
function of 𝑛 as shown in Figure 5, and two possibilities may
happen: (i) if 𝑇 < 𝑇∗ the intersection occurs at 𝑛core < 𝑛
(dark-broken lines in Figure 5 for the case 𝑑/𝑠 = 1/2); (ii) on
the contrary, if 𝑇 > 𝑇∗ the intersection occurs at 𝑛core > 𝑛
as shown explicitly in the same figure. The dependence of
the fraction 𝑛core/𝑛 on temperature is shown in Figure 6 for
different values of 𝑑/𝑠 and is explicitly given by the expression

𝑛core𝑛 = [𝜇 (𝑇)𝐸𝐹 ]𝑑/𝑠 for 𝑇 ≤ 𝑇0. (14)

Notice that the nonmonotonic dependence of 𝜇(𝑇) for𝑑/𝑠 < 1makes 𝑛core/𝑛 to reach the value 1 at the temperature𝑇∗ (see circles in Figure 6).

5. The Argument Energy-Entropy and
the Meaning of 𝑇∗

We now attempt to give a physical meaning to 𝜇 in the region
where is larger than𝐸𝐹, that is, in the interval of temperatures[0, 𝑇∗]. For this purpose we compute 𝜇(𝑇,V, 𝑁) from the
thermodynamic relation

𝜇 (𝑇,V, 𝑁) = ( 𝜕𝐹𝜕𝑁)
𝑇,V

, (15)

where 𝐹 = 𝐹(𝑇,V, 𝑁) stands for the Helmholtz free energy
given by 𝐹 = −𝑘𝐵𝑇 ln𝑍𝑁,V(𝛽) = 𝑈 − 𝑇𝑆 with 𝑍𝑁,V(𝛽) =∑𝐸𝑁,V exp{−𝛽𝐸𝑁,V} the canonical partition function. The
sum is made over the energies 𝐸𝑁,V of all possible configura-
tionswith exactly𝑁 fermions in the volumeV. An advantage
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of expression (15) over the use of the relation (10) is that,
at constant temperature and volume, the chemical potential
measures the balance between the change of the internal
energy and the heat exchanged when the number of particles
in the system is varied from𝑁 to𝑁+1, making it suitable for
the use of an energy-entropy argument [74]. Thus expression
(15) provides a suitable operational definition, in the discrete
case, of the chemical potential when only one particle is
added isothermally to the system; namely [47, 72, 75],

𝜇 (𝑇,V, 𝑁) = Δ𝐹 ≡ 𝐹 (𝑁 + 1, 𝑇,V) − 𝐹 (𝑁, 𝑇,V) , (16a)

= 𝑘𝐵𝑇 ln[ 𝑍𝑁,V (𝛽)𝑍𝑁+1,V (𝛽)] . (16b)

The rhs of expression (16a) can be explicitly written as Δ𝑈 −𝑇Δ𝑆, where Δ𝑈 = 𝑈(𝑇,V, 𝑁 + 1) − 𝑈(𝑇,V, 𝑁) and Δ𝑆 =𝑆(𝑇,V, 𝑁 + 1) − 𝑆(𝑇,V, 𝑁) are the internal energy change
of the system and the heat produced 𝑇Δ𝑆 when adding,
isothermally, exactly one more fermion (expression (16a)
arises from the forward difference discretization of the con-
ventional definition (15).The physical interpretation is simple
and the same for the backward difference: they simply give
the change in the free energy when adding an extra particle
to the system. Experimental realization of such situation is,
for instance, Bose-Einstein condensation at constant temper-
ature by increasing the particle number of the system [76]
and injection of electrons into low-dimensional systems. The
negative of such difference gives the change in the free energy
when removing a particle from the system. Another defini-
tion of 𝜇 is given by the average of the forward and backward
differences which is suitable when both processes, adding
and removing a particle, are present at finite temperatures as
occurs in the grand canonical ensemble).

At zero temperature, the chemical potential is given by the
change in internal energy only, whose value coincides with
the Fermi energy of𝑁 + 1 fermions; that is,

𝜇 (V, 𝑁) = 𝐸𝐹,𝑁+1, (17)

where 𝐸𝐹,𝑁 denotes the explicit dependence of the Fermi
energy on the particle number. If this value is subtracted from
(16a) we have that

Δ𝜇 = Δ𝑈 − 𝑇Δ𝑆, (18)

where Δ𝜇 = 𝜇(𝑇,V, 𝑁) − 𝐸𝐹,𝑁+1 and Δ𝑈 = Δ𝑈 − 𝐸𝐹,𝑁+1.
In this way, if for a given temperature we have that Δ𝜇 ≤ 0
(i.e., the chemical potential lies below the Fermi energy),
then the relative change in the internal energy is smaller than
the respective heat exchange by adding the particle. In other
words, the effects of the addition of a particle to the system, in
an isothermal way, are such that the entropic effects dominate
over the energetic ones at that 𝑇. This argument accounts
for the monotonic decreasing behavior of 𝜇 with 𝑇 and is
equivalent with argument given in [41]. Further, if Δ𝜇 > 0
for a given 𝑇, then the energetic changes are the ones that
dominate over the entropic ones, which give origin to the rise
of 𝜇 above the Fermi energy as has been shown in the pre-
vious section. The temperature that separates both regimes

Table 2: The first 4 expressions for the canonical partition function
are shown.

𝑁 𝑍𝑁(𝛽)
1 𝑍1(𝛽)
2 1

2𝑍21(𝛽) −
1
2𝑍1(2𝛽)

3 1
6𝑍31(𝛽) −

1
2𝑍1(𝛽)𝑍1(2𝛽) +

1
3𝑍1(3𝛽)

4
1
24𝑍41(𝛽) −

1
4𝑍21(𝛽)𝑍1(2𝛽) +

1
3𝑍1(𝛽)𝑍1(3𝛽) +1

8𝑍21(2𝛽) −
1
4𝑍1(4𝛽)

coincides with 𝑇∗, which is different from zero when 𝑑/𝑠 <1. This suggests the possibility of interpreting 𝑇∗ as a cri-
tical temperature at which a phase transition occurs.

In order to show the validity of these ideas we first
use expression (16b) to compute 𝜇 in two distinct one-
dimensional systems each consisting of𝑁 spinless fermions.
One corresponds to the IFG trapped by a box-like potential
(𝑑/𝑠 = 1/2) and the other to the experimentally feasible sys-
tem of and IFG trapped by a harmonic trap (𝑑/𝑠 = 1). We
show that, for the former case, 𝜇 rises above 𝐸𝐹,𝑁+1 and even-
tually returns to its decreasing behavior as the system tem-
perature is increased from zero. For the latter, we show that𝜇 < 𝐸𝐹,𝑁+1 for all 𝑇 > 0.

For exactly 𝑁 noninteracting fermions, the partition
function satisfies the recursive relation [77, 78].

𝑍𝑁 (𝛽) = 1
𝑁
𝑁∑
𝑛=1

(−1)𝑛+1 𝑍1 (𝑛𝛽)𝑍𝑁−𝑛 (𝛽) , (19)

where 𝑍1(𝛽) = ∑𝜀 exp{−𝛽𝜀} is the single-particle partition
functionwith 𝜀 being the single-particle energy spectrum and𝑍0(𝛽) ≡ 1.

Expression (19) can be reduced to the calculation of𝑍1(𝑚𝛽), with𝑚 being a positive integer, by noting that𝑍𝑁(𝛽)
can be written as a sum of the product over the distinct
parts of all the partitions {(𝜆1, 𝜆2, . . . , 𝜆𝑟)} of 𝑁 (a partition
is defined as a nonincreasing sequence of positive integers𝜆1, 𝜆2, . . . , 𝜆𝑟 such that ∑𝑟𝑖=1 𝜂𝑖𝜆𝑖 = 𝑁, where 𝜂𝑖 denotes the
multiplicity of the part 𝜆𝑖 in a given partition, that is, the
partition 2 + 2 + 2 + 1 of 7; the part 2 has multiplicity 3; see
[79, pp.1]); thus

𝑍𝑁 (𝛽)
= (−1)𝑁 ∑

{(𝜆1 ,𝜆2 ,...,𝜆𝑟)}

𝑟∏
𝑚=1

(−1)𝜂𝑚
𝜆𝜂𝑚𝑚 𝜂𝑚! [𝑍1 (𝜆𝑚𝛽)]

𝜂𝑚 . (20)

The first four terms can be checked straightforwardly and are
shown in Table 2.

Computationally, evaluation of expression (20) is faster
than evaluating expression (19) since recursion is avoided and
only the algorithm for computing the unrestricted partitions
of the integer𝑁 is needed. Such algorithm forms part of the
MATHEMATICA software package distribution. The com-
putation time and memory requirements grow with number
of partitions 𝑝(𝑁) of 𝑁, which grows asymptotically as
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exp{√𝑛} thus limiting computation to 𝑁 ∼ 10. Surprisingly,
the calculation exhibits a fast convergence to the well-known
result obtained from (3) for 64 particles (see Figure 7 for the
box-like trap).

For the box potential in one dimension, the single-
particle partition function is given in terms of the Jacobi theta
function 𝜗3(𝑢, 𝑞) = 1 + 2∑∞𝑛=1 𝑞𝑛2 cos(2𝑛 ∗ 𝑢) as 𝑍1(𝛽) =(1/2)[𝜗3(0, 𝑒−𝛽𝜀0) − 1], where the energy scale 𝜀0 in the argu-
ment of the exponential is ℏ2𝜋2/2𝑚𝐿2. For few particles, the
chemical potential does not rise as (𝑇/𝑇𝐹)2 as is expected
from the grand canonical ensemble result, but it grows
much more slower as is shown in the inset of Figure 7.
This is consequence of the low temperature behavior of
the partition function, which satisfies that 𝑍𝑁/𝑍𝑁+1 ∼
𝑒𝛽𝐸𝐹,𝑁+1[1 + 𝑒−𝛽(2𝑁+1)𝜀0] for 𝑇/𝑇𝐹 ≪ 1, leading thus to Δ𝜇 ∼
𝑘𝐵𝑇𝑒−𝛽(2𝑁+1)𝜀0 .

For the harmonic potential in dimension one, an exact
analytical expression for 𝑍𝑁(𝛽) is known [24, 80]; namely,

𝑍𝑁 (𝛽) = exp [−𝑁2𝛽ℏ𝜔2 ]
𝑁∏
𝑗=1

[1 − exp (−𝛽ℏ𝜔𝑗)]−1 . (21)

A direct application of (16b) leads to

𝜇 = 𝐸𝐹,𝑁+1
+ 𝑘𝐵𝑇 ln [1 − exp (−𝛽𝐸𝐹,𝑁+1) exp(−𝛽ℏ𝜔2 )] . (22)

Clearly (22) is a monotonically decreasing function of 𝑇
agreeing with the grand canonical ensemble result; expres-
sion 𝜇 = 𝐸𝐹 + 𝑘𝐵𝑇 ln[1 − 𝑒−𝑇𝐹/𝑇] is recovered in the limit𝑁 →∞.

6. Conclusions and Final Remarks

In this paper we have presented a discussion on the meaning
of the nonmonotonic dependence on temperature of the
thermodynamics properties of low-dimensional, trapped,
IFGs, with focus on the chemical potential (a similar behavior
has been predicted for weakly repulsively interacting Bose
gases [81] in that a hard core Bose gas behaves, at least
qualitatively, as an ideal Fermi gas). The parameter used to
characterize the trapping and dimensionality 𝑑 of the system
is merely 𝑑/𝑠 that explicitly appears in the single-particle
density of states (1). Thus low-dimensional trapped systems
are characterized by values of 𝑑/𝑠 < 1. In this range of values,
the chemical potential, the specific heat at constant volume,
and the isothermal compressibility exhibit a nonmonotonic
dependence on temperature which have been characterized
by the temperatures 𝑇𝜇, 𝑇𝐶V , and 𝑇𝜅𝑇 [60], respectively. We
also have computed 𝑇0 as function of 𝑑/𝑠 [28, 40] and
introduced a new characteristic temperature 𝑇∗ ≤ 𝑇0, which
corresponds to the nonzero value of the temperature at which𝜇(𝑇∗,V, 𝑁) = 𝐸𝐹.

We found that 𝑇∗ marks the temperature at which the
particle density of a Fermi-like core 𝑛core that starts forming𝑇0 saturates at the value of the total particle density of the

From equation (3)
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Figure 7: The chemical potential (16b), scaled with 𝐸𝐹,𝑁+1 as
function of the dimensionless temperature 𝑇/𝑇𝐹, with 𝑇𝐹 =𝐸𝐹,𝑁+1/𝑘𝐵, for the number of particles 𝑁 = 2, 4, 8, 16, and 32.
Note that the results with 32 particles (double dashed-dotted line)
are close to the grand canonical ensemble result (black line in long
dashes) computed from (3). A comparison with the Sommerfeld
approximation for low temperatures is shown in the inset.

system 𝑛. This suggests that 𝑇∗ can be considered as the
relevant temperature of the isotropically trapped IFG, as is
supported by the energy-entropy-like argument presented in
Section 5. The region in the 𝜇-𝑇 plane, for which 𝜇 > 𝐸𝐹
for 𝑇 ≤ 𝑇∗, represents the set of thermodynamic states for
which the change in theHelmholtz free energy, when increas-
ing the particle density of the system, is dominated by the
changes of the internal energy and would correspond to
an ordered phase. In the complementary region for which𝑇 ≥ 𝑇∗, the thermodynamic states are characterized by
changes in𝐹(𝑇,V, 𝑁) dominated by heat exchange by chang-
ing entropy and can be considered as a “disordered phase.”
Though, heuristic energy-entropy arguments have been used
to uncover the possibility of a phase transition [74], we want
to emphasize that we are not claiming the existence of a phase
transition in the IFG, on the basis that thermodynamic quan-
tities do not show a singular behavior of the thermodynamic
susceptibilities at 𝑇∗.

Though the chemical potential is not directly measured
in current experiments, development on imaging techniques
of ultracold gases [82–85] has opened the possibility of
experimentalists to measure the local particle density in situ
and from the data to extract 𝜇 and 𝑇.
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