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The diffusion in two dimensions of non-interacting active particles that follow an arbitrary motility
pattern is considered for analysis. Accordingly, the transport equation is generalized to take into
account an arbitrary distribution of scattered angles of the swimming direction, which encompasses
the pattern of motion of particles that move at constant speed. An exact analytical expression
for the marginal probability density of finding a particle on a given position at a given instant,
independently of its direction of motion, is provided; and a connection with a generalized diffusion
equation is unveiled. Exact analytical expressions for the time dependence of the mean-square
displacement and of the kurtosis of the distribution of the particle positions are presented. For this,
it is shown that only the first trigonometric moments of the distribution of the scattered direction
of motion are needed. The effects of persistence and of circular motion are discussed for different
families of distributions of the scattered direction of motion.

I. INTRODUCTION

The intense study of the out-of-equilibrium systems
called active matter, has allowed to set up a firm basis for
the understanding of a variety of out-of-equilibrium phe-
nomena. Even at the individual level of description, the
intrinsic nonequilibrium nature of active motion leads to
diverse phenomena not observed in particles that move
passively. Furthermore, the great diversity of the pat-
terns of self-propelled motion observed in biological or-
ganisms (see the introductory section in Refs. [1, 2]) or
in artificially designed active particles [3], enriches the
variety of effects exhibited by these systems .

A salient feature of active motion is that it is persistent,
a characteristic that explicitly depends on the specific
pattern of motion performed by the particle. The effects
of persistence are well known, for instance, when active
particles are confined to move under the effects of either
an external potential or hard-walls, they lead to station-
ary distributions that differ from the expected ones. In
the case of confined motion by trapping potentials, the
effects of persistence lead to distributions that differ from
the one given by Boltzmann and Gibbs [4–7]. Theoreti-
cal comparative studies that consider the two more stud-
ied patterns of motion –active Brownian motion, where
the orientation of motion undergoes rotational diffusion,
and run-and-tumble motion, which alternates running
events with instantaneous, temporally uncorrelated tum-
bling events– reveal that, although there are important
quantitative differences between them, they similarly be-
have in the long-time regime (normal diffusion) and have
the same behavior in the short-time regime (ballistic mo-
tion). In the intermediate-time regime however, i.e., for
times of the order of the persistence time, conspicuous
differences are revealed between both patterns of motion
[8].
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Hence, to have at our disposal a theoretical framework
that incorporates an arbitrary pattern of motion of active
swimmers it is highly desirable. An important theoretical
framework based on continuous time random walks has
been known in the literature, and focuses on a family
of patterns of motion characterized by the Poissonian or
non-Poissonian statistics between turning events [1, 2, 9].
In this paper, I present a theoretical framework of two-
dimensional motion of active swimmers, for a family of
patterns of motion characterized by constant speed and
an arbitrary probability distribution of the turning angle
(scattered angle) of the swimming direction.

On the basis of the transport equation [10, 11], I in-
troduce in section II such a framework, and present the
corresponding Fokker-Planck equation for the probabil-
ity density that at time t, a particle is located at x and
moving along the direction v̂. Its general solution is pre-
sented in Sect. III. The marginal probability distribution
of finding a swimmer at x at time t, independently of the
direction of motion is of great interest, and in Sect. III
I provide an exact solution, whose physical consequences
are analyzed. A connection with a generalized diffusion
equation is also unveiled. In section IV generalities, ap-
plications and predictions of the framework are presented
for some general families of patterns of motion. Finally
I give my concluding remarks in V.

II. THE TWO-DIMENSIONAL ACTIVE
TRANSPORT EQUATION

The starting point is the two-dimensional equation for
the probability density, P(x, ϕ, t), of a single particle be-
ing at position x, moving at constant speed v0 along a
direction given by the angle ϕ at time t, to say

∂

∂t
P(x, ϕ, t) + v0v̂ · ∇P(x, ϕ, t) = DT∇2P(x, ϕ, t)

+

∫ π

−π
dϕ′KA (ϕ|ϕ′)P(x, ϕ′, t), (1)
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where the unit vector v̂ is defined by (cosϕ, sinϕ), ϕ be-
ing the angle between the direction of motion and the
horizontal axis of a given Cartesian reference frame. DT

is the translational diffusion coefficient that gives account
of the thermal fluctuations exerted by the surrounding
medium. The transition rate of the direction of motion,
KA(ϕ|ϕ′), gives the probability rate of the transition
from the direction of motion ϕ′ to ϕ, and encompasses
the detailed information of a specific pattern of active
motion considered. In this paper, I focus on the case in
which KA(ϕ|ϕ′) is independent of time, of the swimming
speed and of the particle position. However, such depen-
dences must be considered in the more general situations,
as for instance in the case of the bacterium Pseudomonas
putida, whose swimming speed depends, after a transi-
tion, on the selected direction of motion [12].

I refer to Equation (1) as the active-transport equation.
The passive fluctuations exerted on the particle motion
are separated from the active ones due to the time-scale
disparity between them, which allows to write

P(x, ϕ, t) =

∫
d2x′GDT (x− x′, t)P (x′, ϕ, t), (2)

where GD(x, t) denotes the two-dimensional Gaussian
propagator of the diffusion equation with diffusion coef-
ficient D, given explicitly by exp{−x2/4Dt}/4πDt. The
active part of motion is entailed by the probability den-
sity P (x′, ϕ, t), which satisfy the gain-loss equation

∂

∂t
P (x, ϕ, t) + v0v̂ · ∇P (x, ϕ, t) =∫ π

−π
dϕ′Q (ϕ,ϕ′)P (x, ϕ′, t)

−
[∫ π

−π
dϕ′Q (ϕ′, ϕ)

]
P (x, ϕ, t), (3)

when KA(ϕ|ϕ′) is written in terms of the distribution of
scattering-angle Q(ϕ,ϕ′) as

KA(ϕ|ϕ′) = Q(ϕ,ϕ′)− δ(ϕ− ϕ′)
∫ π

−π
dϕ′′Q(ϕ′′, ϕ). (4)

A further simplification can be realized by consider-
ing a rotationally invariant transition rate function, i.e.,
Q(ϕ,ϕ′) = Q(ϕ− ϕ′). In such a case we can write [11]

∂

∂t
P (x, ϕ, t) + v0v̂ · ∇P (x, ϕ, t) =

Λ

∫ π

−π
dϕ′Q̃ (ϕ− ϕ′)P (x, ϕ′, t)

− ΛP (x, ϕ, t), (5)

where Λ ≡
∫ π
−π dϕ

′Q(ϕ′) is the inverse of the time-scale
that measures the average time between transitions, and

Q̃(ϕ) = Q(ϕ)/Λ.

III. THE GENERAL SOLUTION TO THE
ACTIVE TRANSPORT EQUATION

We are interested in the analytical solutions, P (x, ϕ, t),
if any, of Eq. (5), with the initial condition P (x, ϕ, 0) =
δ(2)(x)/2π, which corresponds to the case of an ensemble
of independent active particles that depart from the ori-
gin in a Cartesian system of coordinates and propagates
in a random direction of motion drawn from the uniform
distribution in [−π, π], δ(2)(x) being the two dimensional
Dirac’s delta function.

Due to the assumed spatial isotropy of the system, I
apply the Fourier transform to Eq. (5) and obtain

∂

∂t
P̃ (k, ϕ, t) + iv0 v̂ · k P̃ (k, ϕ, t) =

Λ

∫ π

−π
dϕ′Q̃ (ϕ− ϕ′) P̃ (k, ϕ′, t)

− ΛP̃ (k, ϕ, t), (6)

where

P̃ (k, ϕ, t) =

∫
d2x

2π
e−ik·x P (x, ϕ, t), (7)

denotes the symmetric Fourier transform of P (x, ϕ, t)
and k = (kx, ky), denotes the system’s wave-vector. The
following Fourier series expansion,

P̃ (k, ϕ, t) =
1

2π

∞∑
n=−∞

p̃n(k, t) e−λnt einϕ, (8)

is suitable since it fulfills the periodicity condition of the

probability density, P̃ (k, ϕ, t) = P̃ (k, ϕ+ 2π, t).
The coefficients p̃n(k, t) in the expansion (8) are ob-

tained by the use of the standard orthogonality relation
among the Fourier basis functions

{
einϕ

}
, explicitly

p̃n(k, t) =

∫
d2k

2π
e−ik·x pn(x, t) (9)

= eλnt
∫ π

−π
dϕ P̃ (k, ϕ, t)e−inϕ (10)

and satisfy the identity p̃∗−n(k, t) = p̃n(k, t), since the
probability density P (x, ϕ, t) is a real function.

The factors e−λnt in the expansion (8), correspond to
the coefficients, cn(t), of the expansion in Fourier series
of f(ϕ, t) that solves the equation

∂

∂t
f(ϕ, t) = Λ

∫ π

−π
dϕ′Q̃ (ϕ− ϕ′) f(ϕ′, t) − Λf(ϕ, t),

(11)

with λn a complex number given by

λn = Λ
[
1− 〈e−inϕ〉Q̃

]
, (12)
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where

〈Φ(ϕ)〉Q̃ =

∫ π

−π
dϕ Q̃(ϕ)Φ(ϕ) (13)

denotes the average of the ϕ-dependent quantity Φ(ϕ)
computed by the use of the scattering-angle distribution

Q̃(ϕ).
Accordingly, the main features of a particular pattern

of active motion are encoded in the distribution of scat-
tered angles Q̃(ϕ), which gives the particular orientation
process of the swimming direction. Such features are
equivalently inherited in the trigonometric moments:

Γn = Λ
[
1− 〈cosnϕ〉Q̃

]
, (14a)

Ωn = Λ〈sinnϕ〉Q̃, (14b)

which correspond to the real and imaginary part of λn,
respectively, thus λn = Γn + iΩn. These quantities pro-
vide the relevant information about the diffusion process
of active particles (see Refs. for the case of correlated
random walks [13, 14]).

A series of properties for Γn and Ωn can be deduced

in a straightforward way. From the normalization of Q̃

we have that Γ0 = Ω0 = 0, and since Q̃(ϕ) is a real
valued function, we have that the complex conjugate
of λn is given by λ∗n = λ−n, which implies Γn = Γ−n
and Ωn = −Ω−n. From this property one can show
that the coefficients p̃n(k, t) of the expansion (15) satisfy
p̃−n(−k, t) = p̃∗n(k, t). Notice further that 0 ≤ Γn ≤ 2Λ
and that −Λ ≤ Ωn ≤ Λ. With this observations, the
expansion (8) can be explicitly split as

P̃ (k, ϕ, t) =
1

2π
p̃0(k, t)+

1

2π

∞∑
n=−∞,
n 6=0

p̃n(k, t)e−Γnte−iΩnteinϕ. (15)

Evidently, P (x, ϕ, t) tends asymptotically to p0(x, t)/2π
as time goes by.

A. The coefficients pn(x, t)

After substitution of Eq. (8) into Eq. (6), and use of
the orthogonality of the Fourier basis functions, a set of
coupled ordinary differential equations for the coefficients
p̃n(k, t) is obtained, namely [15–17]

d

dt
p̃n(k, t) = −v0

2
ikeλnt

[
e−iθ e−λn−1t p̃n−1(k, t)

+eiθ e−λn+1t p̃n+1(k, t)
]
, (16)

where θ and k correspond to the polar coordinates of the
two-dimensional Fourier vector k, i.e., kx ± iky = ke±iθ.
Equations (16) are complemented by the initial condi-

tions p̃
(0)
n (k) = (2π)−1δn,0, which are obtained straight-

forwardly from the initial distribution considered, i.e.,
P (x, ϕ, 0) = δ(2)(x)/2π.

The first five coefficients, p0(x, t), p±1(x, t) and
p±2(x, t), in the position domain, can be related to: i)
the probability density

%(x, t) =
1

2π
p0(x, t) =

1

2π

∫ π

−π
dϕP (x, ϕ, t); (17)

ii) the first-rank tensor j(x, t) with components

jx(x, t) =
1

π
Re[p1(x, t)e−λ1t]

=
1

π

∫ π

−π
dϕ cosϕP (x, ϕ, t), (18a)

jy(x, t) =
1

π
Im
[
p−1(x, t)e−λ−1t

]
=

1

π

∫ π

−π
dϕ sinϕP (x, ϕ, t), (18b)

from which the probability density current J(x, t) =
v0
2 j(x, t) is introduced; and iii) the traceless, symmet-

ric, 2×2 second-rank tensor W(x, t), whose entries are
given by

Wxx(x, t) = −Wyy(x, t)

=
1

π
Re
[
p2(x, t)e−λ2t

]
=

1

π

∫ π

−π
dϕ cos 2ϕP (x, ϕ, t), (19a)

Wxy(x, t) = Wyx(x, t)

=
1

π
Im
[
p−2(x, t)e−λ−2t

]
=

1

π

∫ π

−π
dϕ sin 2ϕP (x, ϕ, t). (19b)

B. The probability density p0(x, t)

As in previous studies, the probability density of find-
ing a particle at position x, independently of its direction
of motion, p0(x, t), is of interest. After transforming the
time domain to the Laplace domain, an exact solution
for p̃0(k, ε) can be obtained from Eq. (16) in the form of
continuous fractions, namely
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p̃0(k, ε) = p̃
(0)
0 (k)

1

ε+
(v0/2)2k2

ε+ λ1 +
(v0/2)2k2

ε+ λ2 +
(v0/2)2k2

ε+ λ3 +
.. .

+
(v0/2)2k2

ε+ λ∗1 +
(v0/2)2k2

ε+ λ∗2 +
(v0/2)2k2

ε+ λ∗3 +
.. .

, (20)

where the explicit dependence on the variable ε conveys that the Laplace transform
[
f(ε) =

∫∞
0
dt e−εtf(t)

]
has been

carried out, and p̃
(0)
0 (k) denotes the initial distribution p̃0(k, t = 0). The solution (20) is akin to the solution found

in Ref. [18] for the end-to-end distribution of a wormlike chain as has been pointed in Ref. [19]. In the present paper
the meaning of the solution (20) can be elucidated after rewritten it as

p̃0(k, ε) =
p̃

(0)
0 (k)

ε+ (v0/2)2 k2 D̃(k, ε)
, (21)

or equivalently as

εp̃0(k, ε)− p̃(0)
0 (k) = −

(v0

2

)2

k2 D̃(k, ε)p̃0(k, ε), (22)

which can be recognized as the Fourier-Laplace transform of the spatially-non-local generalized diffusion equation,

∂

∂t
p0(x, t) =

(v0

2

)2
∫
d2x′

∫ t

0

dsD(x− x′, t− s)∇′2p0(x′, s), (23)

introduced in Ref. [20] and used in the context of animal motion with internal states in [21]. The connecting function
D(x, t) is given explicitly in the Fourier-Laplace domain by

D̃(k, ε) =
1

ε+ λ1 +
(v0/2)2k2

ε+ λ2 +
(v0/2)2k2

ε+ λ3 +
.. .

+
1

ε+ λ∗1 +
(v0/2)2k2

ε+ λ∗2 +
(v0/2)2k2

ε+ λ∗3 +
.. .

. (24)

We introduce the recursive relations

∆n(k, ε) =
1

ε+ λn+1 + (v0/2)2k2∆n+1(k, ε)
, (25a)

∆n(k, ε) =
1

ε+ λ−(n+1) + (v0/2)2k2∆n+1(k, ε)
, (25b)

for n ≥ 0, to write Eq. (24) in a simplified form as

D̃(k, ε) = ∆0(k, ε) + ∆0(k, ε). (26)

In the asymptotic limit, i.e., in the long-time regime,
ε → 0, and in the short-wave-vector limit, k = |k| →
0, the connecting function is given by the zeroth order

approximant, D̃(0)(ε), obtained after evaluating D̃(k, ε)
at k = 0, i.e.,

D̃(0)(ε) ≡ D̃(0, ε) =
1

ε+ λ1
+

1

ε+ λ∗1
. (27)

This implies a spatially-local connecting function, that
exhibits oscillations of frequency Ω1, exponentially

damped with relaxation time Γ−1
1 , namely

D(0)(x, t) = 2δ2(x)e−Γ1t cos Ω1t. (28)

With this approximation of the connecting function, we
have that Eq. (23) can be rewritten in the form

∂

∂t
p0(x, t) =

v2
0

2

∫ t

0

ds e−Γ1(t−s) cos [Ω1(t− s)] ∇2p0(x, s),

(29)
which corresponds to a generalization of the telegrapher
equation in that it incorporates the effects of an effec-
tive torque that gives rise to circular motion of angular
speed Ω1. If Ω1 = 0, Eq. (29) reduces to the standard
telegrapher’s equation [22]

∂2

∂t2
p0(x, t) + Γ1

∂

∂t
p0(x, t) =

v2
0

2
∇2p0(x, s), (30)

where the diffusion coefficient due to the persistence of
the swimming direction, Dpers = v2

0/2Γ1, is apparent.
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In advance, I identify Γ−1
1 with the persistence time. In

the temporal asymptotic limit we have, from (20), that

p̃0(k, ε) ∼
[
ε+ (v0/2)2k2

(
λ−1

1 + λ∗1
−1
)]−1

, which can be
inverted straightforwardly to the spatial and temporal
variables to give the Gaussian GDeff

(x, t), i.e.,

p0(x, t) ∼ 1

4πDefft
exp

{
− x2

4Defft

}
. (31)

where the effective diffusion coefficient, Deff, due to active
motion is defined by Deff = Dpers/(1 + Ω2

1/Γ
2
1), which

reduces to Dpers when Ω1 vanishes.
On the other hand, in the short time regime (|ε| � |λn|

for all n), we have that p̃0(k, ε) can be approximated

by p̃
(0)
0 (k)

[
1/ε− 2(v0/2)2k2/ε3 + . . .

]
. After taking the

inverse Laplace transformation we obtain

p̃0(k, t) ' p̃(0)
0 (k)J0(kv0t), (32)

that results from identifying the first two terms of the
power series of the zeroth-order Bessel function of the
first kind J0(x) = 1− (x/2)2 + . . .. For the initial distri-
bution considered, we obtain the radial pulse:

p0(x, t) ' δ(x− v0t)

2πx
(33)

that propagates at speed v0 free of the wakes exhibited
by the solution of the approximated description given by
the telegrapher’s equation in the short time regime [15],
where x = ‖x‖.

The next order approximant of D̃(k, ε) is of particular
interest since it leads to a connecting function coupled
in the spactail and temporal variables. Some models of
stochastic motion consider memory functions that couple
space and time, as is the case for the family of stochas-
tic motion known as Lévy walks –described within the
formalism of continuous time random walks– where the
transition probability density that connects two distinct
points in space at different times is constrained by the
condition that the walker moves at constant speed [23].

In our case the first order approximant, D̃(1)(k, ε), is ob-

tained from D̃(k, ε) after evaluating ∆1(k, t) and ∆1(k, ε)
at k = 0, which leads to

D̃(1)(k, ε) =
1

ε+ λ1 +
(v0/2)2k2

ε+ λ2

+
1

ε+ λ∗1 +
(v0/2)2k2

ε+ λ∗2

.

(34)

In the time regime for which |ε| � |λ2|, an explicit
simple expression for D(1)(x, t) in spatial and temporal
coordinates is obtained, namely

D(1)(x, t) = 2e−Γ1tGv20/4Γ2
(x, t)×{

cos

[
Ω1t

(
1 +

Ω2

Ω1

x2

v2
0t

2

)]
+

Ω2

Γ2
sin

[
Ω1t

(
1 +

Ω2

Ω1

x2

v2
0t

2

)]}
. (35)

Due to the explicit appearance of the Gaussian
Gv20/4Γ2

(x, t), the connecting function (35) gives a major

contribution to those spatial positions x, x′, whose sepa-
ration is less or of the order of the distance

√
v2

0t/Γ2, and
decays quickly to zero for pairs of points whose distance
is larger than this. It is expected, that the Gaussian
nonlocality of (35) is a consequence of the approxima-
tion made, and that a connecting function that vanishes
for pair of points whose distance is larger than v0t is
more appropriate. Note that (35) reduces to the long-
time approximation given by (28), by taking the limit
Ω2,Γ2 → 0.

C. The connecting function D̃(k, ε) and the
moments of p0(x, t)

For the initial condition considered, we have that the
solution given in Eq. (21) is a rotationally symmetric
function that depends solely on k2, and we simply write
p̃0(k, ε). Likewise, we can write p0(x, ε) = (2π)−1p0(x, ε),
where x denotes the magnitude of x, and the explicit
appearance of the Laplace variable ε indicates that the
Laplace transform is considered. The mentioned rota-
tional symmetry allows to write

p̃0(k, ε) =
1

2π

∞∑
n=0

(−1)n

(n!)2

k2n

22n
〈x2n(ε)〉rad, (36)

where 〈z[x(ε)]〉rad denotes the average of z(x) over the
radial distribution x p0(x, ε), i.e., the rotationally sym-
metric moments are given by

〈x2n(ε)〉rad =

∫ ∞
0

dxx2n x p0(x, ε), (37)

and obtained directly from p̃0(k, ε) from the formula

〈x2n(ε)〉rad = 2π
(−1)nn! 2n

(2n− 1)!!

d2n

dk2n
p̃0(k, ε)

∣∣∣∣
k=0

. (38)

1. The mean-square displacement

The mean-square displacement is defined by 〈x2(t)〉,
which coincides with 〈x2(t)〉rad. It follows straightfor-
wardly from (38), that the Laplace transform of the
mean-square displacement is given by

〈x2(ε)〉 =
v2

0

ε2
D̃(k, ε)

∣∣∣∣
k=0

=
v2

0

ε2
D̃(0)(ε), (39)

since D̃(k, ε)
∣∣∣
k=0

corresponds to the zeroth-order ap-

proximant D̃(0)(ε) of D̃(k, ε), given in (27). After invert-
ing the Laplace transform, the exact time dependence of
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FIG. 1. (Color online) Dimensionless mean-square displace-
ment Γ2

1〈x2(t)〉/v20 as function of the dimensionless time Γ1t
for different values of the ratio Ω1/Γ1, namely, 0.1, 1, 10, 100.

the mean-square displacement is given by

〈x2(t)〉 = 4
Deff

Γ1

Γ1t−
1− Ω2

1

Γ2
1

1 +
Ω2

1

Γ2
1

(
1− e−Γ1t cos Ω1t

)

−
2Ω1

Γ1

1 +
Ω2

1

Γ2
1

e−Γ1t sin Ω1t

 , (40)

which reduces to the well-known expression

〈x2(t)〉 =
2v2

0

Γ2
1

[
Γ1t−

(
1− e−Γ1t

)]
, (41)

when Ω1 vanishes.
From expression (40), the regime for which the particle

motion is dominantly ballistic, 〈x2(t)〉 → v2
0t

2, is clearly
obtained in the short-time regime, Γ1t� 1, for arbitrary
Ω1 (see Fig. 1). In contrast, in the long-time regime,
Γ1t � 1, we get the standard linear dependence in time
of the mean-square displacement

〈x2(t)〉 ∼ 4Deff t, (42)

with Deff, given as before, as Dpers/(1 + Ω2
1/Γ

2
1). As

is well-known [24, 25], the effective diffusion coefficient
reaches its maximum value

D∗eff = v2
0/4Ω1 (43)

at the ratio Ω1/Γ1 = 1. It can be clearly noticed from
Eq. (40), that the time dependence of the mean-square
displacement depends only on the ratio Ω2

1/Γ
2
1, whose

explicit value depends on the particular transition prob-

ability density Q̃(ϕ). Thus, the crossover from the bal-
listic regime to the normal diffusion one, is sensitive to
the particular details of the pattern of active motion,

entailed in Ω1/Γ1 through Q̃(ϕ) as is shown in Fig. 1.
For large values of the ratio Ω1/Γ1, the particle get self-
trapped in the intermediate-time regime due to the circu-

lar motion induced by the particular choice of Q̃(ϕ), and
revealed by the corresponding oscillations of the mean-
square displacement (see the solid-black line in Fig. 1 for
Ω1/Γ1 = 100).

2. The kurtosis

The non-Gaussian feature of the probability density
p0(x, t) can be characterized by its kurtosis κ, which as
a matter of convenience, the definition given by Mardia
[26] is used, namely

κ(t) =

〈[(
x(t)− 〈x(t)〉

)
Σ−1

(
x(t)− 〈x(t)〉

)T]2〉
,

(44)
where xT denotes the transpose of the vector x and Σ
is the 2 × 2 matrix defined by the average of the dyadic

product
(
x(t)−〈x(t)〉

)T·(x(t)−〈x(t)〉
)
. For the circularly

symmetric case, the one considered in this paper, Eq.
(44) reduces to

κ(t) = 4
〈x4(t)〉rad

〈x2(t)〉2rad

. (45)

From Eq. (38) we have that the Laplace transform of the
time dependence of the fourth-moment is given by

〈x4(ε)〉rad =
4v4

0

ε3

[
D̃(k, ε)

]2
k=0
− 8v2

0

ε2

[
∂2

∂k2
D̃(k, ε)

]
k=0

.

(46)
Note that from Eq. (27), the first term in the last equa-
tion depends solely on λ1, λ∗1, while the second term
carries information about λ2, λ∗2 since, as can be shown
straightforwardly from (24) and (25),

∂2

∂k2
D̃(k, t)

∣∣∣∣
k=0

= −v
2
0

2

[
1

(ε+ λ1)2(ε+ λ2)
+

1

(ε+ λ∗1)2(ε+ λ∗2)

]
. (47)

Thus the fourth moment in Laplace domain is explicitly
given by

〈x4(ε)〉 =
4v4

0

ε2

[
1

ε

(
1

ε+ λ1
+

1

ε+ λ∗1

)2

+

1

(ε+ λ1)2(ε+ λ2)
+

1

(ε+ λ∗1)2(ε+ λ∗2)

]
. (48)

The general explicit time dependence of the fourth mo-
ment is too involved to be discussed at this point. Be-
sides, the values of Γ1, Ω1, Γ2 and Ω2 are not independent
among them, but they are related through the transi-

tion probability density Q̃(ϕ). Thus, an analysis of the



7

time dependence of the kurtosis is presented in the next

section for particular cases of Q̃(ϕ). Notwithstanding
this, the short- and long-time regimes can be discussed
straightforwardly.

In the long-time regime (|ε| � |λ1|, |λ2|), the second
and third terms in the squared brackets of Eq. (48)
can be neglected, and thus, it is the first term the one
that mainly contributes in the long-time regime. In such
regime the fourth moment is independent of λ2 and λ∗2,
and the inversion of the Laplace transform can be done
straightforwardly, which gives

〈x4(t)〉 ∼ 8
v4

0Γ2
1

(Γ2
1 + Ω2

1)
2 t

2, (49)

and from this, we can observe that κ ∼ 8, which
uniquely characterizes the two-dimensional Gaussian dis-
tribution. Unlike this case, in the short-time regime
(|ε| � |λ1|, |λ2|), we have that all the terms in Eq.
(48) contribute, and such expression reduces to 4!v4

0/ε
5,

which can be inverted straight away to give v4
0t

4 (inde-
pendent of λ1, λ2 and their complex conjugates), and
thus κ ' 4 which characterizes the propagating pulse
δ(x− v0t)/(2πx) [15, 16].

The effects of λ2, λ∗2 can be observed only in the
intermediate-time regime, where the particle positions
distribution suffers of the important effects of persistence,
as discussed in the following sections.

IV. PERSISTENCE TIME, NATURAL PERIOD
OF ROTATION AND OTHER TIME-SCALES

As has been already introduced in Sect. III, the per-
sistence time of the swimming direction, Γ−1

1 , and the
natural period of the circular motion, Ω−1

1 , correspond to
the relevant time-scales that define the diffusive regime of
the active motion [see Eq. (42)]. Γ−1

1 is closely related to
the persistence time introduced by Wu et al. in Ref. [27],
and by Bartumeus et al. in Ref. [14] in the modeling and
analysis of animal motion in two dimensions as correlated
random walks. All the other time-scales that appear in
the present analysis [see, for instance, the expansion Eq.
(15)], namely, Γ−1

n , Ω−1
n , with n > 1, determine the pre-

cise statistical properties of active motion. These depend
on the particular choice of the scattering-angle distribu-

tion Q̃(ϕ).
The simplest scattering-angle distribution may cor-

respond to the case when Q̃(ϕ) is uniform in [−π, π],

i.e., Q̃(ϕ) = (2π)−1. This has been used to model the
paradigmatic two-dimensional run-and-tumble pattern of
active motion [6, 11, 28, 29], for which Γn = Λ for all n,
i.e., Λ is the unique time-scale that defines the dynam-
ics of the swimming direction, meaning that all Fourier
modes in the series (8) decay at the same pace Λ.

Moreover, many scattering-angle distributions can be
built on by wrapping out a standard single-variate distri-
bution, ρ(η), with support on the interval (−∞,∞), to

the unitary circle, namely

Q̃wr(ϕ) =

∫ ∞
−∞

dη ρ(η)

∞∑
m=−∞

δ(η − ϕ+ 2πm). (50)

One important set of scattering-angle distributions ob-
tained in this manner, is got from the well-known
Lévy alpha-stable distributions with index α, ρα;σ,φ,β(η),
whose characteristic function is given by

ρ̂α;σ,φ,β(κ) = exp
{
iκφ− |σκ|α

(
1− iβsign(κ)

)
Φ
}
, (51)

being σ > 0 the width, φ the mode, and β the skewness,
Φ equals tan(πα/2) if α 6= 1 and −2 ln |κ|/π if α = 1. The
cases α = 2; α = 1, β = 0, and α = 1/2, β = 1, are of in-
terest, since these cases correspond to the wrapped Gaus-
sian distribution, the wrapped Lorentz (Cauchy) distri-
bution and the wrapped Lévy distribution, respectively.
For this latter case, it is possible to obtain explicit ex-
pressions for Γn and Ωn, we have for n > 1 that

Γn = Λ
[
1− e−(σn)α cos

(
nφ+ (σn)αβΦ

)]
, (52a)

Ωn = Λe−(σn)α sin
(
nφ+ (σn)αβΦ

)
. (52b)

Another important family of scattering-angle distribu-
tions is the one given by the angle distribution of Jones

and Pewsey, Q̃JP,σ,φ,ψ(ϕ) [30], with parameters: σ > 0,
φ, and ψ ∈ (−∞,∞), which correspond respectively to
the distribution width, the location of the unique mode,
and the shape parameter. It has the explicit representa-
tion

Q̃JP,σ,φ,ψ(ϕ) =

[
cosh(σψ) + sinh(σψ) cos(ϕ− φ)

]1/ψ
2πP1/ψ [cosh(σψ)]

,

(53)
where Pγ(z) is the associated Legendre function of the
first kind of degree γ. The distribution (53) contains as
particular cases [30]: the angle distribution of von Misses
(ψ = 0)

Q̃vM(ϕ) =
eκ cosϕ

2πI0(κ)
, (54)

the cardioid distribution (ψ = −1)

Q̃CD(ϕ) =
1

2π

(
1 + tanh(κ) cosϕ

)
, (55)

and the wrapped Cauchy distribution (ψ = 1)

Q̃C(ϕ) =
1

2π

1− tanh2(κ2 )

1 + tanh2(κ2 )− 2 tanh(κ2 ) cosϕ
. (56)

The distribution (53) has also been used in the analysis
of correlated random walks [14].

Though the number of possibilities to make the choice
of the turning-angle distribution is huge, we focus our
analysis on two wide-enough classes of the scattering
functions: a class of unimodal distributions and one of
bimodal distributions. Subclasses will be defined by fea-
tures such as the symmetry with respect the turning an-
gle zero, and will dress with specific properties to the
quantities Γn and Ωn.
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A. Unimodal angular distributions

Lets first consider the case of unimodal distributions,
which splits into two wide categories: the symmet-
ric scattering-angle distributions around the instanta-

neous swimming direction, i.e., the distributions Q̃(ϕ)
for whose single one mode is centered about ϕ = 0, or
±π; and the asymmetric ones, whose mode is located at
some value on the interval [−π, π], except 0 or π.

1. Symmetric scattering-angle distributions

Smooth-enough unimodal distributions, Q̃S(ϕ), that
are symmetrically distributed around the mode φ = 0
or around the mode φ = ±π, are of great interest since
there is a variety of biological organisms and artificially
designed particles that follow this pattern (strategy) of
motion. When the scattered angle is distributed around
φ = 0, the motion is highly persistent, and it is perhaps
the most ubiquitous pattern of active motion observed.
On the contrary, motion becomes highly anti-persistent
if the distribution of scattered angles is centered around
±π, a pattern of motion known as run-and-reverse ex-
hibited by a variety of microorganisms [31]. In both
cases we have that Ωn = 0 for all n, since λ∗n = λn
in this case. For scattered angles that frequently occur
forwardly around the instantaneous direction of motion,

i.e., when the mode of Q̃S(ϕ) is located at φ = 0, it can be
shown that 0 < Γn ≤ Γm whenever n < m (see Fig. 2 for
some symmetric unimodal distributions). Particularly,
we have that Γ2/Γ1 ≥ 1, and the effects of Γ2 are re-
vealed in the kurtosis during times before the persistence
time (see dotted-dashed lines in Fig. 3 for Γ2/Γ1 = 10
and 100, respectively). In such a period of time, the pulse
deviates from the initial sharp pulse giving rise to wakes,
characteristic of wave-like propagation [15].

On the contrary, for scattered angles that frequently
occur around the contrary direction to the instantaneous
direction of motion, i.e., when φ = π, we get that
Γ2/Γ1 ≤ 1 and the effects of Γ2 are revealed in the kurto-
sis at times larger than the persistence time (see dashed
line in Fig. 3).

These inequalities give a clear insight of the role of
the properties of the scattering-angles distribution on the
time evolution of the “shape”of p0(x, t), characterized
by its kurtosis κ(t). Indeed, the transit from the initial
pulse, at the short-time regime, to the Gaussian distri-
bution, in the long-time regime, depends strongly on the
ratio Γ2/Γ1 as is shown in Fig. 3, where the kurtosis as
a function of the dimensionless time, Γ1t, is shown for
the following values of Γ2/Γ1: 0.1 (dashed-red line), 1
(solid-black line), 10 (dashed-dotted-blue line) and 100
(dashed-doubled-dotted-magenta line).

The case Γ2/Γ1 = 1 is of some interest and leads to a

1 2 3 4 5 6 7 8 9 10

n

0.5

0.6

0.7

0.8

0.9

1Γ
n
/Λ

α = 2
α = 3/2
α = 1
α = 1/2
ψ = −1
ψ = −1/2
ψ = 0
ψ = 1/2
ψ = 1

FIG. 2. (Color online) The first ten values of Γn/Λ are shown
for different unimodal distributions of scattered angles cen-
tered at the forward direction of motion. For the Lévy alpha-

stable distributions wrapped to the circle, Q̃wr(ϕ), α = 2
(wrapped Gaussian), 3/2, 1 (wrapped Lorentz), and 1/2 were
chosen, all with parameters σ = 1, β = 0. For the Jones and

Pewsey distributions of scattered angles, Q̃JP,σ,φ,ψ the values
σ = 1, φ = 0, and ψ = −1 (cardioid), −1/2, 0 (von Misses),
1/2, and 1 (wrapped Cauchy) were chosen.

simple expression for the kurtosis, namely,

κ(t) = 24
1− Γt+ Γ2t2/3− e−Γt + Γ2t2e−Γt/6

[Γt− (1− e−Γt)]2
, (57)

where we have written Γ1 = Γ2 = Γ. This particular
case has, as an instance, the well-known pattern of ac-

tive motion run-and-tumble, for which Q̃S(ϕ) = (2π)−1

and Γn = Λ for all n. Notice that the “shape”of p0(x, t)
changes from the initial sharp pulse to the Gaussian dis-
tribution in a monotonic way, as can be deduced from the
monotonic-non-decreasing time dependence of the kurto-
sis (4 ≤ κ(t) ≤ 8 at all instant). This monotonic growth
is representative of many patterns of active motion for
which the direction of motion is slightly scattered from
the instantaneous one. For completeness, I have included
in Fig. 3 the time dependence of the kurtosis for active
Brownian motion [15] (solid-gray line).

For Γ2 > Γ1, the transit from the sharp pulse to the
Gaussian shape is not monotonic any more (see dashed-
dotted-blue line and dashed-doubled-dotted-magenta line
in Fig. 3). In the short-time regime, the kurtosis dimin-
ishes from the value 4, meaning that wake effects are
present in the pulse propagation. Notice the agreement
between the kurtosis of the cases considered and the kur-
tosis for active Brownian motion (solid-gray line) in the
long-time regime. For the case when the direction of mo-
tion is scattered preferentially in the reverse direction,
Γ2 < Γ1, the transit from the sharp pulse to the Gaus-
sian distribution is also non-monotonic, but in contrast
to the case Γ2 > Γ1, the distribution becomes conspicu-
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FIG. 3. (Color online) Kurtosis as function of the dimension-

less time Γ1t for Q̃S symmetric scattering-angle distribution,
for the values of the ratio Γ2/Γ1 = 0.1, 1, 10, 100. Dotted
lines mark the values κ = 8 and 4 that correspond to the
cases for which the probability density p0(x, t) is Gaussian in
the long-time regime (κ = 8), and a sharp pulse that propa-
gates with speed v0 (κ = 4), respectively. The solid-gray line
corresponds to the time dependence of the kurtosis for active
Brownian motion with rotational diffusion constant equal to
Γ1.

ously leptokurtic in the long-time regime tending to the
Gaussian asymptotically (dashed-red line).

With this, it is clear from (15) that P̃ (k, ϕ, t) goes to
(1/2π)p̃0(k, t) in the long-time limit since in this regime
the mode n = 0 is the only one that persists.

2. Asymmetric scattering-angle distributions

Unimodal distributions that consider a frequent scat-
tering of the swimming direction to directions of motion
different from the forward one, or the reverse one, i.e.,
those that have a mode at angles φ 6= 0, π, lead naturally
to circular motion. Even in the case of forward or reverse
scattering, circular motion emerges as consequence of the
skewness of the distribution. These statistical considera-
tions allow to describe the motion of circular swimmers,
which are ubiquitous in nature and have been observed
in a variety of biological organisms and of artificially de-
signed swimmers [32–41], and have been of theoretical
interest leading to diverse models that describe their mo-
tion [25, 42–48].

The particular processes that underly the stationary

scattering-angle distribution Q̃(ϕ), define the specific val-
ues of Γ1, Γ2, Ω1 and Ω2, whose variations are not in-
dependent among them. For instance, for the particular
case of the wrapped Gaussian (α = 2) with fixed scale
parameter σ = 1/4 and zero skewness, the ratios Γ2/Γ1,
Ω1/Γ1 and Ω2/Γ1 are shown in Fig. 4 as functions of φ,

-15

-10

-5

0

5

10

15

Ω1/Γ1
Ω2/Γ1
Γ2/Γ1

−π ππ/2−π/2
φ

FIG. 4. (Color online) The ratios Γ2/Γ1, Ω1/Γ1 and Ω2/Γ1

are shown as functions of the mode φ, when Q̃(ϕ) is given by
the wrapped-Gaussian distribution (wrapped stable distribu-
tion with index α = 2), with values of the scale parameter
σ = 0.25 (solid lines) and 0.1 (fuzzy lines).

10
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-1

10
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10
1

10
2
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3

Γ1t

4
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6
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9

κ(t)

7.034439, 3.902881, 13.522350

2.726245, 3.469468, 4.295803

0.482362, 0.759841, -0.57922

0.464251, 0.742317, -0.478824

Gaussian

Sharp pulse

Ω1/Γ1 Γ2/Γ1 Ω2/Γ1

FIG. 5. (Color online) The time dependence of the kurtosis is

shown for Q̃(ϕ) given by the wrapped-Gaussian distribution
(wrapped stable distribution with index α = 2), with values of
the scale parameter σ = 0.1 (thick-blue lines) and 0.25 (thin-
red lines). The values of the ratios: Γ2/Γ1, Ω1/Γ1 and Ω2/Γ1,
correspond to those values of φ ∈ [0, π], for which Ω2/Γ1 is
maximum (solid-blue and dashed-red lines) and when is min-
imum (thick-dotted-dashed and thin-dotted-dashed lines), as
can be noticed in Fig. 4.

the value of the mode distribution.

B. Bimodal scattering-angle distributions

It has been observed a variety of organisms that ex-
hibit a bimodal distribution of scattering angles in their
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pattern of motion [12, 49], and this bimodality has pro-
found consequences on the spatial distributions of the
particles. For the sake of clarifying this, we consider the
limit case that corresponds to the bimodal distribution
of scattered angles, with modes at the angles ϕ1, ϕ2, and
of zero width, i.e.,

Q̃(ϕ) = νδ(ϕ− ϕ1) + (1− ν)δ(ϕ+ ϕ2), (58)

where 0 < ν < 1 gives a weighing factor to each mode of
the distribution.

1. Symmetrically distributed modes

Consider the bimodal scattering-angle distribution of
zero width

Q̃(ϕ) = νδ(ϕ− ϕ0) + (1− ν)δ(ϕ+ ϕ0), (59)

where the modes are located symmetrically with respect
to the forward direction at ±ϕ0 with 0 < ϕ0 < π;
and 0 < ν < 1 gives the weight of each mode making
the scattering-angle distribution asymmetric if ν 6= 1/2.
Straightforwardly, we can notice that Γn is independent
of ν for all n, having Λ(1− cosnϕ0) as its value for given
n and ϕ0. Notice that the persistence time becomes ar-
bitrarily large as ϕ0 vanishes. In contrast, Ωn does ex-
plicitly depend on ν, as Λ(2ν − 1) sinnϕ0.

The ratios Γ2/Γ1, Ω1/Γ1 and Ω2/Γ1, that give the full
characterization of the kurtosis of the particle position
distribution, can be calculated explicitly giving

Γ2

Γ1
=
(

2 cos
ϕ0

2

)2

, (60a)

Ω1

Γ1
= (2ν − 1) cot

ϕ0

2
, (60b)

Ω2

Γ1
= 2(2ν − 1) cosϕ0 cot

ϕ0

2
. (60c)

From these expressions, several diffusive properties in
terms of the parameters ϕ0 and ν are obtained. Firstly,
after setting Ω1/Γ1 = 1 in Eq. (60b), the maximum value
of the effective diffusion coefficient [see Eq. (43)] is ob-
tained whenever ν = [1 + tan(ϕ0/2)] /2, with 0 < ϕ0 <
π/2. The contour lines defined by fixing the ratio Ω1/Γ1

to a constant χ are shown in Fig. 6.
In Fig. 7, the time dependence of the kurtosis is shown

as function of the dimensionless time Γ1t, for the values
of the ratios Γ2/Γ1 and Ω2/Γ1, that correspond to the
values of ϕ∗0 that makes ν = 1 for a given ratio of χ =
Ω1/Γ1: oscillations are observed for times smaller or of
the order of the persistence time for χ = 10, 2 (dashed-
dotted lines), for which Γ2/Γ1 = 3.96, 3.2 and Ω2/Γ1 =
19.6, 2.4 respectively. A smooth transition from a sharp
pulse and the Gaussian distribution is observed for χ = 1
(maximum effective diffusion coefficient marked by the
solid line), for which Γ2/Γ1 = 2 and Ω2/Γ1 = 0. Such a
transition is still smooth for χ = 0.5 (thick-dashed line,

ϕ0
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FIG. 6. (Color online) Level curves of constant ratio χ =
Ω1/Γ1 in the plane ν-ϕ0. The solid (red) line corresponds to
the case Ω1/Γ1 = 1 for which the effective diffusion coefficient
is maximum. Dashed (blue) lines correspond to the cases for
which |Ω1/Γ1| < 1 (shown χ =10 and 2), while dashed-dotted
(cyan) lines correspond to the cases for which |Ω1/Γ1| > 1
(shown χ = 0.5 and 0.1).
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FIG. 7. (Color online) Time dependence of the kurtosis κ(t)
for the bimodal distribution of scattered angles (59). The
values of ratios Γ2/Γ1, Ω2/Γ1 correspond to the values of ϕ∗

0

that make ν = 1 on the contour lines given in Fig. 6 for the
values of χ = 10, 2, 1, 0.5, and 0.1.

Γ2/Γ1 = 0.8, Ω2/Γ1 = −0.6). The transition between
the sharp pulse and the Gaussian distribution becomes
nonmonotonic again, but now for times larger than the
persistence time, when χ = 0.1 (thin-dashed line), for
which Γ2/Γ1 = 0.0396 and Ω2/Γ1 = −0.196.
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FIG. 8. (Color online) The time dependence of the kurtosis
is shown for the bimodal distribution with equally weighed
modes at 0 and π, which corresponds to a particular case of
the patterns of motion called run-and-reverse.

2. Run-and-reverse

Another instance of a simple bimodal distribution that
can be analyzed to some detail, is given by the pattern
of motion called run-and-reverse. This pattern consid-
ers the scattering of the direction of motion along the
forward and backward direction, thus having modes at
φ = 0 and π, respectively. In the case of zero width
distribution, it can be written as

Q̃(ϕ) = νδ(ϕ) + (1− ν)δ(ϕ− π). (61)

Notice that Γn vanishes for even n, and gives 2Λ(1−ν) for
odd n, while Ωn vanishes for all n. The time dependence
of the kurtosis can be obtained explicitly in this case,

κ(t) = 12
6− 4Γ1t+ Γ2

1t
2 − 2e−Γ1t(3 + Γ1t)

[Γ1t− (1− e−Γ1t)]2
, (62)

and is shown in Fig. 8. Notice that in the asymptotic
limit the spatial distribution of the active particles leads
to value of the kurtosis 12, which differs conspicuously
from the value 8 that characterizes the Gaussian distri-
bution. For this case we have that equation (24) acquires
the simple form

D̃(k, ε) =
2

ε+ Γ +
(v0/2)2k2

ε+
(v0/2)2k2

ε+ Γ +
(v0/2)2k2

ε+
.. .

. (63)

If the width at the modes in Eq. (61) is finite, we recover
the Gaussian distribution in the long-time regime, this is
clear since although Γ2 may be small, it is finite.

V. CONCLUSIONS

I have presented a theoretical framework for the sta-
tistical analysis of the two-dimensional motion of active
swimmers. This framework generalizes existent ones in
that considers an arbitrary navigating strategy, that also
takes into account circular motion, embedded in the ar-
bitrary distribution of scattered angles of the particle’s
swimming direction. The framework also complements
others, which focus on the time distribution between
turning events. The method of solution presented, al-
lowed for an exact analytical expression for the marginal
probability distribution of finding a swimmer at x at time
t, independently of the direction of motion. Such a so-
lution can be cast as the exact solution of the general-
ized diffusion equation (23), and an explicit expression for
the time-space dependent memory function is presented.
This result opens the door to consider the generalized
diffusion equation as well-founded to analyze of the mo-
tion of active swimmers. Particularly, to consider time-
space coupled memory function to describe other variety
of patterns of active motion, as the ones described by
Lévy walks .

I also presented exact calculations for the time depen-
dence of the mean-square displacement, which depends
only on the ratio of the frequency of the circular mo-
tion induced by the pattern of active motion, Ω1, to the
persistence time Γ1. Certainly, there is plenty of the
patterns of motion that lead to the same ratio Ω1/Γ1,
and as such, the mean-square displacement is typical of
many of them. However, the differences among different
patterns of motion are unveiled in the intermediate-time
regime if more information of the pattern of motion is
considered (as analyzed for active Brownian motion and
run-and-tumble particles in Ref. [8]), and not only those
related to 〈cosϕ〉Q̃ and 〈sinϕ〉Q̃, as is the case for the

mean-square displacement.

I showed that consideration of Γ2 and Ω2, besides Γ1

and Ω1, is enough to distinguish some features among dif-
ferent patterns of motion. Certainly, knowledge of these
quantities allows the exact calculation of the time de-
pendence of the kurtosis, which gives information about
the “shape” of the particle’s position distribution. Some
patterns of motion induce a smooth transition with time,
from the initial sharp pulse, to the Gaussian of the long-
time regime. Others deviate from this behavior and tran-
sit, from the initial sharp pulse to the Gaussian distribu-
tion, in a rather complex way characterized by oscilla-
tions.

Finally, although no exact solution to the Fokker-
Planck equation (5) is known, the analysis presented in
this paper achieves to give a wide reach understanding
of the influence of an arbitrary pattern of motion on the
statistical properties of the active swimmers, and encour-
ages the development of more general theoretical frame-
works of active motion that allow the incorporation of
more general conditions.
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Peña for his interest in the initial part of the paper. This
work was supported by UNAM-PAPIIT IN114717.

[1] J. Taktikos, H. Stark, and V. Zaburdaev, PLoS ONE 8, 1
(2014), URL http://dx.doi.org/10.1371%2Fjournal.

pone.0081936.
[2] F. Detcheverry, EPL (Europhysics Letters) 111, 60002

(2015), URL http://stacks.iop.org/0295-5075/111/

i=6/a=60002.
[3] C. Bechinger, R. Di Leonardo, H. Löwen, C. Reich-
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[26] K. V. Mardia, Sankhyā: The Indian Journal of Statistics,

Series B pp. 115–128 (1974).
[27] H. i Wu, B.-L. Li, T. A. Springer, and W. H. Neill,

Ecological Modelling 132, 115 (2000), ISSN 0304-
3800, URL http://www.sciencedirect.com/science/

article/pii/S0304380000003094.
[28] M. J. Schnitzer, Phys. Rev. E 48, 2553 (1993), URL

http://link.aps.org/doi/10.1103/PhysRevE.48.

2553.
[29] B. Hancock and A. Baskaran, Phys. Rev. E 92,

052143 (2015), URL http://link.aps.org/doi/10.

1103/PhysRevE.92.052143.
[30] M. C. Jones and A. Pewsey, Journal of the Amer-

ican Statistical Association 100, 1422 (2005),
http://dx.doi.org/10.1198/016214505000000286, URL
http://dx.doi.org/10.1198/016214505000000286.

[31] R. Großmann, F. Peruani, and M. Bär, New Journal of
Physics 18, 043009 (2016), URL https://doi.org/10.

1088%2F1367-2630%2F18%2F4%2F043009.
[32] H. C. Crenshaw, Bulletin of Mathematical Bi-

ology 55, 197 (1993), ISSN 0092-8240, URL
http://www.sciencedirect.com/science/article/

pii/S0092824005800692.
[33] E. Lauga, W. R. DiLuzio, G. M. Whitesides, and H. A.

Stone, Biophysical Journal 90, 400 (2006), ISSN 0006-
3495, URL http://www.sciencedirect.com/science/

article/pii/S0006349506722214.
[34] V. B. Shenoy, D. T. Tambe, A. Prasad,

and J. A. Theriot, Proceedings of the Na-



13

tional Academy of Sciences 104, 8229 (2007),
http://www.pnas.org/content/104/20/8229.full.pdf,
URL http://www.pnas.org/content/104/20/8229.

abstract.
[35] S. Schmidt, J. van der Gucht, P. M. Biesheuvel,

R. Weinkamer, E. Helfer, and A. Fery, European Bio-
physics Journal 37, 1361 (2008), ISSN 1432-1017, URL
http://dx.doi.org/10.1007/s00249-008-0340-x.

[36] B. M. Friedrich and F. Jülicher, New Journal of
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[38] F. Kümmel, B. ten Hagen, R. Wittkowski, I. Buttinoni,

R. Eichhorn, G. Volpe, H. Löwen, and C. Bechinger,
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