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One of the most exciting developments in signal transduction research has
been the proliferation of studies in which a biological discovery was initiated
by computational modeling. In this study, we review the major efforts that enable
such studies. First, we describe the experimental technologies that are generally
used to identify the molecular components and interactions in, and dynamic
behavior exhibited by, a network of interest. Next, we review the mathematical
approaches that are used to model signaling network behavior. Finally, we focus on
three specific instances of ‘model-driven discovery’: cases in which computational
modeling of a signaling network has led to new insights that have been verified
experimentally.  2009 John Wiley & Sons, Inc. WIREs Syst Biol Med

Signal transduction networks are the bridge
between the extraordinarily complex extracellular

environment and a carefully orchestrated cellular
response. These networks are largely composed of
proteins that can interact, move to specific cellular
locations, or be modified or degraded. The integration
of these events often leads to the activation or
inactivation of transcription factors, which then
induce or repress the expression of thousands of genes.

Because of this critical role in translating envi-
ronmental cues to cellular behaviors, malfunctioning
signaling networks can lead to a variety of patholo-
gies. One example is cancer, in which many of the key
genes found to be involved in cancer onset and devel-
opment are components of signaling pathways.1,2

A detailed understanding of the cellular signaling
networks underlying such diseases would likely be
extremely useful in developing new treatments.

However, the complexity of signaling networks
is such that their integrated functions cannot
be determined without computational simulation.
In recent years, mathematical modeling of signal
transduction has led to some exciting new findings
and biological discoveries. In this study, we review
the work that has enabled computational modeling
of mammalian signaling networks as well as the
demonstrated value of such modeling. We begin
by reviewing the experimental techniques commonly
associated with model-building efforts, in terms of
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mapping network interactions as well as determining
the dynamic network response to perturbation. We
then discuss modeling strategies and finally focus on
three cases that dramatically illustrate the power of
models to discover new biology.

MAPPING NETWORK INTERACTIONS
Experimental interrogation and realistic mathematical
modeling of a biological signaling circuit require
at least partial knowledge of the elements of the
system, and how these elements interact. Although
the term ‘interactome’ is generally invoked in the
context of protein–protein interactions, the complete
interactome describes the set of physical interactions
between all biological molecules in vivo. These
interactions are the basis for all biological phenomena.

Focused experimental studies have traditionally
expanded the known interactome through sequential
discovery and characterization of genes and proteins.
Most model builders begin by obtaining this data
from the published literature to compile a coherent set
of signaling components and interactions. Increasing
the efficiency of this process would relieve a significant
bottleneck in biomedical research. This can be done by
either developing high throughput technologies that
can identify network components and interactions en
masse, or by facilitating the data mining process so
that network reconstruction requires minimal human
curation.

The interactome can be divided into three
partially overlapping subsets: binary interactions, co-
complex interactions, and functional interactions.
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The most widely used high throughput method
for mapping binary protein interactions is yeast
two hybrid (Y2H) screening.3–5 In Y2H, interaction
between bait and prey proteins reconstitutes an
active transcription factor that drives expression
of a reporter. Other approaches for detecting
binary molecular interactions range from those that
can be performed in mammalian cells6–8 to a
versatile in vitro method that uses a microfluidic
chip.9–11 Protein–DNA interactions can also be
characterized with ChIP-chip12 and ChIP-seq,13 which
can detect binary interactions that may exist within a
multimolecular complex.

Affinity purification–based mass spectrometry
(AP-MS) has become the standard technique for
probing the space of protein co-complex interactions.
Although more technically demanding than Y2H, AP-
MS has the ability to track the dynamic composition
of macromolecular complexes in a near physiological
setting.14 Complexes containing tagged bait proteins
are isolated in the AP step, and then the proteins in
the complexes are identified and quantified by MS.14

Most large-scale efforts have been directed toward
Saccharomyces cerevisiae,15,16 but a limited number
of studies have applied AP-MS to small parts of the
human interactome.17,18

A functional interaction is the effect of one
molecule on the activity of another molecule,
regardless of the path of physical interactions from
one molecule to the other. Functional interactions
can be inferred by gene co-expression as measured
by cDNA microarrays.19 Alternatively, by perturbing
cells with cDNA or RNAi libraries, functional screens
can identify genetic perturbations that affect the
activity of a given signaling pathway.20,21

Informatics-based approaches focus both on
making manually curated networks easily accessible
and reconstructing networks automatically. An exam-
ple of focused manual curation is a recently compiled
comprehensive map of the epidermal growth factor
receptor signaling system.22 Such maps, made avail-
able in a readily useable standard such as SBML23 or
CellML,24 could be extremely valuable to modelers.
Large-scale efforts to manually assimilate biological
knowledge include Kyoto Encyclopedia of Genes and
Genomes (KEGG)25 and Ingenuity Pathway Analy-
sis (Ingenuity Systems). Automated reconstruction of
signaling networks is generally based on probabilistic
methods that can integrate data from various sources
(see Ref 145, Sachs et al.).26–28

Up to this point, both high throughput exper-
imental technology and automated data mining are
underutilized in mammalian signal transduction mod-
eling efforts. This may be because of the general

modeling preference for smaller, well-documented
networks over larger networks with less characteri-
zation. Until recently, the data quality of Y2H and
AP-MS was broadly questioned.5,14,29 However, a
thorough comparative analysis by Yu et al. suggests
that both Y2H and AP-MS provide high quality inter-
actome maps.30 A paradigm for future studies is the
work by Bouwmeester et al., who combined RNAi
perturbations with AP-MS to map the physical and
functional interactions of the tumor necrosis factor-α
(TNF-α)/nuclear factor (NF)-κB signaling pathway.17

Finally, recent work indicates that literature-curated
interaction databases may be subject to inspection
biases and therefore less reliable that commonly
thought.30,31 Such findings may lead to a greater use of
high throughput interactome data and automated net-
work reconstruction in generating signaling network
models.

QUANTITATIVELY MEASURING
SIGNALING DYNAMICS

Static, topological information is only a first step
toward a complete understanding of cellular sig-
naling. To accurately describe signal transduction,
computational models must account for the intricate
spatiotemporal dynamics that shape cell decisions.32

For example, most protein signals are transmitted by
changes in abundance, localization, activity, interac-
tions, or posttranslational state.33 Technologies for
experimentally measuring signaling dynamics can be
broadly classified as population- or single cell–based
(Table 1). Ideally, intracellular activity should be mea-
sured in single cells because population-based assays
can mask heterogeneity in single cell behaviors (e.g.,
all-or-none or asynchronous responses). However, the
variety of measurable signals and the throughput of
population level assays are generally superior to single
cell approaches.34

A range of dynamic cellular signals can be
measured in low throughput using population level
techniques based on separation by gel electrophoresis.
An immunoblot (or western blot) measures protein
abundance35 and can be combined with subcellular
fractionation to determine a protein’s location, or
with phospho-specific antibodies to detect protein
phosphorylation. The electrophoretic mobility shift
assay (EMSA, also called the gel shift assay) is
a sensitive method to determine the DNA-binding
ability of a protein in nuclear extract.36 Gel-based
in vitro kinase assays measure incorporation of
radioactive 32P into a peptide fragment substrate to
determine the activity of a particular kinase.
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TABLE 1 Overview of Experimental Techniques for Measuring Dynamics of Mammalian Signal Transduction Networks

Method Strengths Limitations Antibody dependent Single Cell Ref.

Gel-based Simple, established Usually semi-quantitative
√

35,36

Mass spectrometry Multiplexing potential for
peptide identification

Difficult analysis, limited
dynamic data

14,37,38

Protein arrays Targeted multiplexing of
protein measurement

Antibody cross-reactivity
√

39,40

Live cell imaging Subcellular localization of
proteins through time in
the same cell

Protein functionality, low
throughput

√
41,42

Immunofluorescence
microscopy

Subcellular localization of
endogenous proteins

Fixed cells
√ √

43

Flow cytometry Single cell multivariate data Fixed cells
√ √

44,45

Using gel-based methods in conjunction with
quantitative modeling has some limitations. Because
the linear dynamic range of many gel quantification
instruments is relatively small, it would be appropriate
to generate standard curves to relate intensity to
protein concentration. Unfortunately, this rarely
occurs. Furthermore, the Bradford assay that is often
used to normalize cell lysates is linear over a very
narrow range of protein concentrations, but this can
be improved by calculating the ratio of absorbances
at two wavelengths rather than only measuring one.46

Additionally, the time required to process cellular
samples means that very short time points (e.g., 5
minutes or less) are likely to have more experimental
error than longer time points.

Proteomic measurements can be scaled up using
mass spectrometry or multiplexed immunoaffinity
methods.47 In addition to mapping the existence of
phosphorylation sites, mass spectrometry allows one
to quantify hundreds or thousands of peptides and
their posttranslational modifications.38,48 Although
mass spectrometry can resolve many closely related
peptides, analysis is time consuming and dynamic
experiments have been limited to a few time points.34

Multiplexed protein microarrays use affinity
reagents spotted onto solid supports similar to
cDNA microarrays. These techniques are related to
traditional ELISA in which antigens or antibodies are
fixed to a surface and then secondary antibodies are
linked to enzymatic detection. Similar to this format,
protein microarrays typically use the sandwich format
in which separate antibodies are used for capture
and for fluorescent detection. The specificity resulting
from sandwich-type assays is generally preferred for
cell signaling studies.33 A commercial suspension
microbead assay also using the sandwich format
shows great promise.49 In this technique, fluorescently
bar-coded beads coated with capture antibodies are

quantified using flow cytometry. Comprehensive sets
of antibodies for capture and detection are limiting,
and crosstalk can be an issue for all immunoaffinity
methods. In addition, regulated protein complexing
may interfere with affinity binding sites or lead to
artificially higher detection signal.33 Although the
number of proteins that can be detected is not as
high as mass spectrometry, protein microarray and
microbeads can be customized to specifically probe
relevant proteins in a signaling pathway.

Single cell measurements can be performed on
living or fixed specimens. Live cell microscopy allows
one to follow a cell and its progeny over timescales
of seconds to days. When combined with genetically
encoded fluorescent proteins, live cell imaging allows
direct observation of signaling events.42 Fluorescent
proteins can be tied to the transcriptional activity
of a promoter or fused to a protein of interest to
measure abundance and subcellular localization.41,50

Fluorescence resonance energy transfer (FRET)-based
sensors can be constructed from fluorescent proteins
to track enzymatic activity or posttranslational
changes, but such sensors currently only exist for
a small number of signaling pathways.51 A technique
developed by Bertrand et al. allows tracking of mRNA
in living cells by expression of a fluorescent protein
fused to the RNA-binding protein MS2 and addition
of MS2-binding sites to the mRNA of interest.52,53

Bioluminescence produced by luciferase can also be
used to infer gene expression in live single cells54

and has the advantage of very low background.55

Given the optical properties of today’s fluorescent
proteins, a basic fluorescence microscopy setup can
distinguish up to four colors.56 If one wishes to
mimic and model the in vivo signaling dynamics as
closely as possible, it is important that fusion proteins
retain not only endogenous function but regulation
of expression. This can be particularly difficult in
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mammalian systems, where regulatory elements in
chromatin and mRNA are generally poorly defined.57

Although typically considered low throughput, large-
scale efforts have been made to systematically tag
and track the abundance and subcellular location
of proteins in mammalian cells.58,59 Data extraction
from the raw images often determines throughput, but
image analysis tools are being developed to quantify
images more rapidly.60

Measuring intracellular signaling dynamics with
immunofluorescence microscopy43 or multicolor flow
cytometry45 requires cell fixation. This means that one
can monitor the population dynamics on a single cell
level but cannot follow the same cell over time. Both
techniques can avoid expression of fusion proteins, but
rely heavily on antibodies specific for phosphorylated
signaling proteins. While multicolor flow cytometry
allows quantification of up to 17 colors and two
light scattering parameters, it is unable to detect
localization.44 Flow cytometry is also well established
for studying heterogeneous cell populations on the
basis of cell surface marker expression. Irish et al.
leveraged these strengths of flow cytometry to identify
potentiated signaling pathways in subsets of cells from
patients with acute myeloid leukemia.61

In the modeling studies we surveyed for this
review, immunoblots were still the dominant exper-
imental method for determining network dynamics.
However, live cell imaging has appeared more often
in recent years.

MATHEMATICAL APPROACHES TO
NETWORK MODELING
Given a signaling network that has been reconstructed
and for which some dynamic information is available,
a variety of mathematical approaches may be used to
infer critical components or predict behaviors. Inte-
grated modeling-experimental studies are enhanced
when some model parameters are fit using experimen-
tal data, and some model predictions are directly tested
experimentally. For this reason, the scale and detail
of the experimental methods and modeling approach
should be compatible. Examples of several techniques
for modeling mammalian signaling networks are given
in Figure 1, and Table 2 highlights published models
of mammalian signaling circuits, including the type of
model and experimental methods.

Modeling with Differential Equations
The most common modeling approach is to represent
the signaling system as a set of ordinary differential
equations (ODEs) using mass action kinetics, which

can be integrated to determine the concentration of
species over time.105

Small sets of ODEs can either be solved exactly
or by an approximate analytical solution. Using
techniques such as phase space portraits, one can
easily identify steady states and visualize how the
dynamic behavior varies with the state of the system.
Analytical methods are useful for studying the
recurring modules and network motifs that constitute
larger biochemical networks.106–109 Investigation of
a signaling network’s positive and negative feedback
loops can give insight into the network’s behavior and
identify important system properties such as multista-
bility, excitability, and limit cycle oscillations.109–111

Bifurcation analysis is helpful in understanding the
transitions between dynamic behaviors that result
from changes in model parameters.

As the size of the dynamical system increases,
analytical and graphical approaches become increas-
ingly difficult. Consequently, numerical integration is
necessary to find the solutions of concentrations with
time. In such cases, sensitivity analysis is often used to
determine which parameters have the greatest effect
on the output of the system, and therefore requires the
most accurate experimental measurement.105 Sensitiv-
ity analysis is often performed by varying one param-
eter at a time, whereas the others are held at their esti-
mated values, which can be misleading in cases where
parameters are not independent. Determining the out-
put while simultaneously varying multiple parameters
can give a wider, more integrated view of the network,
but is computationally expensive for large pathways.

Many signaling networks have a significant
spatial component to their behavior. For example, the
activity of a transcription factor can be controlled
by regulating its access to the nucleus. Spatial
information can be incorporated into ODE-based
models with compartmentalization (e.g., of the cytosol
and nucleus). This assumes that the contents within a
compartment are well mixed and requires specifying
transport rates between compartments.

Although compartmental ODE modeling is often
used as a simplification for PDEs,112 in some cases
detailed spatial localization is important for cell
signaling.32,113 Often spatial dependencies such as
gradients and microdomains arise because of the
geometry of the cell membrane and can be caused
by opposing biochemical reactions that are spatially
separated.63 PDEs represent biochemical processes in
space and time as reaction-diffusion equations that
account for diffusion and biochemical reactions of
signaling molecules. Diffusional constants in cellu-
lar environments are often unknown and therefore
usually approximated.113 The computational tools
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FIGURE 1 | Mathematical approaches to model a signaling network. (a) A hypothetical signaling network that transfers information from
cytosolic enzymes to transcription factors to regulate gene expression. (b) The ordinary differential equation represents the phosphorylation and
dephosphorylation of the Y protein. The partial differential equation models the effects of molecular diffusion and biochemical reactions with spatial
dependence. (c) Measurements of the signaling network and phenotypic output (possibly measured through flow cytometry) are analyzed together to
form a reduced space partial least squares regression model. (d) Network-based approaches. Network component analysis determines the linear
weight of transcription factors on gene regulation. Extreme pathway analysis gives the minimal set of pathways that characterize the functional
signaling in a network.

needed to solve PDEs are not widely used in biology,
but these tools are being developed and finding use
in some modeling efforts.114 PDE models will become
increasingly valuable as live cell imaging and fluores-
cent reporters provide the spatial and functional mea-
surements needed to build and validate these models.

Stochasticity can strongly influence behavior
in systems with small numbers of molecules or in
instances of multistability or symmetry breaking, such
as when a cell must decide between two fates.115,116

Gene expression in mammalian cells, at least for some
genes, is highly variable because of random bursts
of transcription.117 The growing realization of the

importance of noise in signaling and the proliferation
of single cell measurements suggest stochastic models
will become more common, because they can
potentially use and reproduce the variability of
individual cell responses. The Gillespie algorithm and
its derivatives simulate the random walk behavior of
discrete molecules.99,118 Often a signaling pathway is
modeled first with deterministic ODEs, then the same
biochemical reactions are simulated with the Gillespie
algorithm.74,99 The method is straightforward to
implement but becomes computationally expensive
as the number of molecules increases. Another way
to incorporate stochasticity is to add a Gaussian

 2009 John Wiley & Sons, Inc.



Advanced Review www.wiley.com/wires/sysbio

TABLE 2 Models of Various Mammalian Signaling Pathways (Not Necessarily Studied in Mammalian Cells), Along with the Major Experimental
Technologies Used When Developing the Model

Signaling Pathway Model Type Experimental Verification Ref.

β-adrenergic receptor ODE - 62

β-adrenergic
receptor/MAPK

ODE, PDE Live cell imaging, immunofluorescence
microscopy, immunoblot

63

Cell cycle ODE Immunoblot 64

ODE - 65

ODE - 66

Boolean - 67

Chemotaxis ODE (n) - 68

ODE, PDE - 69

PDE - 70

Circadian clock ODE (c, n) Live cell imaging 71,72

ODE (c), Gillespie - 73,74

Cytokines/apoptosis PLSR High throughput kinase assay, protein
microarray, flow cytometry

75–77

Delta/notch ODE (c) - 78

Piecewise affine hybrid - 79

EGFR/Ras ODE, Gillespie Immunoblot, ELISA 80,81

EGFR/MAPK ODE - 82

Hedgehog ODE, Gillespie, PDE - 83,84

JAK/STAT ODE (c) Immunoblot 85

ODE (c) - 86

Extreme pathways - 87

ODE (c) Immunofluorescence microscopy, flow
cytometry

88

MAPK ODE Immunoblot, kinase assay 89

NF-κB ODE (c) EMSA, kinase assay (Refs 90,91); live cell
imaging, immunofluorescence microscopy
(Ref 50); immunoblot

50,90,91

ODE (c) EMSA, immunoblot 92

ODE (c) - 93

ODE (c) EMSA, immunoblot, kinase assay, mass
spectrometry

94

p53 ODE Immunoblot 95

ODE (c) - 96

ODE (n) - 97

ODE Immunoblot 98

Ras ODE, Gillespie Flow cytometry, immunoblot 99

TGF-β/Smad ODE (c) Live cell imaging, immunoblot 100

Wnt ODE Immunoblot 101,102

PDE Histology 103

PDE Histology 104

(c) denotes a two-compartment model (cytoplasm and nucleus); (n) denotes a differential equation-based model incorporating noise.
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FIGURE 2 | The order (number of independent variables) of
differential equation-based models of mammalian signal transduction,
plotted by publication year. In cases where one model’s publication led
to the creation of several derivative models, only the first model is
included.

noise term to a differential equation, resulting in a
stochastic differential equation.72 For spatial PDE
models, the modeling platform Virtual Cell allows
both deterministic and stochastic simulation.119

An advantage of ODE models is that they
represent signal transduction circuits mechanistically,
but they become impractical for extremely large
networks. Figure 2 shows a timeline of the order
of the differential equation-based models compiled
in Table 2. None of these models has more than
100 ODEs, and the median is 10. This is largely
because mechanistic models require many parameters
in the form of rate constants and initial conditions.
Although some of these parameters have been directly
measured experimentally, most are unknown or
poorly constrained, especially in a mammalian setting.
Consequently, many parameters must be estimated
by making a first principles guess, by extrapolating
based on homologous proteins, or by fitting the output
of the model to experimental observations.120 With
too many degrees of freedom, even a model that is
mechanistically unfaithful to reality can appear to
fit experimental data. Additionally, when parameters
of a model have been fit, it is imperative that later
predictions of the model be independent of the data
that was used in the fitting process.

Large-scale Modeling Methods
To circumvent the challenges of large systems of
differential equations, several methods with potential
advantages in scale-up have been applied to signal
transduction. These modeling approaches generally
lack the detail of ODE-or PDE-based models. The

trade-off between model scale and detail has been
noted previously.121

Constraint-based network analysis allows recon-
struction of large systems of biochemical reactions.122

The method has proven useful in analyzing genome-
scale metabolic networks.123,124 This approach does
not need kinetic parameters, but does require explicit
enumeration of all reactions and chemical species to
generate a stoichiometric matrix. The space of avail-
able steady-state solutions is calculated subject to
the constraints of the system, such as the availabil-
ity of a carbon source or the maximum speed of an
enzymatic reaction. One version, extreme pathway
analysis, has been used to quantify the crosstalk and
pathway redundancy of the JAK-STAT signaling in
B cells.87 Because calculation of the extreme path-
ways becomes unfeasible as the size of the network
increases, Li et al. used flux balance analysis to model
the Toll-like receptor network and to pinpoint eight
potential drug targets.125

Network component analysis is a method for
inferring the activity of transcription factors—and
by extension, some signaling pathways—from gene
expression data.126 This analysis uses a prior
estimate of the regulatory network structure, which
distinguishes it from more naı́ve microarray analysis
methods. Network component analysis has been used
to study glycerol kinase deficiency in mouse skeletal
muscle.127

Partial least squares regression (PLSR) analysis
has been applied to understand complicated sig-
naling networks that involve multiple inputs and
outputs.75–77 If the data sets (e.g., phosphorylation
states, protein abundances, and kinase activities) are
extensive enough, PLSR can be used even without
a detailed mechanistic understanding of the underly-
ing signaling network.2,40,128 PLSR creates a linear
model in which state measurements of the signaling
network can be related to outputs such as cytokine
secretion.75,129 PLSR reduces the high dimensionality
of these data sets by generating principal components,
which are linear combinations of the original vari-
ables that can be ranked by their ability to capture
co-variation in the data. Often most of the variation in
a high-dimensional data set can be represented in just
a few principal components. With the PLSR formal-
ism, it is possible to predict the outcome of previously
untested experiments by measuring the global state of
the signaling network.75

MODEL-DRIVEN DISCOVERY
The most exciting aspect of computational modeling
of signal transduction networks is the prospect of
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using models to facilitate biological discovery. Model-
driven discovery is appealing because computation is
far less expensive and time consuming than wet-lab
experimentation. We want to further emphasize three
signaling systems in which mathematical modeling
has led to a deeper understanding of the biology, as
verified by experiments.

p53
p53 is an intensely studied transcription factor because
of its role in tumor suppression and DNA damage
repair.130 The core components of the p53 feedback
loop involve p53 itself and its inhibitor protein
Mdm2.131 Mdm2 enhances the degradation of p53,
whereas phosphorylated p53 induces transcription
of Mdm2, completing a negative feedback loop.
The wider p53 signaling network also contains
additional positive and negative feedback loops.131

Given a sufficient time delay for p53-induced Mdm2
transcription, the core p53 circuit can give rise to
oscillations. To model this behavior, Lev Bar-Or
et al. created a set of ODEs to describe the system
and added a hypothetical intermediate that directs
Mdm2 transcription with kinetics governed by a Hill
function.95 They verified with immunoblots that the
levels of Mdm2 and p53 oscillate in response to DNA
damage–inducing irradiation. Although the model
parameters were estimated rather than measured
or fit to experimental data, Lev Bar-Or et al. were
able to infer qualitative behaviors such as the
broadening of the p53 response to weaker DNA
damage signals. In addition, they saw a difference
in p53-Mdm2 dynamics between 3T3 and MCF-7 cell
lines and proposed a likely change in the model that
could account for the differences. However, such a
prediction is difficult to verify without quantitative
measurements of the parameters and without the
identification of the intermediate.

Extending this work, Lahav et al. observed p53-
Mdm2 dynamics in single cells using fluorescent fusion
proteins and time-lapse microscopy.132 Importantly,
the Mdm2 fusion protein was driven by the human
Mdm2 promoter. Contrary to the damped oscillations
observed in population level studies, oscillations
in single cells were undamped. The strength of
irradiation correlated with the fraction of responding
cells, whereas the amplitude of oscillations in single
cells was independent of DNA damage signal input.
The response is considered digital, as increased DNA
damage increases the number of pulses rather than
their amplitude. To explain the digital response and
sustained oscillations, Ciliberto et al. proposed a
model incorporating positive feedback in the p53-
Mdm2 loop,96 whereas Ma et al. added positive

feedback to an upstream step in the DNA repair
pathway.97

With longer time-lapse movies, Geva-Zatorsky
et al. observed p53-Mdm2 oscillations lasting for
over 3 days.133 The amplitude of these oscillations
showed greater variability than the frequency. In
order to model this behavior, the authors examined
six possible mathematical models (including models
similar to those described above) and eliminated
those that could not produce sustained oscillations
or that were very sensitive to parameter values. With
an additional stochastic noise term, only one of
the remaining models could reproduce the observed
variability in oscillations. This noise was limited to
protein production and not to other processes such as
degradation.

To further explore the nature of the oscillatory
dynamics, Batchelor et al. studied two kinases
involved in p53 activation, ATM and Chk2.98 It
was known that ATM phosphorylates Chk2 and then
both ATM and Chk2 phosphorylate p53, lessening
p53 inhibition by Mdm2. Using immunoblots and
immunofluorescence, they found that Chk2 shows
undamped oscillations similar to p53, and that
these activation pulses depended on p53. Targeted
RNAi and small molecule perturbations confirmed
the dependence of p53 oscillations on ATM and
Chk2. Upon inhibition of ATM, oscillations of p53
were not observed even if the first p53 pulse had
been initiated. These results are contrary to a model
in which oscillations are driven solely by the p53-
Mdm2 loop. This led Batchelor et al. to propose
a model that included an unknown inhibitor of
ATM and Chk2 that is activated by p53. Negative
feedback in this form could explain the pulses in
ATM and Chk2. The model predicted that the
unknown inhibitor would oscillate in a similar fashion
to p53 and be expressed at low levels in resting
cells. A known interactor with ATM/Chk2/p53 called
Wip1 fit these criteria. RNAi against Wip1 abolished
oscillations in ATM and Chk2, and an immunoblot
showed oscillations in Wip1 lagging behind p53.
Thus, ATM/Chk2/p53/Wip1 is involved in a second
feedback loop that governs p53 oscillations.

Nuclear Factor-κB
The NF-κB family of transcription factors regulates
the expression of genes involved in various biological
processes from immune system development and
inflammation to cell proliferation.134 Dysregulation of
NF-κB is associated with chronic inflammatory disease
and cancer progression, in addition to many other
pathologies.135,136 The best studied NF-κB molecule
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is the heterodimer p65:p50, which is held inactive
in the cytosol by three IκB proteins, IκBα, IκBβ, and
IκBε. In the canonical pathway, a stimulus leads to the
activation of IκB kinase (IKK), which phosphorylates
the IκBs, precipitating their rapid ubiquitination and
degradation. Free NF-κB then translocates to the
nucleus, where it binds DNA and induces expression
of hundreds of target genes. For example, IκBα

expression is strongly induced by NF-κB, creating
a negative feedback loop. Considerable complexity is
laced throughout these reactions, but this represents
the relatively agreed upon core of the system.134

Hoffmann et al. observed that the DNA-binding
activity of NF-κB in response to TNF-α resembles
damped oscillations, as measured by EMSA with
murine embryonic fibroblasts (MEFs).90 To try to
explain the observed dynamics and untangle the
roles of the three IκBs, Hoffmann et al. modeled
the core circuit response to TNF-α using a system
of coupled differential equations. More than half
of the model parameters were constrained by data
in the published literature. Experimental data from
mouse cells expressing only one of the three IκB
proteins further constrained the model. These studies
suggested that IκBα is responsible for fast NF-κB
activation, whereas IκBβ and IκBε help dampen
oscillations of NF-κB. Interestingly, values for IκBβ

and IκBε mRNA synthesis parameters from the double
knockouts did not match those derived from the wild-
type behavior, pointing to genetic compensation that
is not encapsulated in the model.

Model simulations predicted that NF-κB activa-
tion for long stimulations lasts for the duration of the
stimulus, whereas short pulses induce a level of NF-
κB activation that is relatively independent of pulse
duration. This suggested that NF-κB could induce
expression of some genes after very short exposure
to TNF-α (<15 minutes), whereas other genes could
require longer stimulation times. Indeed, IP-10 mRNA
can be detected after only 30 minutes of TNF-α expo-
sure, whereas induction of the gene RANTES requires
more than 2 hours of exposure to TNF-α in wild-
type MEFs. However, Hoffmann et al. found that in
IκBα−/— MEFs, in which transient stimulation results
in prolonged nuclear NF-κB, RANTES can be induced
by TNF-α stimulations lasting only 15 minutes.90

Thus, the computational model gave insight into how
the IκB proteins regulate the output of the signaling
network by controlling the dynamics of NF-κB.

Nelson et al. studied the dynamics of the NF-
κB network in live HeLa cells and SK-N-AS cells
(human S-type neuroblastoma cells with constitutive
NF-κB activity137) using ectopic expression of NF-κB
and IκBα fluorescent fusion proteins.50 In response

to TNF-α, single cells exhibited asynchronous oscil-
lations in NF-κB nuclear localization. Cells co-
expressing control EGFP showed more regular, higher
frequency oscillations than cells co-expressing IκBα-
EGFP under the constitutive CMV immediate early
promoter. Transfection of cells with IκBα-EGFP
driven by a NF-κB-responsive promoter confirmed
that increasing the strength of negative feedback
reduces the oscillation frequency of nuclear NF-κB,
consistent with simulations of the model developed
by Hoffmann et al.90 Although the original compu-
tational model considers all free nuclear NF-κB as
active, Nelson et al. observed that constitutive nuclear
localization effected by leptomycin B results in only
transient luciferase reporter expression along with
rapid NF-κB dephosphorylation.50 Thus, persistent
target gene expression seems to require oscillatory
behavior of NF-κB localization and phosphorylation.

NF-κB computational models continue to be
expanded and refined, leading to new insights into
the behavior of the system. Modeling the network
upstream of IKK helped to reveal the role of A20
in mediating crosstalk between TNF-α and other
inflammatory stimuli.138 Integrated experimental and
computational studies of the interactions between
the canonical and non-canonical NF-κB pathways
suggested that altered IκB homeostasis could result in
an inflammatory response to developmental stimuli.94

Another expansion of the NF-κB model led to
the elucidation of an extracellular component to the
network. Although NF-κB localization dynamics are
oscillatory in response to TNF-α, lipopolysaccharide
(LPS) causes stable activation of NF-κB as measured
by EMSA. LPS signaling through TLR4 goes through
a MyD88-dependent pathway and a Trif-dependent
pathway, each of which acting individually in Trif−/—

or MyD88−/— MEFs leads to oscillatory dynamics.92

When given the time courses of IKK kinase assays, the
Hoffmann model correctly reproduces the observed
NF-κB translocation dynamics in wild-type MEFs
stimulated with LPS or TNF-α.91 Covert et al.
fit the dynamics of the two pathways in the
knockout MEFs to predict the kinetics of IKK
activity, which suggested that a 30-minute time delay
caused the slower activation of the Trif-dependent
pathway. Subsequent experiments confirmed that
the Trif-dependent pathway requires expression and
secretion of TNF-α, apparently mediated by IRF3.92

Thus, although TNF-α activates NF-κB once, the
qualitatively different LPS response is achieved by an
autocrine or paracrine loop that activates IKK twice.
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Apoptosis Signaling
Apoptosis, or programmed cell death, is regulated by
a variety of extracellular signals and their downstream
pathways.139 Some of these signals can have opposite
effects depending on cell type and signaling context.140

For example, the TNF-α pathway can lead to
cell death through caspase activation or induce
pro-survival signals through NF-κB. There is also
considerable crosstalk between extracellular inputs
such as cytokines.

In such cases, PLSR can take into account the
global state of signaling to determine the cellular
response to combinatorial inputs. Janes et al. probed
the signaling network involving EGF, TNF-α, and
insulin to build a predictive model of the apoptotic
response in HT-29 cells.75 Twelve apoptosis markers
were measured under these stimulation conditions.141

With this data, a PLSR model was trained to predict
the apoptosis markers, given a set of 19 signaling
measurements over 13 time points.75 To test the
predictive ability of the model, the authors perturbed
the network by applying either a blocking antibody
to the transforming growth factor (TGF)-α receptor
or an IL-1 receptor antagonist. They then repeated
the signaling network measurements and used the
PLSR classifier to predict the result. The model
accurately predicted the apoptotic responses even
though these perturbations interfered with autocrine
signals not explicitly encoded in the model. Two of
the principal component vectors from the PLSR model
correlated well with pro-survival and pro-apoptosis
signals. Thus, Janes et al. could represent the effects
of multiple stimuli or network perturbations in terms
of the projection of signaling data along pro-survival
and pro-apoptosis axes. In a related study, Janes et al.
used informative principal components to visualize
the contribution of EGF, TNF-α, and insulin to the
activity of various signaling kinases and receptors.76

The signaling map showed that some pathway-specific
components were activated to a similar extent by other
ligands. This shared influence was shown to be a result
of an ordered series of autocrine cytokine secretion.

Many signaling models concentrate on the
response of a specific cell type, and it is often unknown
whether the model is valid in other cell types. To
investigate this, Miller-Jensen et al. measured the
dynamics of kinase activity for various signaling
pathways and the apoptotic response in HT-29 cells
treated with TNF-α and adenovirus.77 A PLSR model
was trained to learn the relation between this input
and output data. HT-29 and HeLa cells exhibit distinct
signaling network and apoptotic responses after
combined adenoviral and TNF-α treatment. However,
the computational model correctly predicted the

apoptotic response in HeLa cells and MCF-10A
cells, given the kinase activity measurements for
those respective cell types. The model also correctly
predicted that specific inhibition of Akt by the PI(3)K
inhibitor LY294002 would affect apoptosis in HT-
29 cells but not in HeLa cells. However, the model
underestimated the level of TNF-α-induced apoptosis
in HeLa cells when IKK activity was blocked by
a neutralizing antibody. Upon closer examination,
Miller-Jensen et al. noticed that early IKK activity in
HeLa cells was significantly higher than in the HT-
29 training data, which prevented the PLSR model
from learning the extent of the relationship between
early IKK activity and apoptosis. Further experiments
confirmed that early IKK activity is anti-apoptotic
in HeLa cells. Thus, even though the cells respond
differently to the same extracellular stimuli, these
epithelial cell types use common effectors, e.g., kinase
substrates and transcription factors, to integrate
multiple signals to produce a phenotypic output.

CONCLUSION

Our main goal in writing this review was to
highlight the impact that integrated computational-
experimental studies are having on our understanding
of mammalian signal transduction. Accordingly, we
described the current experimental and computational
approaches to understanding mammalian signal
transduction and focused on how these approaches
have been successfully used together to facilitate
biological discovery.

In compiling the data for this article, we made
two interesting observations that relate to the future
of this field. First, we noticed that models fell into two
groups: refining and expansive. The refining models
are related to preexisting models, with new parameter
values and relatively minor changes. The expansive
modeling efforts move into new biological territory, a
previously un-modeled signaling pathway. Although
proven models are key to an iterative discovery
program,142 in the future it will be imperative that
the number of expansive models increases. Deriving
maximal benefit from expansive models will require
rigorous experimental testing of model predictions.
Fortunately, this is likely to occur as more young
scientists are learning both biology and mathematics,
and interaction between biologists and computational
scientists is on the rise.

Our second observation was that most models
are relatively small. To be sure, small models of signal
transduction can make nontrivial predictions and
provide meaningful insight. However, the incoming
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experimental data indicates that signaling pathways
that are traditionally studied separately are highly
interconnected. This can be seen in Table 2 as well,
with the numerous models that focus on different parts
of the network involving EGFR, β-adrenergic recep-
tor, Ras, and MAPK. As a result, it is important that
in the coming years models incorporate more signals
and downstream responses—that they become more
integrative with respect to biological function. Recent
work suggests this trend has already begun.143,144 This
shift will require the development of new methods to
assimilate and organize large data sets, and to model
network behaviors at a larger scale and in more detail.

Finally, we highlighted three important exam-
ples, where the success of the experimental biology
was a direct result of applying computational mod-
eling to the system. Table 2 holds many more such
examples. Taken together, these studies highlight the
important role that systems biology is beginning to
play in elucidating mammalian signaling networks. As
modeling efforts in signal transduction become more
expansive and integrative, we expect to see a dramatic
rise in our understanding of the complex links between
environmental cues and cellular responses, which will
have a direct impact on our ability to treat pathology.
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