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A brief account of developments in the experi-
mental and theoretical investigations of Brown-
ian motion is presented. Interestingly, Einstein
who did not like God’s game of playing dice for
electrons in an atom himself put forward a theory
of Brownian movement allowing God to play the
dice. The vital role played by his random walk
model in the evolution of non-equilibrium statis-
tical mechanics and multitude of its applications
is highlighted. Also included are the basics of
Langevin’s theory for Brownian motion.

Introduction

Brownian motion is the temperature-dependent perpet-
ual, irregular motion of the particles (of linear dimen-
sion of the order of 10¡6m) immersed in a fluid, caused
by their continuous bombardment by the surrounding
molecules of much smaller size (Figure 1). This e®ect
was first reported by the Dutch physician, chemist and
engineer Jan Ingenhousz (1785), when he found that
fine powder of charcoal floating on alcohol surface ex-
hibited a highly random motion. However, it got the
name Brownian motion after Scottish botanist Robert
Brown, who in 1828-29 published the results of his ex-
tensive studies on the incessant random movement of
tiny particles like pollen grains, dust and soot suspended
in a fluid (Box 1). To begin with when experiments
were performed with pollen immersed in water, it was
thought that ubiquitous irregular motion was due to the
life of these grains. But this idea was soon discarded as
the observations remained unchanged even when pollen
was subjected to various killing treatments, liquids other
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   Box  1.  Observing the Brownian Motion

One can observe Brownian movement by looking through an optical microscope with magnification 103

– 104 at a well illuminated sample of some colloidal solution (say milk drops put into water) or smoke
particles in air. Alternately, we can mount a small mirror (area 1 or 2 mm2) on a fine torsion fiber capable
of rotation about a vertical axis (as in suspension type galvanometer) in a chamber having air pressure of
about 10–2 torr and note the movement of the spot of light reflected from the mirror. The trace of the light
spot is manifestation of angular Brownian motion of the mirror.

It may be pointed out that movement of dust particles in the air as seen in a beam of light through a window
is not an example of Brownian motion as these particles are too large and the random collisions with air
molecules are neither much imbalanced nor strong enough to cause Brownian movement.

Figure 1. Brownian motion
of a fine particle immersed
in a fluid.

than water were used and fine particles of glass, petri-
fied wood, minerals, sand, etc were immersed in various
liquids. Furthermore, possible causes like vibrations of
building or the laboratory table, convection currents in
the fluid, coagulation of particles, capillary forces, in-
ternal circulation due to uneven evaporation, currents
produced by illuminating light, etc were considered but
were found to be untenable.

An early realization of the consequences of the stud-
ies on Brownian motion was that it imposes limit on
the precision of measurements by small instruments as
these are under the influence of random impacts of the
surrounding air.
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1 Th ese a re co l l ecte d in th e book
A l b e r t  E i ns t e i n  :  Inv e s t i g a t i o ns
o n  t h e  t h e o ry o f  Br o w n i a n
M ove m e n t e d ite d w ith notes by
R F u r t h  (D ov e r Pu b l ic a t i o n s ,
N e w York,1956).

2 Rev i e w  a rt icl e  e n t it l e d ‘Bro w n-
i a n  M ov e m e n t a n d  M o l e cu l a r
Re a l i ty ’ b a s e d  o n  h is w ork h a s
b e e n  tr a ns l a t e d  i n to  En g l ish  by
F  So d dy a n d  p u b l ish e d  by T a y-
l or & Fr a nc is ,Lo n d o n i n 1910 .

In 1863, Wiener
attributed Brownian
motion to molecular
movement of the
liquid.

experiments.

In 1863, Wiener attributed Brownian motion to mole-
cular movement of the liquid and this viewpoint was
supported by Delsaux (1877-80) and Gouy (1888-95).
On the basis of a series of experiments Gouy convinc-
ingly ruled out the exterior factors as causes of Brown-
ian motion and argued in favour of contribution of the
surrounding fluid. He also discussed the connection be-
tween Brownian motion and Carnot’s principle and there-
by brought out the statistical nature of the laws of ther-
modynamics. Such ideas put Brownian motion at the
heart of the then prevalent controversial views about
philosophy of science. Then, in 1900 Bachelier obtained
a di®usion equation for random processes and thus, a
theory of Brownian motion in his PhD thesis on stock
market fluctuation. Unfortunately, this work was not
recognized by the scientific community, including his
supervisor Poincaré, because it was in the field of eco-
nomics and it did not involve any of the relevant physical
aspects.

Eventually, Einstein in a number of research publica-
tions beginning in 1905 put forward an acceptable model
for Brownian motion1 . His approach is known as ‘ran-
dom walk’ or ‘drunkards walk’ formalism and uses the
fluctuations in molecular collisions as the cause of Brown-
ian movement. His work was followed by an almost sim-
ilar expression for the time dependence of displacement
of the Brownian particle by Smoluchowski in 1906, who
started with a probability function for describing the
motion of the particle. In 1908, Langevin gave a phe-
nomenological theory of Brownian motion and obtained
essentially the same formulae for displacement of the
particle. Their results were experimentally verified by
Perrin (1908 and onwards)2 using precise measurements
on sedimentation in colloidal suspensions to determine
the Avogadro’s number. Later on, more accurate val-
ues of this constant and that of Boltzmann constant k
were found out by many workers by performing similar
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The correctness of
the random walk

model and
Langevin’s theory

made a very strong
case in favour of
molecular kinetic
model of matter.

The techniques
developed for the

theory of Brownian
motion form

cornerstones for
investigating a variety

of phenomena.

The correctness of the random walk model and Lange-
vin’s theory made a very strong case in favour of mole-
cular kinetic model of matter and unleashed a wave of
activity for a systematic development of dynamical the-
ory of Brownian motion by Fokker, Planck, Uhlenbeck,
Ornstein and several other scientists. As such, during
the last 100 years, concerted e®orts by a galaxy of physi-
cists, mathematicians, chemists, etc have not only pro-
vided a proper mathematical foundation to the physical
theory but have also led to extensive diverse applications
of the techniques developed.

The two basic ingredients of Einstein’s theory were: (i)
the movement of the Brownian particle is a consequence
of continuous impacts of the randomly moving surround-
ing molecules of the fluid (the ‘noise’); (ii) these impacts
can be described only probabilistically so that time evo-
lution of the particle under observation is also proba-
bilistic in nature. Phenomena of this type are referred to
as stochastic processes in mathematics and these are es-
sentially non-equilibrium or irreversible processes. Thus,
Einstein’s theory laid the foundation of stochastic mod-
eling of natural phenomena and formed the basis of
development of non-equilibrium statistical mechanics,
wherein generally, the Brownian particle is replaced by
a collective property of a macroscopic system. Con-
sequently, the techniques developed for the theory of
Brownian motion form cornerstones for investigating a
variety of phenomena (in di®erent branches of science
and engineering) that have their origin in the e®ect of
numerous unpredictable and may be unobservable events
whose individual contribution to the observed feature is
negligible, but collective impact is observed in the form
of rather rapidly varying stochastic forces and damping
e®ect (see Box 2).

The main mathematical aspect of the early theories of
Brownian motion was the ‘central limit theorem’, which
am- ounted to the assumption that for a su±ciently large
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 Box  2. Brownian Motors

One of the topics of current research activity employing these techniques is referred to as Brownian motors.
This phrase is used for the systems rectifying the inescapable thermal noise to produce unidirectional
current of particles in the presence of asymmetric potentials. Their study is relevant for understanding the
physical aspects involved in the movement of motor proteins, the design and construction of efficient
microscopic motors, development of separation techniques for particles of micro- and nano-size, possible
directed transport of quantum entities like electrons or spin degrees of freedom in quantum dot arrays,
molecular wires and nano-materials; and to the fundamental problems of thermodynamics and statistical
mechanics such as basing the second law of thermodynamics on statistical reasoning and depriving the
Maxwell demon type devices of their mystique and the trade-off between entropy and information.

3  Th is r e su l t w i l l  b e  o b t a i n e d  i n
t h e  n e x t  s e c t i o n  o f  t h is a r t ic l e ;
s e e  e q u a t i o n  (8 ) .

The main
mathematical aspect
of the early theories
of Brownian motion
was the ‘central limit
theorem’, which
states that the
distribution function
for random walk is
quite close to a
Gaussian.

number of steps, the distribution function for random
walk is quite close to a Gaussian. However, since the
trajectory of a Brownian particle is random, it grows
only as square root of time3 and, therefore, one cannot
define its derivative at a point. To handle this problem,
N Wiener (1923) put forward a measure theory which
formed the basis of the so-called stable distributions or
Levy distributions. As a follow-up of these and to give
a firm footing to the theory of Brownian motion, Ito
(1944), developed stochastic calculus and an alternative
to Brownian motion — the Geometrical Brownian mo-
tion. This, in turn, led to extensive modeling for the
financial market, where the balance of supply and de-
mand introduces a random character in the macroscopic
price evolution. Here the logarithm of the asset price is
governed by the rules for Brownian motion. These as-
pects have enlarged the scope of applicability of theoret-
ical methods far beyond Einstein’s random walks. These
concepts have been fruitfully exploited in a multitude of
phenomena in not only physics, chemistry and biology
but also physiology, economics, sociology and politics.

The Random Walk Model for Brownian Motion

While tottering along, a drunkard is not sure of his steps;
these may be forward or backward or in any other di-
rection. Besides, each step is independent of the one
already
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taken. Thus, his motion is so irregular that nothing
can be predicted about the next step. All one can talk
about is the probability of his covering a specific distance
in given time. Such a problem was originally solved
by Markov and therefore, such processes are known as
Markov processes. Einstein adopted this approach to
obtain the probability of the Brownian particle covering
a particular distance in time t. The randomness of the
drunkard’s walk has given this treatment the name ‘ran-
dom walk model’ and in the case of a Brownian particle,
the steps of the walk are caused by molecular collisions.

To simplify the derivation, we consider the problem in
one-dimension along x-axis, taking the position of the
particle to be 0 at t = 0 and x(t) at time t and make
the following assumptions.

1. Each molecular impact on the particle under obser-
vation takes place after the same interval ¿0(10

¡8s) so
that the number of collisions in time t is n = t/¿0 (of
the order of 108).

2. Each collision makes the Brownian particle jump by
the same distance ± which turns out, we will see, to be
about 1nm, for a particle of radius 1µm in a fluid with
the viscosity of water, at room temperature along either
positive or negative direction with equal probability and
± is much smaller than the displacement x(t) which we
resolve through the microscope only on the scale of a
µm of the particle.

3. Successive jumps of the particle are independent of
each other.

4. At time t, the particle has net positive displacement
x(t) (it could be equally well taken as negative) so that
out of n jumps, m(= x(t)/±, of the order of 103) extra
jumps have taken place in positive direction. Since n
and m are quite large, these are taken as integers.



55RESONANCE ⎜ A u g ust   2005

GENERAL   ⎜ ARTICLE

In view of the four assumptions above, the total number
of positive and negative jumps, respectively, is (n+m)/2
and (n¡ m)/2. Since the probability that n indepen-
dent jumps, each with probability 1/2, have a particu-
lar sequence is (1/2)n, the probability of having m extra
positive jumps is given by

Pn(m) = (1/2)(1/2)
n{n!/[(n+m)/2]![(n¡m)/2]!},

(1)

where the factor (1/2) comes from normalization §m
Pn(m) = 1. While writing this expression, we have not
used any restriction on n and m except that both are
integers. So it holds good even for small n and m. Note
that both n and m are either even or odd. As an il-
lustration, if we consider 8 jumps, then the probabilities
form = 0, 2,4 and 8 are 35/256, 7/64, 7/128 and 1/512,
respectively.

For large n we can use the approximation n! = (2¼n)1/2

(n/e)n, so that for large n and m, equation(1) finally
becomes

Pn(m) = (1/2n)
1/2exp(¡m2/2n). (2)

Substituting m = x/± and n = t/¿0, this yields the
probability for the particle to be found in the interval x
to x + dx at time t as

P (x)dx = (1/4¼Dt)1/2exp(¡x2/4Dt)dx, (3)

with D = ±2/2¿0 . It may be mentioned that taking m to
be large mathematically means that ± is infinitesimally
small for a finite value of x. This aspect has enabled
us to switch over from discrete step random walk to a
continuous variable x in the above expression.

In order to understand the physical significance of the
symbol D, recall that if the linear number density of
suspended particles in a fluid is N(x, t) and their con-
centration is di®erent in di®erent regions, di®usion takes
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The proportionality of
root mean square

displacement of the
Brownian particle to

the square root of
time is a typical

consequence of the
random nature of the

process.

place. This is governed by the di®usion equation

D0(@
2N(x, t)/@x2) = @N(x, t)/@t, (4)

where D0 is the di®usion coe±cient. Equation (4) has
one of the solutions as

N(x, t) = (Ntot/
p
{4¼D0t})exp(¡x2/4D0t). (5)

Here,

Ntot =

Z 1

¡1
N(x, t)dx (6)

is the total number of particles along the x-axis. Ob-
viously, N (x, t)/Ntot corresponds to P (x) if we identify
D as D0 , i.e, ±2/2¿0 as di®usion coe±cient. In other
words, P (x) is a solution of the di®usion equation mean-
ing thereby that the random walk problem is intimately
related with the phenomenon of di®usion. In fact, the
random walk model is a microscopic phenomenon of dif-
fusion.

A look at (3) shows that the probability function de-
scribing the position of the particle at time t is Gaussian
with dispersion 2Dt (Figure 2) implying spread of the
peak width as square root of t. Furthermore, mean val-
ues of x(t) and x2(t) turn out to be

hx(t)i = 0 and hx2(t)i = 2Dt. (7)

Since hx(t)i = 0, the physical quantity of interest is
hx2(t)i. So what one measures experimentally is the
root mean square displacement of the Brownian particle
given by

xrms = hx2(t)i1/2 = (2Dt)1/2. (8)

The proportionality of root mean square displacement
of the Brownian particle to the square root of time is a
typical consequence of the random nature of the process
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Figure 2.  Plot of (4pDt)1/2

P(x) (equation(3)) versus x
for D= 5.22 × 10–13 m2 s–1 and
x varying from 5.0 mm to
5.0 mm corresponding to t
values 1s (the innermost
curve), 2s (the middle
curve), and 4s (the outer-
most curve ).

and is in contrast with the result of usual mechanical
predictable and reversible motion where displacement

varies as t. For three dimensional motion, the above
expression becomes

hr2(t)i = hx2(t)i + hy2(t)i + hz2(t)i = 6Dt. (9)

From equation (7), we have

D = hx2(t)i/2t, (10)

which connects the macroscopic quantity di®usion con-
stant D or D0 with the microscopic quantity the mean
square displacement due to jumps. It gives us a di-
rect relationship between the di®usion process, which is
irreversible, and Brownian movement that has its ori-

gin in random collisions. In other words, irreversibility
has something to do with the random fluctuating forces
acting on the Brownian particle due to impacts of the
molecules of the surrounding fluid.
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4 O n e  such  w e l l - i nv e s t i g a t e d
t o p ic is t h a t  o f  q u a n t u m  r a n -
d o m  w a lks – a  n a t ur a l  e x t e n -
sion o f cl a ssic a l r a n d o m w a lks.
Th o u g h  t h e  m a i n  e m p h a s is i n
t h e s e  s t u d i e s h a s b e e n  o n
b r i n g i n g  o u t  t h e  d i f f e r e nc e s i n
th e ir b e h a v io ur a s co m p a r e d
t o  t h e  c l a ss ic a l  a n a l o g s ,  i t  is
b e l i e v e d  t h a t  t h is k n o w l e d g e
w i l l b e  h e l p fu l in d eve lo p in g
a lg ori th ms th a t c a n b e  run on a
q u a n t u m  c o m p u t e r  a s  a n d
w h e n i t is pr a ct ic a l ly r e a l i z e d .

The successful use of the concept of random walk in the
theory of Brownian motion encouraged physicists to ex-
ploit it in di®erent fields involving stochastic processes.4

Langevin’s Theory of Brownian Motion

The intimate relationshipbetween irreversibility and ran-
domness of collisions of the fluid molecules with the
Brownian particle (mentioned above) prompted Langevin
(1908) to put forward a more logical theory of Brown-
ian movement. However, before proceeding further, we
digress to consider the motion of a hockey ball of mass
M being hit quickly by di®erent players. Its motion is
governed by two factors. The frictional force fd between
the surface of ball and the ground tends to slow it down,
while the impact of the hit with the stick by a player in-
creases its velocity. The e®ect of the latter, of course, is
quite random as its magnitude as well as direction de-
pend upon the impulse of the hit. Since a hit lasts for
only a very short time, we represent the magnitude fj of
corresponding force at time tj by a Dirac delta function
( Box 3 ) of strength Cj

fj(t) = Cj±(t¡ tj), (11)

and write the equation of motion pertaining to this force
as

M |dv/dt| = fj . (12)

To find the e®ect of the hit in changing the velocity,
we substitute (11) into (12), integrate on both the sides
with respect to time over a small time interval around
tj and use the property of delta function to get

M |¢vj | = Cj. (13)

Here, ¢vj is the change in velocity brought about by
the hit at time t = tj. Now, the hits applied by di®erent
players can be in any direction, the total force exerted
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Box 3.  The Dirac Delta Function

Many times we come across problems in which the sources or causes of the observed effects are nearly
localized or almost instantaneous. Some such examples are : point charges and dipoles in electrostatics;
impulsive forces in dynamics and acoustics; peaked voltages or currents in switching processes; nuclear
interactions, etc. To handle such situations, we use what is known as Dirac delta function. It represents an
infinitely sharply peaked function given, for one-dimensional case, by
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0

0
0

0
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but such that its integral over the whole range is normalized to unity :

∫ =−
∞

∞−

.1)( 0 dxxxδ

Its most important property is that for a continuous function f(x)

∫ =−
∞

∞−

).()()( 00 xfdxxxxf δ

Thus, δ (x – x0) acts as a sieve that selects from all possible values of f(x) its value at the point x0, where
the δ  function is peaked. Accordingly, the above result is sometimes called sifting property of δ  function.

on the ball in a finite time interval will be obtained by
summing up the above expression over a sequence of hits
made taking into account the directions of the hits. This
force can be written as

fr(t) = §jCjÁj±(t¡ tj), (14)

where Áj is unit vector in the direction of hit at time
t = tj . The subscript r in (14) has been used to indicate
the randomness of the force vector. Thus, the total force
acting on the ball at any time t will be fd + fr and its
equation of motion will read

Mdv/dt = fd+ fr. (15)

Furthermore, if a very large number of hits are applied
quickly over a long time interval as compared to the
impact time, all possible directions Áj will occur com-
pletely randomly with equal probability. Accordingly,
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 Figure 3.  A large Brownian
particle surrounded by ran-
domly moving relatively
smaller molecules of the
fluid.

average value of fr will be zero, i.e.,

hfr(t)i = 0.

Reverting to the Langevin’s theory, we consider Brown-
ian particle in place of the hockey ball in the above illus-
tration and make the following simplifying assumptions.

1. The Brownian particle experiences a time-dependent

force f(t) only due to molecular impacts from the sur-
rounding particles (Figure 3) and there is no other exter-
nal force ( such as gravitational, Coulombic, etc.) acting
on it.

2. The force f(t) is made up of two parts: fd and fr(t).

The former is an averaged out, systematic or steady
force due to frictional or viscous drag of the fluid, while
the latter is a highly fluctuating force or noise arising
from the irregular continuous bombardment by the fluid

molecules. The equation of motion of the particle is
given by (15).

3. The steady force fd is governed by the Stokes formula
(Box 4) so that

fd = ¡°v. (16)
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Box  4. Stokes Formula

Following Stokes we assume that a perfectly rigid body (say, a sphere) with completely smooth surface and
linear dimension l is moving through an incompressible, viscous fluid ( viscosity η, density ρ )  having an
infinite extent in such a manner that there is no slip between the body and the layers of the fluid in its
contact, with such a speed v that the motion is streamlined and the Reynolds number R ( = vlρ/η) is very
small (strictly speaking vanishingly small), then the viscous drag force fd on the body is proportional to
velocity v, i.e. fd = – γ  v;  and the constant γ  depends on the geometry of the body. For example, it is 6πηa
for a sphere of radius a  and is 16 ηa for a plane circular disc of radius a  moving perpendicular to its plane.

Here, ° is viscous drag coe±cient and

1/° = |v|/|fd| (17)

is mobility of the Brownian particle. The drag coe±cient
depends upon viscosity ´ of the fluid, geometry as well
as size of the Brownian particle. For a spherical particle
of radius a,

° = 6¼´a. (18)

4. The coe±cient of viscous drag ° is a constant, having
the same value in all parts of the fluid and at all times.

5. The random force fr(t) is independent of v(t) and
varies extremely fast as compared to it so that over a
long time interval (much larger than the characteristic
relaxation time ¿), the average of fr(t) vanishes (as elab-
orated above for a hockey ball), i.e.,

hfr(t)i = 0. (19)

This essentially amounts to saying that the collisions
are completely independent of each other or are uncor-
related.

Substituting (16) into (15), we get

M (dv/dt) = ¡°v+ fr(t), (20)



62 RESONANCE ⎜ A u g ust   2005

GENERAL  ⎜ ARTICLE

where fr(t) satisfies the condition given in (19).This is
the celebrated Langevin equation for a free Brownian
particle. fr(t) is usually referred to as ‘stochastic force’;
(20) is the stochastic equation of motion and is the basic
equation used for describing a stochastic process. The
solution to (20) reads

v(t) = v(0)exp(¡t/¿ ) + exp(¡t/¿ )
Z t

0

exp(u/¿ )A(u)du,

(21)

and gives us the drift velocity of the Brownian particle.
Here,

¿ = M/° (22)

is the relaxation time of the particle and

A(t) = fr (t)/M (23)

is the stochastic force per unit mass of the Brownian
particle and is generally called ‘Langevin force’.

It may be mentioned that the first term in (21) is the
damping term and it tries to exponentially reduce the
value of v(t) to make it essentially dead. On the other
hand, the second term involving Langevin force or noise
creates a tendency for v(t) to spread out over a contin-
ually increasing range of values due to integration and,
thus, keeping it alive. Consequently, the observed value
of drift velocity at any time t is an outcome of these two
opposing tendencies.

From (19) and (23), it is clear that hA(t)i = 0 so that
the average value of drift velocity in (21) becomes

hv(t)i = v(0)exp(¡t/¿ ). (24)

Obviously, average drift velocity of the Brownian parti-
cle decays exponentially with a characteristic time ¿ till
it becomes zero. This is a typical result for dissipative
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5 For d e t a i ls o f th is st e p  s e e
St a t is t ic a l M e ch a n ics  b y  R K
P a t hr i a  l is t e d  a t t h e  e n d .

or irreversible processes. But, this is physically not ac-
ceptable as ultimately the particle must be in thermal
equilibrium with its surroundings at ambient tempera-
ture and, therefore, cannot be at rest. So we consider
hv2(t)i = hv(t).v(t)i. Substituting for v(t) from (21)
and using the fact that hA(t)i = 0, we have

hv2(t)i = v2(0)exp(¡2t/¿) + exp(¡2t/¿ )£

Z t

0

Z t

0

exp(u1 + u2)/¿ )K(u2 ¡ u1)du1du2, (25)

where

K(u2 ¡ u1) = hA(u1).A(u2)i. (26)

It is called autocorrelation function for the Langevin
force A(u) and involves u2 ¡ u1 to emphasize the fact
that for Brownian motion it depends upon the time in-
terval u2 ¡ u1 rather than actual values of u1 and u2.
We assume that K(u2 ¡ u1) is an even function of its
argument and is significant only for u2 almost equal to
u1. Using these ideas when the double integral in (25)
is evaluated, we get5

hv2(t)i = v2(0) + [v2(1) ¡ v2(0)][1¡ exp(¡2t/¼)].
(27)

Here, hv2(1)i is the mean square velocity of the Brown-
ian particle for infinitely large value of t and is expected
to be the value corresponding to the situation when the
system is in equilibrium at temperature T . Thus, from
equipartition theorem

(1/2)Mv2(1) = (3/2)kT. (28)

As a special case if v2(0) equals the equipartition value
3kT/M, then hv2(t)i = v2(0) = 3kT/M implying that
if the system has attained statistical equilibrium then it
would continue to be so throughout.
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The Einstein relation
gives a relationship

between the diffusion
coefficient and

mobility of the particle
and hence the

viscosity of the fluid.
Thus, viscosity of a

medium is a
consequence of

fluctuating forces
arising from their

continuous and
random motion and is

an irreversible
phenomenon.

It may be noted that multiplying (20) with r(t)/M,
where r(t) is the instantaneous position of the Brownian
particle, we finally get

d2hr2i/dt2 + (1/¿ )(dhr2i/dt) = 2hv2(t)i; (29)

here hv2(t)i is given by (27). This second order di®er-
ential equation, on being solved, gives

hr2(t)i = v2(0)¿ 2{1¡ exp(¡t/¿ )}2 ¡ (3kT/M )¿2£

{1¡ exp(¡t/¿)}{1 ¡ exp(¡t/¿ )} + (6kT¿/M)t. (30)

For t very small as compared to ¿ it yields

hr2(t)i = v2(0)t2, (31)

so that root mean square displacement rrms = hr2(t)i1/2

is proportional to t as for a reversible process. On the
other hand, for tÀ ¿ , we get

hr2(t)i = (6kT¿/m)t = (6kT/°)t (32)

implying that

rrms(t) = (6kT/°)
1/2t1/2 . (33)

Expression (32) becomes identical to (9) if we take

D = kT/°, (34)

which in view of (18) reads

D = kT/6¼´a (35)

for a spherical Brownian particle. Equation (34) is usu-
ally known as ‘Einstein relation’. Obviously, it gives a
relationship between the di®usion coe±cient and mobil-
ity of the particle and hence the viscosity of the fluid.
Thus, viscosity of a medium is a consequence of fluctu-
ating forces arising from their continuous and random
motion and is an irreversible phenomenon.
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6 Th is d e r iv a t i o n  is g iv e n ,  e . g . ,
i n a rt ic l e  1 . 6 i n N o n e q u i l i br iu m
S t a t i s t i c a l  M e c h a n i c s  b y  R
Z w a n z i g  ( O x f o r d  U n iv e rs i ty
Press, O xford , 2001).

7 Se e  R  Z w a n z i g , J .  S t a t .  Phys . ,
Vo l . 9 , p . 215 , 1973 .

At this stage it is in order to mention one of the ex-
perimental observations by Perrin and Chaudesaigues.
They studied the mean square displacement of gamboge
particles of radius 0.212 µm in a medium with viscos-
ity 0.0012 Nm¡2s and maintained at a temperature of
186 K. The values found along the x-axis at times 30,
60, 90 and 120 seconds, respectively, were 45, 86.5, 140,
195 £10¡12m2 . These give the mean value of squared
displacement for 30 seconds as 48.75 £ 10¡12m2. Now,
from (7) and (35), we have

hx2(t)i = (kTt/3¼´a), (36)

which on substituting the above listed values yields k =
1.36 £ 10¡23JK¡1 . Clearly, it is quite close to the ac-
cepted value of the Boltzmann constant except that the
deviation is reasonably large.

It may be mentioned that the Langevin equation (equa-
tion (20)) was based on the assumptions enumerated in
the beginning of this section. However, in a real system
being used for the observation of Brownian motion, some
external force fext(t) may be present; the viscous drag
force fd may be a function of higher powers of velocity
or some other function of v(t); the drag coe±cient may
not be a constant and rather may depend upon v, t or
even position. In such a case this equation is modified
to a general form

M (dv/dt) = ¡°(v, x, t)F (v) + fr(t) + fext(t). (37)

It is worthwhile to point out that the Langevin equa-
tions can also be obtained by assuming the Brownian
particle to be interacting bilinearly with a large num-
ber of harmonic oscillators constituting a heat bath6 .
This approach yields explicit expressions for the drag
force fd as well as the stochastic force or noise fr(t) and,
thus, provides better insight into their mechanism but
still does not make the theory very rigorous7 . The latter
task is achieved by using the so called master equation
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for the time rate of variation of probability distribution
function and its simplified version — the Fokker—Planck
equation.8 However, we do not propose to go into these
details here.

Sir Isaac Newton had a theory of how to get the
best outcomes in a courtroom. He suggested to
lawyers that they should drag their arguments
into the late afternoon hours. The English judges
of his day would never abandon their 4 o’clock
tea time, and therefore would always bring
down their hammer and enter a hasty, positive
decision so they could retire to their chambers
for a cup of Earl Grey.

This tactic used by the British lawyers is still
recalled as ‘Newton’s Law of Gavel Tea’ in
legal circles.


