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México 72000
2 School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews,
Fife KY16 9SS, Scotland

E-mail: kd1@st-and.ac.uk

Received 2 November 2001, in final form 25 February 2002
Published 28 March 2002
Online at stacks.iop.org/JOptB/4/S82

Abstract
The orbital angular momentum density of Bessel beams is calculated
explicitly within a rigorous vectorial treatment. This allows us to investigate
some aspects that have not been analysed previously, such as the angular
momentum content of azimuthally and radially polarized beams.
Furthermore, we demonstrate experimentally the mechanical transfer of
orbital angular momentum to trapped particles in optical tweezers using a
high-order Bessel beam. We set transparent particles of known dimensions
into rotation, where the sense of rotation can be reversed by changing the
sign of the singularity. Quantitative results are obtained for rotation rates.

Keywords: Orbital angular momentum density, Bessel light beams, optical
tweezers
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1. Introduction

It is well established that electromagnetic radiation may carry
spin angular momentum (SAM) due to circular polarization.
Additionally a light beam may possess orbital angular
momentum (OAM) due to its spatial phase distribution.

Whilst it is recognized that light beams with an azimuthal
phase term of the form exp{+ilϕ} possess OAM this is not
exclusive and other forms of light beams may possess orbital
angular momentum [1]. Most attention in the literature
regarding beams with helical wavefronts has been dedicated
to Laguerre–Gaussian (LG) laser modes [2]. In 1992 the
OAM for LG beams was calculated for the first time within
the paraxial approximation for the cases of linear and circular
polarization [3]. This has generated substantial theoretical and
experimental activity in recent years.

However, there are important differences between LG
beams and other rotating fields, such as high-order Bessel
beams (BBs), that may lead to different potential applications.

3 Author to whom correspondence should be addressed.

Bessel beams are solutions of the Helmholtz equation that
are propagation invariant [4, 5]. These beams, also called
‘non-diffracting’ beams, have generated considerable interest
in recent years. For instance, Arlt et al [6] have recently
established a comparison between LG beams and BBs for
cold atom guiding. They concluded that for focusing an
atomic ensemble it is convenient to use LG modes with radial
index p = 0, but for atom transport over extended distances
BBs are extremely advantageous over LG beams due to their
propagation invariant properties.

There is another motivation for analysing in detail the
properties of BBs related with angular momentum. The Bessel
functions are solutions of the exact Helmholtz equation but also
of the paraxial wave equation. This may open the possibility
of experimental studies in the paraxial and nonparaxial
regimes. A vectorial analysis of angular momentum was done
for nonparaxial beams with near-cylindrical symmetry and,
although BBs were mentioned as a particular case, they were
not analysed in detail [7].

Interest in the orbital angular momentum of light beams
has initiated a number of experimental studies. It has been
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demonstrated that both OAM and SAM can be transferred
to microparticles and cold atoms [8–10]. Further work has
also shown the mechanical equivalence of spin and orbital
angular momentum so that they can be added to give the
total angular momentum in such systems [11, 12]. Recently,
Allen and Padgett [13] suggested that, in an experiment, atoms
may respond to the local value of angular momentum, which
may not only be different in magnitude but may also have a
different sign from that expected by the state of polarization
of the beam. However, all experimental studies have
exclusively concentrated on LG beams and have not explored
the wider family of light beams or mode profiles that are also
theoretically noted to possess orbital angular momentum.

In this paper, we calculate explicitly angular momentum
density for BBs within a rigorous vectorial treatment in the
nonparaxial regime. In the paraxial limit our results reproduce
the well-known expressions for angular momentum that were
originally derived for LG beams and later generalized to
any paraxial beam with helical wavefronts [3]. Indeed, the
angular momentum density of BBs is similar to that of multi-
ringed LG beams, i.e. p > 0, which is not too surprising
as BBs can be regarded as the limiting case for LG beams
with increasing radial mode index p. However, when the
nonparaxiality is relevant, the local angular momentum shows
significant variations. Furthermore, high-order Bessel beams
are easier to generate experimentally than multi-ringed LG
beams. Here we demonstrate experimentally, for the first time
to our knowledge, the mechanical transfer of OAM to trapped
particles in optical tweezers using a high-order Bessel beam.
We set transparent particles of known dimensions into rotation.
Quantitative results are obtained for the rotation rate which has
a linear dependence on the orbital angular momentum content
of the light beam.

2. Different states of polarization for BBs

For a linearly polarized electromagnetic field a scalar treatment
is adequate under certain circumstances [14]. However, in
a rigorous manner, the electromagnetic field behaviour is
determined by the vectorial wave equation.

In this analysis we assume monochromatic fields, as
any arbitrary time dependence can be expanded in terms of
harmonic functions. In this case, the vectorial wave equation
for an homogeneous and isotropic medium reduces to the
vectorial Helmholtz equation, that is

∇2C(r) + k2C(r) = 0 (1)

where the vector C(r) can represent either electric or magnetic
induction field, as well as vector potential, and k = ω/c is the
wavenumber.

The most general solution to equation (1) is given by [15]

C(r) =
∑

l

(alMl(r) + blNl(r) + clLl(r)) (2)

where
Ml(r) = ∇ × âψl(r) (3)

Nl(r) = 1

k
∇ × Ml(r) (4)

Ll(r) = ∇ψl(r) (5)

with â being an arbitrary unit vector and ψl(r) being a member
of a complete set of solutions of the scalar Helmholtz equation.
The coefficients al, bl and cl are determined by the boundary
conditions or by the symmetry of the specific situation.

It can be easily verified using Maxwell equations that, if
the vector potential A is given by a general expansion of the
form (2), the fields E and H will be given just in terms of
the vectors Ml and Nl . The vector Ll will not appear in the
expression for B, as B = ∇ × A. This is consistent with the
fact that both Ml and Nl are solenoidal and each is proportional
to the curl of the other, like the electric and magnetic fields.
Then, we can write E as [15]

E(r) =
∑

l

(alMl(r) + blNl(r)). (6)

It is important to note that expression (6) is completely general
since it does not depend on the coordinate system under
consideration.

In particular, for the case of circular cylindrical
coordinates, the solution to the scalar Helmholtz equation is

ψl(ρ, ϕ, z) = Jl(ktρ) exp(ilϕ + ikzz) (7)

where Jl is the lth-order Bessel function. Equation (7) is
precisely what we can identify as the amplitude distribution of
BBs, where l represents the azimuthal index, and kt and kz are
the transversal and longitudinal components of the wave vector.

By taking the arbitrary constant vector â as the unit vector
in the z-direction,uz , and by using equation (7) in equations (3)
and (4), after simple calculations it is obtained that

Muz l = kt

2
{i(Jl−1 + Jl+1)uρ − (Jl−1 − Jl+1)uϕ}eikz z+ilϕ (8)

Nuzl = kt

2k
[ikz(Jl−1 − Jl+1)uρ − kz(Jl−1 + Jl+1)uϕ

+ 2kt Jluz]eikz z+ilϕ (9)

where the arguments of the functions were omitted for brevity.
These equations lead to the cases of radially and azimuthally
polarized beams, as well as to linear (P), right-circular (R)
and left-circular (L) polarization states.

The electric field vector for azimuthal polarization is
obtained by using equations (8) and (9) in expression (6) and
setting al = δ0l(2E0/kt); bl = 0, which gives

Ea(r) = E0 J1(ktρ)eikz zuϕ (10)

where E0 is a constant proportional to the square root of the
incident power and with electric field units.

Azimuthal polarization can be interpreted as the
transversal electric mode (TE) for BBs, as it is the only case in
which the electric vector has no component in the z-direction.
This result will be more evident from the general expression
for the electric field of P , R and L states, equation (12), where
it can be seen that in these cases there is always a longitudinal
component.

For the radial polarization state, which corresponds to
a transversal magnetic mode (TM), setting the coefficients
al = 0 and bl = δ0l(2iE0k/kzkt) in (6) and from equations (8)
and (9), the electric field vector is

Er (r) = E0

[
J1(ktρ)uρ + 2i

(
kt

kz

)
J0(ktρ)uz

]
eikz z. (11)
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On the other hand, to construct the general expressions for
R andL states by means of equations (8) and (9), it is necessary
to set bl = (k/kz)al and bl = −(k/kz)al , respectively, in
equation (6). Orthogonal P states can be constructed as a
superposition of R and L states.

Once we obtain the two orthogonal P states we are in a
position to write the most general expression for the field as

E(r) = E0ei(kz z+lϕ)

{
[αux + βuy]Jl +

i

2

(
kt

kz

)

× [(α + iβ)e−iϕ Jl−1 − (α − iβ)eiϕ Jl+1]uz

}
(12)

where α is the x-component and β is the y-component of the
corresponding Jones vector for the given polarization state. In
particular, for linear polarization both of these parameters are
real, while for right- and left-circular polarization they satisfy
β = iα and β = −iα, respectively. Equation (12) agrees with
the corresponding expression presented in [7] that was obtained
in a different way. However, having the fields expressed in
terms of powers of (kt/kz) allows us to make an analysis in
the limit of the paraxial approximation when kt � kz as well
as in the nonparaxial regime for which this inequality is not
satisfied.

It should be noted that for an R state, β = iα, the first
term of the z-component in (12) vanishes, and the transversal
vectors (ux + iuy) can be written in polar coordinates giving
(uρ + iuϕ)eiϕ , so the azimuthal phase dependence of electric
vector is in this case exp{i(l + 1)ϕ} instead of exp{ilϕ}.
Similarly, for theL state we find that the azimuthal dependence
is now of the form exp{i(l − 1)ϕ}. Moreover, this is not only
valid for BBs, but for any field with circular polarization,
since even if it does not have another kind of azimuthal
dependence, it will possess a term of the form exp{±iϕ} due
to the polarization when analysed in polar coordinates.

3. Poynting vector and angular momentum density

It is well known that the energy flux of the radiation field
is given by the Poynting vector S, which in free space is
also proportional to the linear momentum density g = S/c2.
And the angular momentum density can be expressed as
j = r × S/c2 [16].

We can use the expressions for the electric field E which
we have obtained in the previous section to calculate the
real part of the time-averaged Poynting vector, given by
〈S〉 = (1)/(4iωµ){E × ∇ × E∗ + E∗ × ∇ × E}. The total
linear and angular momenta can be obtained by integrating the
corresponding momentum densities over the whole space.

3.1. Azimuthal and radial polarization states

For pure azimuthal and radial polarizations of BBs we find,
using either equation (10) or (11), identical results for the
Poynting vector

〈S〉 = |E0|2kz

2ωµ0
[J1(ktρ)]2uz (13)

which means that for these polarizations the energy flux and
the linear momentum of the fields are only in the longitudinal
direction.

On the other hand, for the real part of the time-averaged
angular momentum density we have

〈j〉 = − |E0|2kz

2ωµ0c2
ρ[J1(ktρ)]2uϕ. (14)

When an integration is realized over the whole space in
order to calculate the total angular momentum, the azimuthal
components of 〈j〉 will cancel out by symmetry, and this is
also true for a finite integration region provided that it be centre
symmetric. In consequence, we can conclude that BBs with
pure azimuthal or pure radial polarization do not carry angular
momentum. This is not surprising since these modes do not
possess an azimuthal phase dependence, implying that they are
not rotating waves.

To understand the physical significance of this fact, we
rewrite equations (10) and (11) in terms of the rectangular unit
vectors ux and uy , using the relations uρ = ux cos ϕ+uy sin ϕ

and uϕ = −ux sin ϕ + uy cos ϕ, and we obtain

Ea(r) = E0ei(kz z+π/2) J1(ktρ)

2
[eiϕ(ux − iuy)

− e−iϕ(ux + iuy)] (15)

Er (r) = E0eikz z

{
J1(ktρ)

2
[eiϕ(ux − iuy)

+ e−iϕ(ux + iuy)] + 2i

(
kt

kz

)
J0(ktρ)uz

}
. (16)

These expressions reveal that pure azimuthal and radial
polarized fields are appropriate superpositions of two beams:
one with l = 1 and spin = −1 (left-circularly polarized), and
the other with l = −1 and spin = 1 (right-circularly polarized).
Then the total spin and the total orbital angular momenta of
each superposition are zero. This explains, from a physical
point of view, why pure azimuthally and radially polarized
beams do not carry angular momentum. Additionally, this also
suggests an experimental way to generate beams with these
polarization states.

3.2. Linear and circular polarization states

For P , R and L states, the general expression of the Poynting
vector obtained from equation (12) is given by

〈S〉 = |E0|2
4ωµ0

{[
2l

ρ
J 2

l − σ
d

dρ
J 2

l

]
uϕ

+ 2kz

[
J 2

l +
1

4

(
kt

kz

)2

(2J 2
l + Jl(Jl+2 − Jl−2)

×{(|α|2 − |β|2) cos 2ϕ + 2Re {α∗β} sin 2ϕ})
]
uz

}
+ U

(17)

where U is a transverse vectorial function of second and third
order in kt/kz . The explicit form of U is rather large and to
avoid confusion at this stage it is given in the appendix. We
assume (|α|2 + |β|2) = 1 and σ = i(αβ∗ − α∗β), which is the
same convention as that used in [7]. It can be easily verified
that σ = 0, +1,−1, for P , R and L states, respectively.

For the angular momentum density we have

〈j〉 = |E0|2
4ωµ0c2

{
−z

[
2l

ρ
J 2

l − σ
d

dρ
J 2

l

]
uρ − 2ρkz
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×
[

J 2
l +

1

4

(
kt

kz

)2

{2J 2
l + Jl(Jl+2 − Jl−2)[(|α|2 − |β|2)

× cos 2ϕ + 2Re {α∗β} sin 2ϕ]}
]
uϕ

+ ρ

[
2l

ρ
J 2

l − σ
d

dρ
J 2

l

]
uz

}
+ (r × U). (18)

As in the radial and azimuthal polarization cases, if an
integration over the whole space is realized to calculate the total
angular momentum, the radial and azimuthal components of
the angular momentum density vanish, so that the total angular
momentum is just directed along the propagation axis for P ,
R and L states.

From equations (18) and (23), given in the appendix, it is
possible to obtain the z-component of the angular momentum
density corresponding to the Helmholtz equation, namely

jz = |E0|2ε0

2ω

{[
l J 2

l − 1

2
σρ

d

dρ
J 2

l

]
+

(
kt

kz

)2

× [2l J 2
l (|α sin ϕ − β cos ϕ|2)] +

1

2

(
kt

kz

)3

kzρ

× [{(1 − σ)Jl−1 Jl−2 + (1 + σ)Jl+1 Jl+2 − σ Jl(Jl−1 − Jl+1)

− [(|α|2 − |β|2) cos 2ϕ + 2Re (α∗β) sin 2ϕ]

× (Jl−2 Jl+1 + Jl+2 Jl−1)]

}
. (19)

On the other hand, in the paraxial limit, for any electromagnetic
field ψ with an azimuthal dependence of the form exp(ilϕ),
like a BB when kt � kz or LG beams, the z-component of the
angular momentum density is [13]

jz = |E0|2ε0

2

{
l

ω
|ψ(r)|2 − σρ

2ω

∂|ψ(r)|2
∂ρ

}
. (20)

The extra terms in equation (18) constitute an important
difference of the angular momentum density of nonparaxial
BBs with respect to that of paraxial beams. To appreciate
the importance of this fact, we can consider an experimental
situation for atom confinement with a conical mirror whose
vertex angle is such that the ratio of the wave vector
components of the resulting BB is not negligible. For
instance, in figure 1(a) we show the spatial distribution of the
z-component of the angular momentum density for a BB with
l = 3 and kt/kz = 0.7, for a linearly polarized field, with the
polarization plane inclined 45◦ with respect to the horizontal
plane. We also show the distribution for (b) a paraxial BB
with kt/kz = 0.05, (c) an LG beam with p = 6, and (d) an
LG beam with p = 0; in all the cases l = 3. In figure 2
we show the corresponding pictures but now for right-handed
circularly polarized fields. From these figures we remark on the
fact that for the linearly polarized nonparaxial BB the angular
momentum density distribution is not radially symmetric. This
is also clear by analysing equation (19), since for circular
polarization we have |α sin ϕ − β cos ϕ|2 = 1/2, and all
the other terms depending on the azimuthal angle vanish.
Also, for paraxial beams, equation (20) does not depend on
the azimuthal coordinate at all. Therefore, the azimuthal
dependence is relevant in the case of nonparaxial linearly
polarized BBs, giving rise to an asymmetrical distribution
of angular momentum density. It is worth noting that the

(a) (b) (c) (d )

Figure 1. Longitudinal component of the angular momentum
density of a linear polarization state for: (a) a nonparaxial BB with
l = 3 and kt/kz = 0.6; (b) a paraxial BB with l = 3 and
kt/kz = 0.01; (c) an LG beam with l = 3 and p = 6; (d) an LG
beam with l = 3 and p = 0.

(a) (b) (c) (d )

Figure 2. Longitudinal component of the angular momentum
density of a right-circular polarization state for: (a) a nonparaxial
BB with l = 3 and kt/kz = 0.6; (b) a paraxial BB with l = 3 and
kt/kz = 0.01; (c) an LG beam with l = 3 and p = 6; (d) an LG
beam with l = 3 and p = 0.

asymmetry arises in the direction of the polarization plane.
These type of asymmetries have been previously observed in
connection with vectorial beams [18]. The angular momentum
properties of nonparaxial BBs open the possibility of new
experimental studies, though we note that high nonparaxial
limits are difficult to achieve with refractive axicons and
telescopes.

Later, we experimentally study the OAM for a paraxial
BB, so that we restrict the following analysis to this regime. In
figure 3 we show the intensity profile of the BB along with the
z-component of the paraxial angular momentum density forP ,
R andL states for some values of l. For comparison, in figure 4
analogous plots for LG beams for different values of l and p
are shown. It can be seen from the figures that for circular
polarization states the angular momentum density changes not
only in magnitude but also in sign over the beam profile for
all cases. This fact was mentioned in [13], nevertheless from
the graphical analysis we can make an important remark. The
shifting of the AM density maxima with respect to those of
the intensity distribution, where particles could be trapped,
might cause an additional torque. Also, notice that in the case
of multi-ringed beams, BBs and LG beams with p � 1, the
sign variations are more considerable than for a single-ring
beam. However, approximations to BBs are easier to generate
experimentally (see section 4) than multi-ringed LG beams,
which require more specialized holograms or a cylindrical lens
mode convertor.

So far we have considered a purely classical treatment.
From a quantum mechanics perspective, it was demonstrated
in [3] that the total angular momentum per photon for paraxial
LG beams is given by (l + σ)h̄. Furthermore, in [7] it has been
recognized that this result has a general validity, within the
paraxial approximation, for all kinds of beams possessing an
azimuthal phase term of the form exp{±ilφ}.

From an experimental point of view, the mechanism by
which the transfer of angular momentum from radiation to
matter takes place strongly determines its behaviour. For
instance, if the mechanism is preferably absorption, the orbital

S85



K Volke-Sepulveda et al

0 2 4 6 8 10 12 14 16

– 0.4

– 0.2

0

0.2

0.4

0.6

0.8

1

l = 0 

0 2 4 6 8 10 12 14 16

– 0.5

0

0.5

1

l = 1 

0 2 4 6 8 10 12 14 16
– 0.4

– 0.2

0

0.2

0.4

0.6

0.8

1

l = 2 

(a) (b)

(c)

0 2 4 6 8 10 12 14 16

– 0.2

0

0.2

0.4

0.6

0.8

1
l = 3

(d)

Figure 3. Comparison between the intensity distribution (solid
curve) and the z-components of the angular momentum density for
BBs with different azimuthal indices, for P-state (dotted curve),
R-state (dash–dot curve) and L-state (dashed curve). All the curves
are normalized, the radius is given in micrometres, for
θ = tan−1(kt/kz) = 5.5◦ and λ = 1064 nm. The mode indices are
(a) l = 1, (b) l = 2, (c) l = 3, (d) l = 4.

and spin angular momenta appear to play equivalent roles
in interaction with microparticles, so they can be added or
subtracted to give the total angular momentum as in quantum
mechanics [11, 12]. On the other hand, recent experiments
suggest that, if scattering is the predominant mechanism of
transfer, the effects produced by orbital and spin angular
momenta can be decoupled, and only the effects of the OAM
can be observed [9].

The different behaviour produced by OAM and SAM
for various transfer mechanisms can be studied for a particle
trapped in different rings within the BB. In particular,
in the following section we present the first experimental
confirmation of the orbital angular momentum content of a BB.

4. Experiment

4.1. Experimental set-up

To study the transfer of OAM from high-order BBs to particles
we used an optical tweezers system similar to that described
in [19]. The experimental set-up is shown in figure 5.
Firstly, we expanded a linearly polarized Gaussian output
beam of a cw Nd:YAG laser (1 W@1064 nm) to illuminate
a computer-generated hologram [20]. This blazed phase
hologram diffracted about 80% of the incident light into
a first-order beam with helical wavefronts, giving a close
approximation to an LG beam in the far field. This beam
illuminated an axicon having an opening angle γ of 1◦, thus
generating an approximation to a higher-order BB [21]. A
telescope (×1/20) was used to reduce the radius of the inner
ring of the BB such that it was of a similar size as the
trapped particles. The telescoping also resulted in a reduced
propagation distance of the BB and increased its intensity. For
a beam of azimuthal mode index l = 3 the inner ring of the
imaged BB had a peak radius of about 3.8 µm and propagated
for approximately zmax = 1 mm. This beam was directed
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(f)(e)

Figure 4. Comparison between the intensity distribution (solid
curve) and the z-components of the angular momentum density for
LG beams with different azimuthal and radial indices, for P-state
(dotted curve), R-state (dash–dot curve) and L-state (dashed curve).
All the curves are normalized, the radius is given in micrometres,
the beam waist was taken as 10 µm and λ = 1064 nm. The mode
indices are (a) l = 0, (b) l = 0, p = 1, (c) l = 1, p = 0, (d) l = 1,
p = 1, (e) l = 3, p = 0, (f ) l = 3, p = 1.

downwards onto the sample mounted on an x–y–z translation
stage. A microscope objective (×60) and CCD camera were
placed below the sample for observation of the particles.

The propagation distance of our experimental approxima-
tion to a higher-order BB is fairly short and the peak intensity
of the beam varies along this propagation distance [22]. There-
fore the positioning of the sample cell along the propagation
(z) direction is quite important. The sample should be located
in the plane with the highest peak intensity in the inner ring.
Experimentally this was achieved by placing the sample stage
in the z-position where the transverse trapping of particles was
strongest. The maximum laser power in the sample plane was
about 600 mW. As all the rings of a BB contain a similar amount
of its total power this corresponds to only about 15 mW in each
of the 40 rings of our experimental BB.

We used two different holograms to generate a helical
beam with azimuthal mode index l = 2 and 3, respectively.
The alignment of the whole optical system was critical, as even
slight astigmatism led to a break-up of the vortices and loss of
the symmetrical beam profile. The quality of the BB is very
important because any intensity variation around the central
ring hinders the continuous rotation of trapped particles. For
optimal alignment we found an azimuthal intensity variation
of about 5% along the inner ring of the higher-order BB for
both l = 2 and 3. This residual variation was mainly due to
azimuthal intensity variations in the holographically generated
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 γ

Axicon

Nd:YAG

X60

CCD
camera

x
z
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Dielectric mirror

Beam expander

Sample stage

White light
illumination

VCR

f 1

f2

f3
f4

IR filter

ObjectiveHologram
to generate
LG modes

LG beam

Figure 5. Experimental set-up for the transfer of OAM to spheres.
Lenses f1 = 50 mm and f2 = 250 mm expand the beam to
illuminate the hologram. The axicon is illuminated with the
first-order diffracted beam from the hologram. Lenses
f3 = 500 mm and f4 = 25 mm reduce the l = 2 Bessel light beam
to one with a radius of the inner ring of 2.9 µm.

LG beam. As the alignment of the optical system for an l = 2
BB was less critical, the majority of the experimental results
presented here were actually obtained with this l.

4.2. Results and discussion

We used different samples of transparent 1, 3 and 5 µm
diameter silica spheres suspended in water. A small amount
of detergent was added to the water to increase the mobility of
the particles. In our initial experiments we used a BB with
azimuthal mode index l = 3. The optical gradient force
which acts on the transparent spheres results in a force directed
towards the local intensity maximum [23]. In the case of the
higher-order BB this means that the spheres were attracted to
the annular regions of high laser intensity. The particles were
confined to one of the rings and could be manipulated in the
transverse dimensions similar to standard optical tweezers by
either moving the sample stage or the final lens of the BB
telescope.

By moving the sample stage we loaded several spheres
into the inner ring until its whole circumference was filled with
particles. This ring of spheres was found to rotate smoothly
along the circumference of the inner ring (figure 6). Repeating
the experiment with different groups of particles showed that
the rotation was very reproducible. The rotation was always
in anticlockwise sense and we observed consistent rotation
periods of tens of seconds. We believe that this rotation
arises from the azimuthal component of the Bessel beams
momentum density, i.e. from a transfer of the beam’s orbital
angular momentum to the trapped group of particles.

Together with a very recent experiment by O’Neil et al [24]
this is the first observation of orbital angular momentum trans-
fer from a laser beam to transparent particles. Previous exper-
iments relied either on absorption [8, 12] or used the scattering
of metallic particles [9]. For transparent particles the orbital

Figure 6. The first frame shows the transverse beam profile of the
third-order Bessel light beam in the sample plane. The three
successive frames show four 5 µm and one 1 µm spheres trapped in
the inner ring of the beam. They continuously rotate around the
circumference of the inner ring with a rotation rate of about 60 mHz
(16 s per revolution). A MPEG movie of this figure is available from
stacks.iop.org/JOptB/4/S82.

angular momentum is also transferred by scattering/reflection
of the incident light beam as in the case of metallic particles.
However, the scattering for transparent particles is low and
therefore only a small fraction of the beam’s orbital angular
momentum is transferred to the particle. But as they are trapped
in the high intensity region the transfer is sufficient to set them
into rotation.

As the particles that we used were almost perfectly
spherical the observed rotation cannot be due to unbalanced
scattering of asymmetric particles. Furthermore, as the beam
is directed downwards through the sample stage, the scattering
force is predominantly downward and the torque produced by
this scattering force would therefore be almost perpendicular
to the beam axis.

We also directly determined the handedness of the beam
as it passes through the sample plane by looking at the
asymmetric diffraction on a knife edge (for details see [25]).
We found that the Poynting vector and thus the orbital angular
momentum follow a left-handed screw which is consistent
with the measured sense of particle rotation (anticlockwise
direction). Furthermore, we reversed the handedness of the
higher-order BB by inserting a Dove prism and found that
the sense of rotation of the trapped particles changes from
anticlockwise to clockwise.

If the circumference of the inner ring is not filled
completely with particles the rotation becomes more uneven.
When loading the ring with particles we observed that even
the first sphere preferentially starts moving along the ring in
anticlockwise direction in agreement with the handedness of
the beam’s orbital angular momentum. However, we were not
able to observe a continuous rotation of a single particle. We
believe that this was due to the residual intensity variations
along the inner ring of our experimental approximation to a
Bessel beam. This gave rise to an azimuthal component of
the gradient force. Single particles started to move along the
ring, but only until they encountered an intensity hot-spot.
There they got trapped as the torque transferred from the BB
was not enough to overcome the azimuthal gradient force.
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Figure 7. The first frame shows the second-order BB in the sample
plane. Three successive frames show seven and fifteen 3 µm
spheres trapped in the inner and second ring of this beam,
respectively. Both rotate in the anticlockwise direction. The arrow
tracks the motion of one sphere in the second ring. A MPEG movie
of this figure is available from stacks.iop.org/JOptB/4/S82.

By carefully measuring the beam profile we verified that the
positions in which the single spheres got stuck corresponded
to local intensity maxima. As we increased the number of
particles trapped in the inner ring they started to bunch up and
eventually pushed each other through the intensity hot-spots.
The group of particles then rotated continuously around the
circumference. For low particle numbers this rotation was not
very uniform, but if the circumference of the inner ring was
filled almost completely a smooth rotation was observed. We
believe that it should also be possible to rotate just a single
sphere by increasing the amount of orbital angular momentum
transferred to the particle. This could be achieved by increasing
the laser power, by increasing the charge l of the BB (or by
using a more efficient transfer mechanism such as absorption
rather than scattering). Alternatively, improving the azimuthal
uniformity of our experimental BB, for example by use of a
cavity to clean up the holographically generated LG beam,
would also make it possible to rotate single particles.

Furthermore, we have observed the rotation of spheres
along the second inner ring of the l = 2 BB (figure 7). The
particles rotate in the same sense but even more slowly than in
the inner ring, typically with about a sixth of the rotation rate.
This is to be expected as the increased radius of the particle
trajectories leads to a decrease in particle velocity for a given
angular momentum transfer.

As the rotation was very reproducible if a ring was filled
completely with particles it was furthermore possible to study
rotation rates. Figure 8 shows the rotation frequency of
seven 3 µm spheres trapped in the inner ring as a function
of the overall power in the higher-order BB. We repeated the
experiment several times using new sets of spheres and found
the rotation rates to be consistent within an error range of about
10%. As we can see from figure 8 the rotation frequency
increases linearly with laser power. For linearly polarized
light each photon carries lh̄ of orbital angular momentum,
so the angular momentum transferred to the trapped particles
should be directly proportional to the laser power. As the
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Figure 8. Average period of rotation of seven 3 µm spheres trapped
on the inner ring of the high-order BB with l = 2 as a function of
the total power of the beam.

rotation rate for a given angular momentum transfer is in
first approximation determined by the Stokes drag, which is
proportional to the particle speed, we expect the observed
linear relationship between power and rotation rate.

We can also use the measured rotation rates to estimate
the fraction of orbital angular momentum transferred to the
particles. The Stokes drag for one single sphere immersed in
water is

F = −3πηvd (21)

where η = 1 × 10−3 Nsm−2 is the viscosity of water, v is the
velocity of the sphere and d is the diameter of the sphere.
The spheres orbit around the inner ring of the BB with a
radius r = 2.9 µm. At a rotation rate of ω = 2π0.08 Hz this
corresponds to a torque of τs = 1.9 × 10−20 Nm on a single
3 µm sphere. For simplicity we estimate the total torque on
the group of seven spheres to be just seven times τs . The total
angular momentum per second for linearly polarized light is
given by [7]

�z = P

2πν
l (22)

where P is the laser power, l is the azimuthal mode index and
ν is the frequency of the light (λ = 1064 nm). Assuming
equal power in the rings, the measured total power of 600 mW
corresponds to about P = 15 mW in the inner ring of the l = 2
BB, giving a total angular momentum flux of 1.6 ×10−17 Nm.
The seven spheres cover about 90% of the inner ring area,so the
total angular momentum flux of beam incident on the spheres
is 1.4×10−17 Nm. We therefore find that we transferred about
1% of the orbital angular momentum to the spheres. This is
of the same order as the expected scattering rate of light off
the spheres, giving a strong indication that the mechanism for
orbital angular momentum transfer in our experiment is indeed
scattering.

5. Conclusions

We have calculated the total angular momentum density of
BBs explicitly using the rigorous vectorial treatment. Our
results have allowed us to analyse some aspects that have not
been investigated, such as the AM content of azimuthally and
radially polarized beams and the possibility of experimental
studies of nonparaxial regimes. We have also highlighted
the contrast between single- and multi-ringed paraxial beams.
Furthermore, we have experimentally demonstrated for the first
time the mechanical transfer of orbital angular momentum
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from a high-order BB to trapped particles. The use of
transparent spheres of known size made it possible to sample
the angular momentum in the annular high intensity regions
of the BB in a consistent and reproducible way. Quantitative
studies of the rotation rates revealed that the transferred angular
momentum increases linearly with laser power. The measured
rotation rates correspond to a transfer of about 1% of the
orbital angular momentum of the BB which is consistent with
a transfer mechanism relying on scattering. Our experiment
opens up the prospect of further studies examining local
angular momentum density in different rings and looking at
the variations predicted for circularly polarized light.
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Appendix

In expression (17) the Poynting vector is calculated for
nonparaxial BBs. In that case, second- and third-order terms
in kt/kz should be considered, and the corresponding terms are
given by

U(ρ, ϕ, z) = |E0|2
2ωµ0

(
kt

kz

)2 l

ρ
J 2

l [2|α sin ϕ − β cos ϕ|2uϕ

− ( 1
2 (|α|2 − |β|2) sin 2ϕ − Re (α∗β) cos 2ϕ)uρ]

+
|E0|2kz

4ωµ0

(
kt

kz

)3

[{(1 − σ)Jl−1 Jl−2 + (1 + σ)Jl+1 Jl+2

− σ Jl(Jl−1 − Jl+1) − [(|α|2 − |β|2) cos 2ϕ + 2Re (α∗β)

× sin 2ϕ](Jl−2 Jl+1 + Jl+2 Jl−1)}uϕ + [(|α|2 − |β|2) sin 2ϕ

− 2Re (α∗β) cos 2ϕ](Jl−2 Jl+1 + Jl+2 Jl−1)uρ]. (23)

References

[1] Courtial J, Dholakia K, Allen L and Padgett M J 1997
Gaussian beams with very high orbital angular momentum
Opt. Commun. 144 210–13

[2] Allen L, Padgett M J and Babiker M 1999 The orbital angular
momentum of light Prog. Opt. 39 291–372

[3] Allen L, Beijersbergen M W, Spreeuw R J C and
Woerdman J P 1992 Orbital angular momentum of light and
the transformation of Laguerre–Gaussian laser modes Phys.
Rev. A 45 8185–9

[4] Durnin J, Miceli J J and Eberly J H 1987 Diffraction–free
beams Phys. Rev. Lett. 58 1499–501
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