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Experimental evidence of transfer of orbital angular momentum of multiringed beams to dielectric particles

has been reported recently [e.g., J. Opt. B 4, S82 (2002); Phys. Rev. Lett. 91, 093602 (2003)].

Here we present

a detailed theoretical examination of the forces involved in trapping and transferring orbital angular momen-
tum to microparticles due to a multiringed light beam, particularly a Bessel beam. Our investigation gathers,
in a more general way, the trapping forces for high-index and low-index dielectric transparent particles, as well
as for reflective metallic particles, as a function of particle size and position relative to the dimensions of the
rings of the beam. We find that particles can be trapped in different regions of the beam intensity profile
according to their size and that an azimuthal force component opposite to the beam helicity may appear under
certain circumstances, depending on the relative size and radial equilibrium position with respect to the beam
for high-index spheres. © 2004 Optical Society of America

OCIS codes: 140.7010, 290.5850, 080.2720, 140.3300.

1. INTRODUCTION

It was demonstrated in 1992 that Laguerre—Gaussian
(LG) laser modes carry orbital angular momentum
(OAM). This arises because the Poynting vector and the
linear momentum density of these beams have an azi-
muthal component.! More recently, the Poynting vector
and the orbital angular momentum of high-order Bessel
beams (BBs) have been analyzed.?? Bessel beams are
propagation-invariant optical fields and may retain this
property for very long distances in contrast to focused LG
beams that spread rapidly owing to diffraction.*® The
transverse intensity profile of the former beams consists
of a large number of concentric bright rings limited only
by the optics of the experimental setup, while the profile
of LG beams has a finite number of rings that is deter-
mined by a radial index.

Optical tweezers allow the confinement of dielectric
and metallic particles in three dimensions and analysis of
their subsequent motion by use of the gradient force.® As
such, they offer an excellent mechanism to probe the spin
and orbital angular momentum of multiringed LG and
Bessel light beams. As proof of this, in 1995, transfer of
OAM from a LG beam to absorbing particles was experi-
mentally demonstrated for the first time,” and, subse-
quently, studies relating both spin and OAM with such
systems followed.®® Later, in 2002, the first experiments
verifying OAM transfer from Bessel light beams were
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reported.>!® By the mechanism of scattering, both kinds
of dielectric particles, high and low index, were trapped
and rotated.

Depending upon where a particle is placed within a
beam possessing OAM, the particle can rotate around its
own axis or around the axis of the light beam; this has
been used to define the intrinsic and extrinsic nature of
the light.''2  These different manifestations of the OAM
of a light beam can only be observed separately. How-
ever, if the intrinsic spin angular momentum is also in-
volved, it is possible to observe both of them simulta-
neously in a multiringed beam.!?

While these experiments have given significant in-
sights into OAM of light, theoretical studies have been
relatively limited. Although several numerical models
can be found in the literature to describe the magnitude
and direction of the optical forces,'* it was only re-
cently that multiringed light beams and the OAM trans-
fer process started to be investigated.'® An advantage of
multiringed beams is that they offer more flexibility than
single-ringed beams for studies of angular momentum of
light, and the use of Bessel beams allows the potential of
investigating even in the nonparaxial regime.?

The models based on geometrical optics provide highly
reliable results within the limits of validity of this theory.
In a geometrical-optics picture, light rays have the form of
straight lines in propagation through a homogeneous and
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linear medium. However, the light rays can be defined in
a broader and rigorous way as oriented curves whose di-
rection coincides everywhere with the direction of the
Poynting vector, providing information about the magni-
tude and direction of the energy flow and the linear and
angular momenta of the field.2’ This approach has been
suggested as an adequate alternative to analyze the case
of beams carrying OAM.'22%21  This fact has been used
in a previous work where a model using skewed rays to
make a quantitative analysis of the OAM transfer process
was developed, but it was restricted to analyze low-index
dielectric particles only,'® and several aspects remained
unexplored.

In this paper, we perform a detailed study of the three-
dimensional optical forces due to multiringed beams act-
ing on the process of trapping and transfer of OAM to di-
electric transparent spheres of high and low relative
refractive index, and also to highly reflective metallic par-
ticles. We particularly look at Bessel light beams but
stress that the results can also be applied to other multi-
ringed beams such as high radial order LG beams and el-
liptical Mathieu beams.??

The structure of the paper is as follows: First, we ana-
lyze the axial optical force exerted by a lowest-order
Bessel beam on a high-index dielectric sphere, and we
compare it with the corresponding force exerted by a
Gaussian beam to analyze the phenomenon of optical
guiding. Second, for the three kinds of particles men-
tioned above, we study the radial force exerted by high-
order BBs, which defines the equilibrium positions in dif-
ferent regions in the radial direction of the multiringed
transverse intensity pattern. Finally, we look at the tan-
gential force generated by the scattering of the azimuthal
component of the Poynting vector, which gives rise to the
rotation of the particles around the beam axis. Our find-
ings allow us to make new predictions concerning the ra-
dial equilibrium positions of the particles as a function of
their relative size with respect to the beam dimensions
and the corresponding azimuthal forces.

2. THEORETICAL MODEL FOR ANGULAR-
MOMENTUM TRANSFER

The model used in the present work to compute the opti-
cal forces has been developed in detail elsewhere.?> We
will present here only its most relevant features neces-
sary to introduce the main parameters and include some
additional details in the appendix.

The total optical force F acting on a transparent sphere
can be expressed as!"?

@(r) — R(r)u,(r)

1
F = —f I(r)cos a;(r)
U Js

N

— T(r)%D, R(r)" a,(r)|dA. 65)
k=1

Here v,, is the light velocity in the medium surrounding
the particle, I(r) is the intensity distribution of the inci-
dent field, a; is the incidence angle with the normal at the
incidence point, dA is the surface element of the sphere,
and S is the part of the sphere’s surface that is illumi-
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nated by the incident field. 1; is a unit vector in the di-
rection of the incident ray, whereas u, is a vector in the
direction of the reflected ray at the incidence point r.
The vector @, corresponds to the ray transmitted out of
the sphere after & internal reflections, and N is the maxi-
mum number of internal reflections that a light ray suf-
fers before leaving the sphere; we have set N = 20, which
guarantees convergence to the case N — ©.1° Finally,
the proportion of the reflected and transmitted light each
time is calculated with the reflection and transmission
Fresnel coefficients R and T, respectively.

For the intensity distribution of the incident light beam
I(r), we will consider a Bessel beam of arbitrary order.
When an axicon is illuminated with a vortex field, a high-
order BB is generated with the same topological charge.
The three-dimensional intensity distribution of an
[th-order Bessel beam generated in this way can be ap-
proximated by using the method of stationary phase ap-
plied to the corresponding Fresnel diffraction integral,
which yields®*

2l+2 ktP
Il(pv @, Z) = l_' -

We

z
X

max

20+1
) THkplexp(—22%22,),  (2)

max

where P is the total power of the beam, %, is the trans-
verse component of the wave vector, w, is the beam waist
associated with a well collimated single-ringed LG beam
incident upon the axicon, and z,,,, = kw,./k, is the maxi-
mum propagation distance of the beam, with % being the
wave number. It is seen from Eq. (2) that, although the
transverse beam profile remains unchanged, its intensity
varies along the propagation axis, having a maximum at
some point. The peak of the intensity of the propagating
high-order BB is at z e = (V2|I] + 1/2)2 4y, and this is
the plane where the transverse optical forces will be
evaluated.

On the other hand, the vector associated with the inci-
dent light ray is proportional to the linear-momentum
density of the illuminating beam. In general, the ratio of
the linear momentum density to the intensity, or the mo-
mentum contribution per photon for beams that possess
OAM, can be expressed as

O e + £+ Fa02 @

— = f,(r r r)Z,

L) ~TPTIARE T
P, &, and Z being the unit vectors in the radial, azimuthal,
and axial directions, respectively, in the reference frame
of the beam. The functions f,, f,, and f, are well deter-
mined for BBs®; in particular, for a linearly polarized BB
in the paraxial regime, we have

l
fp(r) = 0’ f<p(r) = k_’ fz(r) = €087, (4)
p

where 7y is the cone angle of the Bessel beam, defined by
tan y = (k,/k,), with k, being the axial component of the
wave vector. The azimuthal component of the linear mo-
mentum density is what gives rise to contributions of the
net optical force in the azimuthal direction, and that is
the basis of the OAM transfer by scattering.
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Then the total three-dimensional optical force can be
written in terms of F*?), F'® and F®, which denote the
respective contributions due to the radial, azimuthal, and
axial components of the incident light rays. It is neces-
sary to treat all these contributions separately, since the
integration limits are different in each case. For Bessel
beams, F”) = 0, and the explicit expressions used to cal-
culate the components of the forces F'¢ and F* along
the x’, y’, and z' axes associated with the reference
frame of the sphere are given in the appendix. Finally, in
order to identify the components of the net optical force in
respect to the reference frame of the beam, we can write
F=Fp+F,p+F,22 where F,=Ff¢+F%, F,
= Ffvf”) ,and F, = Fiz,) , since the x’ and y’ axes coincide
with the radial and azimuthal directions of the frame xyz,
respectively. In addition, the corresponding optical
torques can be calculated from the expressions for the op-
tical forces acting on the sphere.

This model is also suitable to analyze the case of highly
reflective metallic particles with negligible absorption, for
which the reflection and transmission Fresnel coefficients
are taken simply as R = 1 and 7" = 0 for any value of the
incidence angle.

3. NUMERICAL RESULTS

In this section, we present and discuss some numerical
results for the trapping forces and angular-momentum
transfer for three different kinds of particles: high-index
dielectric spheres (n > 1, where n is the relative refrac-
tive index of the particle with respect to the surrounding
medium), low-index dielectric spheres (n < 1), and
highly reflective metallic particles. The three-
dimensional forces in a cylindrical reference frame will be
analyzed. We start with a brief analysis of the axial op-
tical force in which we compare a BB with a Gaussian
beam, and then we analyze the transverse forces. The
radial forces define the equilibrium regions where the
particles can be trapped radially within the beam inten-
sity profile. We end our analysis by looking at the azi-
muthal forces. We have paid attention in using numeri-
cal values corresponding to typical experimental ones;
nevertheless, we will present our results in terms of di-
mensionless parameters.

A. Axial Optical Force: Optical Guiding

Owing to the lack of a strong intensity gradient in the
axial direction, it is not possible to trap particles in three
dimensions with an unfocused BB. However, BBs have
been used efficiently to transport particles along extended
distances,?® which is also known as optical guiding. In
order to appreciate this fact more clearly, we will estab-
lish a comparison between the axial optical forces exerted
by a zero-order Bessel beam and a Gaussian beam.

The radius of the central bright spot of the BB is chosen
to be the same as the waist spot size of the Gaussian
beam, w,. In terms of the Bessel-beam parameters, this
simply corresponds to sin y = xy/kw,, where x, = 2.4048
is the first zero of the Bessel function Jy(x). The direc-
tion of the incident light rays is taken to be parallel to the
propagation axis for both beams, which is a reasonable
assumption for optical guiding. The axial optical force
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for the Gaussian beam is calculated by means of expres-
sion (10) of the appendix by setting f,(r) = 1, and in this
case the corresponding intensity distribution is I(r)
= [2Py/7w?(z)]exp[—2p%w(2)], where w?(z) = wi[l
+ (z/zp)?] and zp = kw2/2 represents the Rayleigh
range of the Gaussian beam. The beam-waist plane is
set to the position z ., = Zma/2, Which corresponds to
the peak on-axis intensity of the BB along its maximum
propagation distance.

Typically, low-index particles and metallic spheres may
not be confined in a Gaussian beam?® (this point will be-
come clearer when we study the transverse optical
forces), so we analyze a silica sphere immersed in water
(n = 1.087 at Ay = 518 nm) whose radius is given by R,
=15 Wy.-

The axial forces for both beams are plotted against the
parameter z,/zp in Fig. 1, where z is the distance from
the axicon vertex to the sphere. The Bessel-beam param-
eters are set such that its maximum propagation is z .
= 40zp, and its total power is P = 4 P,, where P,
= 1 mW is the unit power for the Gaussian beam (for
higher power, the plots just scale). The total power of the
BB needs to be higher than the Gaussian beam because it
is uniformly distributed among all the rings in the trans-
verse intensity distribution. In general, the larger the
maximum propagating distance of the Bessel beam, the
more power required for optical guiding, but a larger
guiding distance is created.

We can see from Fig. 1 that, although the peak force is
larger for the Gaussian beam (for comparison, the parti-
cle’s weight is ~0.27 pN), the BB maintains the force over
a longer distance. The shape of the curve for the Gauss-
ian beam means the particle may have a wide variation in
its velocity along the guiding range, and even when it
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Fig. 1. Comparison of the axial optical forces exerted on a silica
sphere immersed in water (n = 1.087) by a Bessel beam and by
a Gaussian beam. The parameters for the beams are the follow-
ing: the radius of the central bright spot of the Bessel beam is
pp = 09wy, its maximum propagation distance z,,, = 40 zp,
and its total power P = 4 P, where w is the waist spot size of
the Gaussian beam, zp is its Rayleigh range in the medium, and
Py, = 1mW is its total power. The radius of the sphere is R
= 1.5w,. These curves are exactly the same regardless of the
specific value of w, and the wavelength of the laser light, pro-
vided the ratios between the parameters of both beams and with
the size of the particle are preserved.
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reaches a terminal velocity at some point, this will fall off
rapidly owing to the beam spreading. The two maxima
are associated with the positions where the beam spot
size approximates the sphere’s size, w(z()/Ry ~ 1; thus
their locations in respect to the beam waist shift outward
for larger particles, but their magnitudes remain approxi-
mately the same. If the particle is smaller than the
beam-waist spot (Ry < w), its lower hemisphere is al-
ways completely illuminated by the beam, and there is
only one maximum of the force located at the beam-waist
plane.

On the other hand, in the case of the BB, the particle is
expected to reach a terminal velocity and maintain it
within a longer distance, since the force variations are
much smoother. The general behavior of the curve is the
same regardless of the size of the particle, but the magni-
tude of the force increases for larger spheres owing to the
higher amount of light reaching the particle.

This example illustrates the advantages of Bessel
beams for optical guiding, which is in contrast to the suit-
ability of strongly focused Gaussian beams to achieve
three-dimensional optical confinement.® In fact, in the
angular-momentum transfer experiments with BBs, the
particles are trapped in the vertical direction by pushing
them against a surface by the axial optical force,® but in
that case, the fundamental role is played by the trans-
verse optical force, constituted by its radial and azi-
muthal components.

B. Radial Optical Force: Transverse Trapping

An interesting feature of multiringed light beams is that
their alternate bright and dark regions allow the confine-
ment of different types of particles (the details of forces
for each of these are given in the appendix). This is
shown in Fig. 2, where we have plotted the radial forces
F, for a Bessel beam for three kinds of spheres as a func-
tion of the parameter r = po/p;, where p; is the radius of
the first intensity maximum of the beam. The black solid
curve corresponds to a high-index dielectric sphere; the
dashed curve is for a low-index particle, and the dash-
dotted curve describes the case of a metallic particle.
The corresponding intensity profile is also included in the
figure as a reference (gray solid curve).

The equilibrium positions in the radial direction are de-
fined by the condition F,(r) = 0, and they are stable
when the slope of the curve is negative, since for any dis-
placement in a determined direction, there is a restoring
force in the opposite direction that confines the particle in
those points. It is seen from the figure that the stable
equilibrium positions are located at the intensity maxima
of the beam for the silica sphere, while these are located
in the dark regions for low-index and metallic particles.
This is in agreement with experimental observations.?1°

It is clear from Fig. 2 that the magnitude of the optical
forces is larger for the low-index than for the high-index
sphere. This is because the deflection of the light, which
is connected with the change in the linear momentum, is
higher for reflected than for refracted light rays, and in
the case of low-index spheres, the reflection coefficients
are larger than the transmission coefficients for a wide
range of values of the incidence angle, reaching the value
of R = 1 when the total internal reflection occurs. This
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fact is even more evident for the case of metallic spheres,
which reflects all the incident light, giving rise to the larg-
est optical forces.

By analyzing the variation of the radial forces as the di-
ameter of the particles increases, we found that the equi-
librium positions shift toward the beam center for high-
index particles and outward from the beam axis in the
other two cases (except the equilibrium position at the
dark center of the beam). In fact, this behavior depends
on the relative size of the particle with respect to the
beam dimensions, which we characterize in terms of a
size parameter @« = Ry/p;. We observed then that, the
larger the value of « is, the more the equilibrium posi-
tions shift. In the three cases, there exist critical values
of the size parameter for which the spheres can be held at
the beam center, whereas the outer equilibrium positions
either become very weak or even disappear. In the case
of the high-index sphere, that situation corresponds to a
displacement of 100% of the first equilibrium position in
respect to its original location at the first intensity maxi-
mum. For example, for a Bessel beam of order ! = 2, this
occurs for a > 1.21.

The shift percentage for the stable equilibrium position
associated with the first bright ring in the case of high-
index particles (solid curve), and with the first dark ring
in the cases of low-index (dashed curve) and metallic
(dash-dotted) particles, is plotted in Fig. 3 against the size
parameter of the sphere «, for a BB of helicity / = 2. The
curves for the low-index and metallic spheres are cut off
when a = 0.78 and « = 0.84, respectively, because for
larger values of «, the corresponding equilibrium posi-
tions disappear.
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Fig. 2. Radial optical force per unit power exerted by a Bessel
beam with helicity / = 2 and z,,, = 100 um on three different
kinds of spheres as function of the dimensionless parameter r
= po/p1, where p, is the distance from the beam center and p;
is the radius of the first intensity maximum of the beam. The
solid black curve corresponds to a high index dielectric sphere (a
silica particle in water, n = 1.087), the dashed curve is for a low-
index sphere (a hollow sphere in water n = 0.7502), and the
dash-dotted curve is for a reflective metallic sphere. All of them
have the same radius, Ry = 0.6 p;. The beam intensity profile
is also depicted with a dotted curve as a reference. The param-
eter z,,., determines the magnitude of the forces per unit power,
since the larger the value of z,,, , the lower the magnitude of the
forces. However, the shape of the curves is completely indepen-
dent of the specific value of p; .
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Fig. 3. Percentage of displacement of the radial equilibrium po-
sitions with respect to the first intensity maximum in the case of
the high-index sphere (solid curve) and with respect to the first
dark ring in the cases of low-index (dashed curve) and metallic
(dash-dotted curve) spheres, as a function of the size parameter
of the particles @ = R(/p;.

In order to interpret the shifting in each case, we note
that the bright rings of the intensity profile of the BBs are
modulated by an envelope curve that behaves as 1/p.
When the size of the particles becomes far larger than the
average width of the bright rings, the detailed structure
of the beam is barely distinguished, and the shape of the
envelope starts to dominate the behavior of the particles.
Therefore the shifts of the equilibrium positions are the
result of the imbalance between the intensity of consecu-
tive bright rings, which pulls the high-index particles to-
ward the regions where the intensity is higher in terms of
the envelope (the beam center). The low-index and me-
tallic particles are pushed toward the regions where the
envelope of the intensity is lower (outward from the beam
center). When a high-index particle is large enough, it
rather perceives the beam as a smooth profile with a glo-
bal maximum at the center. And of course, the same is
true for the low-index and metallic spheres, but in these
cases, the particles whose size exceed a certain upper
limit cannot be trapped by the beam anymore. For a low-
index particle interacting with a BB of azimuthal index
[ = 2, the upper size limit is given by « = 1.28, whereas
in the case of a metallic particle, the limit is & = 1.37.

To illustrate how the first equilibrium position moves
toward the beam center for high-index particles, we de-
pict in Fig. 4 the radial optical force for silica spheres of
radii defined by a = 1.1 (solid curve), « = 1.15 (dashed
curve), and a = 1.21 (dash-dotted curve). In the first
two cases, the stable equilibrium position is neither at the
beam center nor at the first intensity maximum, but at
some point between them, whereas in the last case, the
only remaining equilibrium position is exactly at the
beam center. This result means that particles can actu-
ally be trapped not only in the brightest or darkest re-
gions, but in different regions of the intensity profile, de-
pending on their relative size with respect to the beam’s
transverse dimensions. This is closely related to recent
works on sorting particles according to their size in an op-
tical potential 2”28
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C. Azimuthal Optical Force: Rotation

When ! # 0, the OAM content of a BB may be transferred
by means of scattering to particles trapped off-axis. In
Fig. 5, we can see the azimuthal optical force F, against
the radial parameter r = py,/p; for a Bessel beam with
the same parameters as in Fig. 2.

A new relevant result for high-index spheres deduced
from Fig. 5 is that the azimuthal force is negative at dis-
tances close to the beam center. In most cases, the azi-
muthal force would be positive at the radial position of
stable equilibrium of the particles, but, considering the
shift of the equilibrium positions toward the beam center
for large spheres, according to our model, it is indeed pos-
sible to observe a particle rotating in the direction oppo-
site to the beam helicity. For example, for a BB with /
= 2, whose first intensity maximum is at p; = 3.5 um, it
should be possible in principle to trap and rotate an 8-um-
diameter silica sphere suspended in water in the direction
opposite to the beam helicity. Of course, appropriate sets
of experimental parameters can also be found to observe
this kind of behavior for other values of the azimuthal in-
dex [ # 0.

To understand this fact, we have analyzed the contri-
butions of the reflected and transmitted azimuthal rays
separately. We have found that the force on the particle
caused by the transmitted rays has a negative azimuthal
component when the sphere is close to the center of the
beam, but it becomes positive when the sphere gets far-
ther away. In contrast, the contribution of the reflected
rays to the azimuthal force is always positive, regardless
of where the sphere is located. However, for a value of
the relative refractive index close to unity, the transmis-
sion coefficients are far larger than the reflection coeffi-
cients in a wide range of incidence angles, which means
that the transmitted rays have a predominant influence
on the total force in that case. As the relative refractive
index increases, the transmission coefficients become
smaller, and therefore the magnitude of the negative azi-
muthal force decreases. This can be appreciated from
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Fig. 4. Radial optical force exerted by a BB with helicity [ = 2
and z,,,, = 100 um on high-index spheres (n = 1.087) whose ra-
dii are defined by Ry = a p;, with @ = 1.1 (solid curve), «a
= 1.15 (dashed curve), and a = 1.21 (dash-dotted curve). The
dotted curve represents the corresponding intensity profile.
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Fig. 6, where the azimuthal optical force acting on a high-
index sphere is depicted for different values of the relative
refractive index.

In contrast, in the cases of low-index and metallic par-
ticles, the azimuthal force is always positive, indepen-
dently of the sphere’s radius and location within the beam
profile. This is because for low-index particles, the con-
tributions to the optical force from both the reflected and
the transmitted light are always positive.

Vector diagrams showing the vortex distribution of the
azimuthal forces within the beam profile for each of the
different particles are depicted in Fig. 7. The diagrams
of Figs. 7(b), 7(c), and 7(d) correspond to high-index, low-
index, and metallic particles, respectively, and the inten-
sity profile of the beam is shown in Fig. 7(a) for compari-
son.

Having determined the radial equilibrium positions
and the azimuthal force acting on a spherical particle, we
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can calculate its rotation rate from Eq. (11) as a function
of the total power of the beam. According to Egs. (7)—(9)
of the appendix, a change in the value of the total power
of the beam just scales the plots F,(r) versus r without
affecting the equilibrium positions.

Figure 8 shows the theoretical results for the rotation
rates of the three kinds of particles against the total beam
power. Notice that, even when the magnitude of the azi-
muthal force is considerably larger for hollow spheres
than for solid spheres, the resulting rotation rates do not
differ very much. This is because the rotation rates de-
pend on the ratio of the azimuthal force to the radial po-
sition of the particle [F ,(pg)/po], and the hollow spheres
are trapped farther away from the beam center (see the
appendix). In the case of the metallic sphere, the slope is
much larger, which is evident from the fact that the opti-
cal forces are stronger for reflective spheres, while the
equilibrium positions are similar to those of the hollow
particles.

4. CONCLUSIONS

The three-dimensional forces involved in the optical trap-
ping and manipulation of microscopic particles with mul-
tiringed light beams have been thoroughly investigated.
Specifically, we analyzed the case of Bessel light beams.
The model used is based on the principles of geometrical
optics and also incorporates wave theory, such as skew
light rays following the trajectory of the Poynting vector
for the case of beams possessing orbital angular momen-
tum. This allowed us to model the transfer of OAM
through the scattering of the azimuthal component of the
linear momentum density for three different kinds of par-
ticles: high- and low-index dielectric particles and highly
reflective metallic particles.

Axial optical forces exerted by Bessel and Gaussian
beams were compared, and it was found that Bessel
beams are more appropriate for optical guiding, but this
implies that they are not suitable for three-dimensional
optical confinement.

Transverse optical forces were analyzed for high-order
Bessel beams obtaining formal results that explain ex-
perimental observations. For the radial forces, it was
found that the high-index particles are attracted to the
peak intensity regions, while the low-index and the reflec-
tive particles are repelled from them. For this reason,
low-index and reflective particles can be manipulated
with beam profiles having alternate bright and dark re-
gions, as is the case of multiringed light beams. How-
ever, we observed that the radial equilibrium positions of
high-index spheres, which are located at the intensity
maxima for small particles, start to shift toward the cen-
ter of the Bessel beam when the diameter of the particles
increases with respect to the rings width. In contrast,
the radial equilibrium positions associated with the first
dark ring and in general with all the outer dark rings, for
the case of low-index and metallic spheres, are displaced
outward from the beam center as the size of the particles
increases. These behaviors were attributed to the fact-
that large particles compared with the characteristic di-
mensions of the beam do not distinguish the ringed struc-
ture of the beam profile, and thus they act as if the beam
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(d)

Fig. 7. Vector diagrams of the azimuthal optical force for the same parameters as in Fig. 2: (a) Intensity profile of the BB. Cases of
(b) high-index dielectric sphere, (¢) low-index dielectric sphere, and (d) metallic sphere.
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Fig. 8. Rotation rates against the total incident power for the
silica (solid curve), hollow (dashed curve), and silver (dash-dotted
curve) spheres immersed in water. We consider silica, hollow,
and silver spheres immersed in water with radii R, = 0.6 p,
and for the Bessel beam we have ! = 2 and z,,, = 100 um. We
assume a viscosity coefficient for water of %= 1.0
X 1073 N'sm~2, which corresponds to a temperature of 20 °C.

had a smooth profile with a maximum in the center. In
that sense, we conclude that the radial trapping positions
of the different particles are not restricted to the highest
or lowest intensity regions, but they may be in different

regions, depending on the relative size of the particles
with respect to the beam transverse dimensions. This re-
sult is related to recent research on microfluidic sorting of
particles according to their size in an optical
potential 2728

Regarding the azimuthal optical force, it was found
that, with appropriate conditions, high-index spheres
trapped at a near distance from the beam center could ro-
tate in the opposite direction to the beam helicity. This is
because the azimuthal force can be negative for relatively
large particles, since the refracted light has a negative
contribution that may exceed the positive contribution of
the reflected rays.

We also found that the magnitude of the optical forces
is the largest for the case of highly reflective metallic par-
ticles, and hence the angular-momentum transfer by scat-
tering is expected to be more efficient for this kind of par-
ticle than for the other two cases. Furthermore, we made
a quantitative comparison for the rotation rates of the
three different kinds of particles finding that, while the
rotation rates for the transparent dielectric particles are
similar to each other, they are the highest for metallic
particles.

We notice that the behavior of other multiringed
beams, like LG beams with radial index p > 1, will be
very similar to that of BBs investigated here, regardless
of the azimuthal order.
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APPENDIX A. EXPRESSIONS FOR THE
OPTICAL FORCES AND TORQUES EXERTED
BY A BESSEL BEAM

The starting point is to consider two reference frames,
one associated with the incident light beam (x, y, z) and
the other one with the particle (x', y’, z’). The equa-
tions that relate both reference frames are

10,23

p = (pg + R% sin? 6 + 2poR, sin 6 cos ¢ )2, (5)
z =z + Rgcos b, (6)

where R is the radius of the sphere, p, is the distance
between the parallel z and z' axes, p denotes the radial
distance between the z axis and the incidence point P, z
represents the distance between a reference plane z = 0
and the center of the sphere at the origin of the x'y'z’
system, and ¢ and 6 are the azimuthal and polar angles in
the x'y’z’ system, respectively. The z axis coincides with
the propagation axis of the beam. (For more details, see
Fig. 1 of Ref. 10.)

The components of the total optical force F acting on a
transparent dielectric sphere can be determined by
means of Eq. (1) for a given beam profile and distribution
of the incident vectors @;(r).

The specific expressions used in this work to calculate
the different contributions to the total optical force in the
case of a Bessel light beam are the following. For F(¢,
which is the force contribution due to the incident light
rays in the azimuthal direction, we set @; = &, and the
corresponding components along the x' and y’ axes
arel0.23

(o) _ R2n,, 27 I,(r)po sin ¢ sin? 0
Fl¢) = ) fo(r)
Po sin ¢ sin 0 cos ¢
X| sin 6 T—smgb - 2R
p p
N
+ T3 R0y, |deds, )
k=1
(o) 27 I,(r)po sin ¢ sin? 9
Fif = - folr)
w2 J P
po + R sin @ cos qb)
p
po sin? 0 sin? ¢
+2R————
p
N
- T2 R* ()| deds, ®)
k=1

while the respective z' component is found to be negli-
gible. I,(r) represents the intensity distribution of the
Bessel beam given by Eq. (2).

To calculate F*®, which is the contribution to the net
force due to the incident light rays in the axial direction,
we set @; = Z, and the incidence angle reduces to =
— 6. The region of the particle that is illuminated by
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the axial rays is the lower hemisphere, i.e., 7/2 < 0 < 7
and 0 < ¢ < 27w. For the x’ component of the force, we
have now!%%

@ R(z)nm T 2m
Fo =" L)f.(r)
2¢ Jarlo

N
+ T2, RM ()%
k=1

—2R cos O cos ¢

sin 2 0d¢dé. 9

F*) has no net component along the y' direction because
of the symmetry in the hemispheres defined by 0 < ¢
< mand 7 < ¢ < 27. Finally, the z’' component of the
force exerted by the axial incident rays is

R%nm T 27
=) = f f I,(v)f,(r)| =T + 2R cos® 6
2¢c Jarlo
N
+ T2 Rkl(ﬁtk)f,)}sin26d¢d9. (10)
k=1

Notice that the Fresnel coefficients R and T, as well as the
vectors 1, , are not the same in Egs. (9) and (10) as in
Egs. (7) and (8). A general expression of the vector G,
associated with an arbitrary incident vector can be found
in Refs. 10 and 23. To evaluate the Fresnel coefficients R
and T, it can be considered that the incident field is com-
posed in equal proportion of rays in the two transverse di-
rections of polarization relative to the plane of incidence
for each illuminated element of the sphere, so we take the
averages of R and T over the two polarizations.!*1%19

For the case of highly reflective metallic particles, the
corresponding expressions for the different contributions
of the optical force are obtained by substituting R = 1
and 7' = 0 in Eqgs. (7) and (9).

On the other hand, the only optical torque along the
beam axis is generated by the azimuthal component of the
force, 7, = [poF ,(po)]2. But the sphere suffers also a
drag torque given by the Stokes equations as 7,
= —6 777]p(2)R 0@, , Where w, is the angular velocity of the
particle, and % is the viscosity of the surrounding me-
dium. Hence the rotation rate of the particle, v
= w,/2m, when both torques are balanced is

p

F(p(pO)

S a— (11)
127° npoR,

v, =
The values of p, correspond to the radial equilibrium po-
sitions where the sphere orbits around the center of the
beam, and they are numerically determined from the
points where the radial force is zero, i.e., F',(pg) = 0. It
is worth mentioning that, when the particle is centered
with respect to the beam axis, Eq. (11) is no longer valid,
since the expression for the drag torque is different in
that situation, and there is no OAM transfer by scattering
to a spherical particle in that case.
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