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Departamento de Fı́sica Teórica, Instituto de Fı́sica, Universidad Nacional Autónoma de México,
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Abstract

The propagation invariance of Bessel beams as well as their transversal structure is used to
perform a comparative analysis of their effect on cold atoms for four different configurations
and combinations thereof. We show that, even at temperatures for which the classical
description of the atom’s centre-of-mass motion is valid, the interchange of momentum, energy
and orbital angular momentum between light and atoms yields efficient tools for all-optical
trapping, transporting and, in general, manipulating the state of motion of cold atoms.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Over the last decade, experiments on the interaction between
light and cold atoms have seen tremendous advances. Laser
cooling of neutral atoms is nowadays a well-established
procedure, and solid steps for novel experiments in research
areas such as atom optics and quantum information processing
with atomic systems have been taken. During the last 15 years,
the development of far-off resonance traps (FORTs) [1] has
allowed the organization of cold matter in optical lattices [2]
and, with this, the study of single-particle Bloch physics. The
creation of trapped degenerate atomic gases, on the other hand,
is one of the most exciting scientific achievements of modern
times [3], as it has opened, for instance, the possibility of
realizing interference of matter waves [4].

In these areas, the use of light beams with special intensity
and/or phase structure yielding peculiar dynamical properties
plays a very important role. Bessel beams (BB) [5], for
instance, have been proposed as waveguides for atom transport
due to their propagation invariance [6, 7]. The measurement of
the mechanical properties of elliptical Mathieu beams could be
performed through the analysis of their effects on cold atoms
[8]. The transfer of orbital angular momentum (OAM) from
Laguerre–Gaussian (LG) laser modes [9, 10] or high-order
BBs [11–13] to cold matter has been the subject of theoretical
studies in both paraxial and non-paraxial regimes. For the
case of a LG beam interacting with a diatomic molecule,
it was found that OAM has, in general, a weak effect on
the internal state, since it becomes relevant at the electric

quadrupole interaction level, while the major mechanism of
exchange occurs in the electric dipole approximation and
involves only the centre-of-mass motion [10]. For non-
paraxial BBs interacting with a single atom, in contrast, the
probability that the internal state of an atom acquires orbital
angular momentum from light is maximum when the atom is
located at the beam axis [13]. In fact, the helicity factor kzc/ω,
which is related to the projection of angular momentum along
the main direction of propagation, could be used to directly
enhance or suppress atomic transitions [14].

OAM transfer is also an important aspect in the
study of circular optical lattices and helical waveguides,
which are interesting alternatives for interference experiments
with matter waves and quantum transport. For example,
Haroutyunyan and Nienhuis [15] have recently explored the
use of stationary waves in the angular direction, generated
by the superposition of two counter-rotating LG beams
propagating in the same direction, as a more efficient
alternative for achieving the exchange of angular momentum
between light and cold atoms. In this case, the confinement in
the radial direction could be achieved through an extra trapping
potential with cylindrical symmetry, but the dynamics along
the z-axis is completely free. A circular optical potential of
this kind would split the wavefunction of a single localized
atom into clockwise and anticlockwise components, which
may interfere under certain confinement conditions [15].
Bhattacharya [16], on the other hand, presented a simplified
analysis of a curved helical lattice as an atom guide, which
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could be generated by the superposition of two identical
LG beams propagating in opposite directions. Circular and
rotating optical lattices have been studied as well, in the context
of condensed matter and many particle systems, such as Fermi
gases and Bose–Einstein condensates [17–21]. Moreover,
ring-shaped optical lattices represent appropriated potentials
for studying quasi-one-dimensional physical systems with
closed-boundary conditions [18, 19]. Most of these systems
consider, besides optical fields, external magnetic fields to
achieve confinement in one or more spatial dimensions.

The first experimental demonstration of OAM transfer
to cold atoms was reported almost a decade ago by Tabosa
and Petrov [22] and, very recently, OAM was transferred
to a Bose–Einstein condensate [23]. Moreover, it has
been demonstrated that modes with phase singularities, as
the screw-type singularity of a LG beam, in Bose–Einstein
condensates are robust to decoherence effects, opening the
possibility of quantum information storage in atomic vapours
[24, 25].

In this work, we perform a theoretical comparative
analysis of the effect of four different light fields of a circular
structure on a dilute gas of cold atoms, whenever the effect
of collisions among them can be neglected. In all cases, we
use BBs and superpositions thereof, taking advantage of their
propagation invariance property. First, we analyse the case of
a single high-order BB. Second, we study the case of an optical
field with 2m intertwined helicoidal lines of light, similar to
the curved helical waveguides studied by Bhattacharya [16],
but in this case, it results from superimposing two identical
BBs propagating in opposite directions. In the third place, we
look at a three-dimensional circular lattice, corresponding to
the simultaneous generation of standing waves in the radial,
angular and axial directions. As a fourth option, we analyse a
circular optical lattice constituted by a collection of individual
toroidal traps along the z-axis, which can be achieved by
interfering two counter-propagating BBs of opposite helicity.
Our interest in these particular configurations arises from
the fact that they can be combined and used successively
for creating ‘atom loops’ in predesigned ways, as will be
demonstrated in the last section of this paper. Our approach
follows the semiclassical description made by Gordon and
Ashkin [26], which can be applied when the atom velocity
is sufficiently low but not beyond the quantum limits. The
quantum mechanics treatment will be presented elsewhere.

2. Rotating light beams and circular lattices

As a starting point for the present discussion, we will
briefly describe the main properties of a BB within a
vectorial treatment, in order to account for polarization
properties. Under ideal conditions, the electromagnetic field
of a Bessel mode has cylindrical symmetry, which guarantees
its propagation invariance along the z-axis, in terms of its
components:
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Jm(k⊥ρ) eimφ . Jm is the Bessel function of order m
and E (TE) (E (TM)) is proportional to the amplitude of the
transverse electric (magnetic) mode. κ denotes collectively
the parameters that define the mode, namely, the propagation
wave number along the z-axis kz, the transverse propagation
wave number k⊥ and the azimuthal index m.

By superpositions of TE and TM Bessel modes, different
polarizations states can be obtained. In the literature
[11, 27, 28], the modes,
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are considered to be the analogues of left-handed (L) and right-
handed (R) circularly polarized plane wave modes. Their
superpositions �E(R)

m ± �E(L)
m define linearly polarized modes.
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The mechanical properties of the photons associated with
Bessel modes are directly related to the numbers ω, kz,m

that characterize them, along with the polarization. In fact,
h̄ω, h̄kz,mh̄ correspond to the energy, linear momentum and
orbital angular momentum along the z direction respectively1.
A linearly polarized mode has the structure
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(ψmêx − i
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In what follows, we will describe in some detail each
one of the four optical fields of interest, providing an
explicit analytical expression and a brief discussion about their
experimental generation. For this purpose, it will be useful to
establish first a distinction between rotating and stationary
BBs, in terms of their azimuthal dependence.

While a linearly polarized rotating BB corresponds to that
given by (6), with ψm(ρ, ϕ) = Jm(k⊥ρ) eimϕ , a stationary BB
is formed by the superposition of two rotating BBs of the
same topological charge |m| travelling along the same axis

1 A superposition of TE and TM modes with equal weights E
(±)
m =

E′
0(E

(TM)
m+1 ± iE(TE)

m+1 ), corresponds to photons with a helicity, i.e., a projection
of the spin angular momentum along the z-axis of ±h̄kzc/ω. In the paraxial
limit, this superposition coincides with the definition of circular polarized
beams through equations (5).
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(a)

(b)

Figure 1. Comparison between (a) a rotating and (b) a stationary
Bessel beam of order m = 2. The phase values for both beams are
indicated in the colour bar on the right-hand side, in units of π
radians. Along the propagation axis, both beams have a similar
behaviour due to their ideal propagation invariance.

and direction, but rotating in opposite sense (±m), giving rise
to
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[
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]
. (7)

Here and in the following, ϕ0 = 0 (ϕ0 = π/2) stands for even
(odd) values of m. Figure 1(a) illustrates the intensity and
phase distributions of an ideal rotating BB, while figure 1(b)
shows the same for an ideal stationary BB; in both cases m = 2.
It is seen that the ideal fields exhibit propagation invariance of
their intensity along the z-axis.

Note that the term ‘rotating beam’ can be found in the
literature with a different meaning. In [29, 30], this term
refers to paraxial beams that are forcibly rotated around the
propagation axis by superposing components with a well-
defined angular momentum h̄m per photon, each having
a frequency shift m times the rotation frequency. These
light distributions are time dependent and possess interesting
properties on their own. Their interactions with atoms deserve
an independent study.

The optical fields of interest will be constructed as
superpositions of linearly polarized Bessel modes in the

sense discussed above, either rotating or stationary, with
the transverse component of their electric fields oriented along
the x-axis.

Case 1: single rotating Bessel beam

A single BB in interaction with cold atoms has been studied
before [6, 7, 13]. Here we include this simple case for
comparative purposes with the other configurations and also
to emphasize some of its applications for controlling atomic
motion. The expression for a linearly polarized rotating BB
is, according to (6),
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Experimentally, reasonable approximations to BBs of different
orders have been efficiently generated by illuminating an
axicon or conical lens with a single-ringed Laguerre–Gaussian
mode of order m [31]. Another approach is to obtain
the desired BB directly from properly designed computer-
generated holograms (CGH) [32], which can be displayed
in spatial light modulators (SLM) [33]. The original setup
proposed by Durnin and coworkers [5], consisting of a dark
screen with a thin annulus transmittance function placed at
the back focal plane of a positive lens, turns out to be
inefficient for optical trapping experiments, although it is
the best approximation to the theoretical expression. In all
cases, of course, BBs can be generated only within a finite
region and, under current experimental conditions, the paraxial
approximation is generally fulfilled. It is worth mentioning,
however, that BBs with relatively large transverse dimensions
(k⊥/kz � 1) can be reduced with additional lenses in order to
make them more suitable for atom trapping experiments.

Case 2: twisted helical lattice

This field can be generated by the interference of two rotating
BBs with the same helicity but propagating in opposite
directions. This means that the two beams have the same
projection of their respective angular momenta along their
own propagation direction but, with respect to the same and
fixed reference frame, they are rotating in opposite directions,
as illustrated in figure 2. The resulting field is described by

�E(2)
m (�r, t) = E0 e−i(ωt+ϕ0)

[
Jm(k⊥ρ) cos(mϕ + kzz + ϕ0)êx

− i

2
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− Jm−1(k⊥ρ) cos[(m − 1)ϕ + kzz + ϕ0])êz

]
. (9)

The experimental generation of this optical field can be
performed by introducing a rotating BB into an amplitude
division interferometer; each portion of the split beam should
suffer the same number of reflections, so that the helicity
is preserved for both of them before being superimposed
again along the same axis while propagating in opposite
directions.
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Figure 2. Schematic of the superposition of two rotating BBs
propagating in opposite directions; the rotation sense of the beams is
opposite as well with respect to the same fixed reference frame.
Transverse cross sections of the resulting field at different z planes
indicate an intensity distribution that is twisted around the z-axis,
but stationary in time. The whole structure resembles a rope with
2m main inner strands of light twisted together and outer groups of
strands with reduced intensity.

Case 3: 3D stationary circular lattice

In this case, we consider the interference of two stationary
Bessel modes of the type described by (7), but propagating
in opposite directions along the same z-axis. The resulting
optical field will exhibit standing waves in all the three spatial
dimensions within a circular cylindrical geometry:
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Intensity nodal surfaces correspond, along the radial
direction, to concentric dark cylinders whose radii ρ = ρmn

are defined by k⊥ρmn = xnm, with xmn the nth root of the
Bessel function of order m. The cylinders are intersected
by 2 |m| semi-infinite nodal planes along the azimuthal
coordinate, defined by [|m| ϕn + ϕ0] = (2n − 1)π/2, where
n = 1, 2, . . . , 2 |m|. Finally, there are also nodal planes along
the z-axis corresponding to zn = (2n − 1)λz/4, with n being
an integer and λz = 2π/kz. The experimental generation
of a lattice like this may involve two steps. First, it is
necessary to obtain the stationary BB, which can be done
either directly, by means of a CGH, or by interfering two
counter rotating BBs propagating along the same axis and
direction, for instance. Once obtained the stationary BB, an
amplitude division interferometer would be appropriated for
superimposing two equally weighted portions of it, aligned
along the same axis, but propagating in opposite directions.
This is schematically illustrated in figure 3.

Figure 3. Schematic of the superposition of two stationary BBs
propagating in opposite directions. Standing waves are generated in
the three spatial directions: radial, angular and axial.

Figure 4. Schematic of the superposition of two rotating BBs
propagating in opposite directions; the rotation sense of the beams
in this case is the same with respect to the same fixed reference
frame. The 3D intensity distribution would resemble a straight
backbone of light.

Case 4: toroidal train lattice

A set of toroidal traps along an axis can be generated by the
interference of two rotating BBs with opposite helicities and
propagating in opposite directions. This means that the two
beams have opposite projections of their respective angular
momenta along their own propagation direction but, with
respect to the same reference frame, they are rotating in the
same direction, as illustrated in figure 4. The resulting field is
given by

�E(4)
m (�r, t) = E0 ei(mϕ−ωt) cos(kzz)

[
Jm(k⊥ρ)êx− i

2

(
k⊥
kz

)

× [Jm+1(k⊥ρ) eiϕ − Jm−1(k⊥ρ) e−iϕ]êz

]
. (11)

A transverse cross section of this field at an antinodal plane
along the z-axis is exactly the same that the transverse cross
section of a propagating rotating BB, but null intensity occurs
at the z nodal planes which, as in case 3, correspond to the
planes zn = (2n − 1)λz/4 (n integer). The experimental
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Table 1. Coupling factor g̃, and conservative �α and dissipative �β vectors defining the atom–BB interaction, expression (14) for the different
beam configurations described in section 2.

Case g̃ �α �β
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�0
4 Jm(k⊥ρ) cos(kzz) eimϕ k⊥

J ′
m(k⊥ρ)

Jm(k⊥ρ)
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generation of this optical field can be performed by introducing
a rotating BB into an amplitude division interferometer; one
portion of the split beam should suffer an extra reflection, so
that its helicity is inverted with respect to the other portion
of the beam before joining them together along the same axis
while propagating in opposite directions.

As we shall see in the following section, Bessel optical
modes, either stationary or propagating, exhibit interesting
features in the interaction with cold atoms, due to their
propagation invariance property and their multiringed radial
structure.

3. The semiclassical description of a single atom
motion within the light field

We take the standard semiclassical description as in the
pioneer works by Letokhov and coworkers [34], and Gordon
and Ashkin [26]. In this approximation, a monochromatic
electromagnetic wave describable by a coherent state couples
to the dipole moment of an atom. This dipole moment �μ12 is
related to the electromagnetic transitions between the atom
levels that, for simplicity, will be taken to have just two
accessible options. The coupling, g = i�μ12 · �E/h̄, depends
explicitly on the orientation of the electric field �E of the wave.
For the systems described in this work, �E arises from linearly
polarized beams and has a longitudinal component that is much
smaller than the transverse component (paraxial light fields)
since kz � k⊥. As a consequence, from now on, the effect of
longitudinal fields on the atom will be neglected, and we can
take the coupling factor as

g ∼ i�μ12 · �E⊥/h̄ = [i(�μ12 · êx)E0/h̄]g̃(ρ, ϕ, z), (12)

where g̃ contains the information about the spatial structure of
the light field. The force exerted by a light field on a slowly
moving neutral atom is, in the first approximation, proportional
to the gradient of the coupling factor,

∇g = (�α + i�β)g. (13)

Here we have used that g = |g| exp(iφ), and hence �α =
�∇ ln|g| and �β = �∇φ. These vectors are related to conservative
and dissipative terms in the interaction force, respectively,
as we shall see in the following. In table 1, the spatial
structure factor g̃(ρ, ϕ, z) associated with the different beam
configurations is given along with the force factors �α and �β.

If the kinetic energy of the atom is low enough to
be sensitive to the optical force but large enough to admit

a classical description in terms of Newton equations, the
expression for the average semiclassical velocity-dependent
force [26], valid for both propagating and standing beams, is

〈 �f 〉 = h̄�̃p′[[(�v · �α)(1 − p)(1 + p)−1 + �/2]�β
+ [(�v · �β) − δω]�α]. (14)

In this expression

�̃ = �/[�(1 + p′) + 2�v · �α[1 − p/p′ − p][p′/(1 + p)]],

(15)

where � = 4k3| �μ12|2/3h̄ is the Einstein coefficient, δω =
ω − ω0 denotes the detuning between the wave frequency ω

and the transition frequency ω0, p = 2|g|/2((�/2)2 + δω2) is
known as the saturation parameter, linked to the difference
D between the populations of the two levels of the atom,
D = 1/(1 + p), and finally p′ = 2|g|2/|γ ′|2, with γ ′ =
(�v · �α)(1 − p)(1 + p)−1 + �/2 + i((�v · �β) − δω).

Although the dissipative term (�v · �β), associated with a
Doppler shift, as well as other velocity-dependent terms in (14)
is expected to be very small for slow atoms, we will keep them
in our numerical calculations in order to prevent disregarding
of potentially relevant effects, since the atom may increase its
kinetic energy as in interacts with the light beam.

In experiments with cold atoms, it is well known that
gravity effects should, in general, be taken into account to
describe accurately their motion. Here, we will consider that
the z-axis of the light field configurations is oriented along
the vertical direction. The atoms are downloaded to the
optical trap, with most of their kinetic energy coming from
the axial velocity which is assumed, unless otherwise stated,
to be negative.

4. Numerical results

In this work, as we are interested in optical lattices, we will
consider red-detuned far-off resonance light beams. The bright
regions of the light intensity distribution correspond to minima
of the effective potential energy Veff associated with the term
�α = −�∇Veff = �∇ ln|g|. The behaviour of the atom in the light
field depends not only on its initial balance between kinetic
and effective potential energy, but also on its initial momentum
and position. In all the studied cases, we will illustrate the
behaviour of an atomic cloud, which means that we will show
the paths of several atoms whose initial conditions vary within
a certain range of experimentally accessible values.

The parameters in the numerical simulations consider
85Rb atoms. Following [1], the laser beam is considered with a
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detuning of 67 nm to the red of the 5 2S1/2–5 2P1/2 transition at
795 nm and an irradiance of 6 mW μm−2 that determines the
value of the coupling constant | �μ12 · E0êx |/h̄. The trajectories
of the atoms are described by taking the laser wavelength as
unit of length and, as unit of time, the inverse of the Einstein
coefficient � which, for the 5 2P1/2 state of 85Rb, is 3.7 ×
107 s−1. The initial kinetic energies are reported in terms of
the corresponding ‘temperature’ by dividing by the Boltzmann
constant kB . Although we have analysed several values of the
light field characteristic parameters, in order to be specific we
report just the results where kz = 0.995ω/c and the topological
charge m = 2. This makes a paraxial realization of the beam
a good approximation, and admits the possibility of observing
light–atom angular momentum transfer.

In the reported clouds, the range of initial conditions
of the atoms is: 0.01λ � ρ � 2.6λ, 0.0001λ � z �
0.001λ,−0.0001λ� � ρ̇ � 0.0001λ�, 0.0001� � ϕ̇ �
0.00015�,−0.0025λ� � ż � −0.001λ� with the initial
kinetic energies ranging from ∼5 μK to ∼30 μK.

Case 1: single rotating Bessel beam

The optical potential energy linked to the conservative factor �α,
in this case consists of annular potential wells, corresponding
to the concentric bright rings of the intensity distribution of
the BB. An atom trapped in one of the bright rings of the beam
oscillates in the radial direction around the minimum of the
potential energy with an amplitude that depends on its initial
position and velocity. Along the z-axis, the atom is subjected
to the gravity force and to the dissipative term �β of the optical
force, associated with the phase of the light field �β = �∇φ. In a
FORT with the parameters given above, the dissipative effects
have small influence on the atom’s motion. Hence, the gravity
force dominates the evolution along the z-axis and the transfer
of orbital angular momentum from the beam to the atom is
also negligible. The smaller the detuning, the larger the effect
of the dissipative forces, so that the optical acceleration along
the azimuthal and axial directions would eventually become
noticeable.

Figure 5 illustrates some of the typical trajectories for
atoms of the cloud described above and downloaded in a
second-order BB at z � 0. Although the light beam is
propagating upwards, the atoms move downwards due to their
initial negative velocities and to the acceleration of gravity.
Gravity also helps to keep the atoms stably trapped within the
beam profile in the transverse direction, even if the initial radial
position of an atom is close to the axial node (ρ ∼ 0.01λ).
In contrast, we have verified that some atoms would escape
in the radial direction if the atomic cloud were considered
with similar initial conditions but with positive sign of the
z-component of the velocity. In figure 5(b), we also show
the angular momentum as a function of time for each of the
atoms illustrated in figure 5(a). In all the cases, the angular
momentum remains practically equal to its initial value.

Single rotating BBs have been proposed before as guides
for cold atoms [6, 7] though no semiclassical calculations were
reported. Here, we have considered a red-detuned system and
found that a BB may, indeed, be used as an atom guide in this
case.

(a) (b)

Figure 5. (a) Illustrative spatial paths of some of the atoms in the
cloud described in the text moving within a rotating BB. The
topological charge of the BB is m = 2 (positive helicity), and it is
propagating along the positive z-axis (upwards direction); the axial
and transverse components of its wave vector are kz = 0.995k and
k⊥ = 0.0999k. The wavelength of the light is λ = 862 nm, which is
the length unit in the plots. The smallest value of the kinetic energy
and the largest absolute value of the potential energy correspond to
the magenta path, whereas the opposite occurs for the black path.
The starting point of all the paths is the plane z � 0. Note the scale
differences between the three spatial axes. (b) Angular momentum
as a function of time for the same atoms. The range of initial
conditions of the atoms in the analysed cloud is:
0.01λ � ρ � 2.6λ, 0.0001λ � z � 0.001λ, −0.0001λ� � ρ̇ �
0.0001λ�, 0.0001� � ϕ̇ � 0.00015�, −0.0025λ� � ż �
−0.001λ�) with the initial kinetic energies ranging from ∼5 μK to
∼30 μK. The colours of the illustrative paths in (a) are directly
correlated to the angular momentum in (b). Animations of the
different atom trajectories for all the cases treated in this study can
be found in [35].

Case 2: twisted helical lattice

The intensity distribution for this case is illustrated in figure 2.
A transverse cross section looks like a stationary BB, but it is
rotating as a whole along the z-axis, completing a revolution
in a distance of |m| λz. For a red-detuned lattice, the potential
energy minima correspond to a set of 2 |m| twisted intertwined
pipes between each pair of radial nodes, along which the
atoms can be guided in independent channels. This light
configuration is analogous to that proposed by Bhattacharya
[16] for LG beams. However, for BB beams, the propagation
invariance introduces additional features for atom guiding with
respect to LG beams.

Since the axial and azimuthal variables appear in the
combination (mϕ + kzz), the light field amplitude has a well-
defined helicity. In the absence of gravity, it is expected that
an atom initially moving with the same helicity than that of the
light pattern will preserve it, although its angular momentum
may change in magnitude. Otherwise, if an atom has an initial
motion with different helicity than that of the light pattern,
the optical force might be able to change the atom’s helicity.
This fact has been verified numerically and it is illustrated
in figure 6, which corresponds to (a) loading an atom cloud
at the z � 0 plane with the parameters mentioned above, so
that the atoms initially move downwards and the atoms and
the light pattern have the same helicity; (c) loading an atom
cloud also downwards with the same parameters mentioned
above with the exception of ϕ̇ whose sign has been reversed,
−0.0015� � ϕ̇ � −0.001�, so that atoms and light pattern
have initially opposite helicity. In the latter case, the light
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(a) (b)

(c) (d)

Figure 6. (a) Illustrative examples of the spatial trajectory and (b)
angular momentum of atoms moving within a twisted helical Bessel
lattice generated in the way described in figure 2. The parameters of
the two superimposing beams and the range of initial conditions of
the atoms in the analysed cloud are the same as those of figure 5 so
that the atom’s motion is initially downwards and has the same
helicity as the light pattern. In figure (a) the time interval
corresponds to 0 < T < 0.5 × 104 �−1. Figure (c) shows
illustrative examples of the spatial trajectory and (d) angular
momentum of atoms moving within the same twisted Bessel lattice
than in (a); the initial conditions of the atoms in the analysed cloud
are the same as those used in (a) but with the angular velocity ϕ̇
reversed. Notice the scale difference in the axial coordinate in
figures (a) and (c). The colours of the illustrative paths in (a) and (c)
are directly correlated to the angular momentum in (b) and (d).

force attempts to change the helicity of the atoms by sending
them upwards acting against gravity; when it is not able to
do so, the atom exhibits a complicated trajectory that may end
with its escape. Note that in both cases (a) and (c), some atoms
are able to escape from the radial confinement in the Bessel
ring, in particular when they are initially located close to or at
a nodal surface; however, they may be eventually trapped at
higher radii. The time-dependent angular momentum of each
atom in both clouds has strong oscillations with an increasing
average value, as illustrated in figures 6(b) and (d). For atoms
with an helicity coinciding with that of the light pattern, an
average angular momentum that starts being 10h̄, as in case 1,
ends with values up to 5 × 102h̄ for t ∼ 105 �−1.

These results show that: (i) twisted helical beams
act as waveguides with intertwined channels that determine
the rotation direction of radially trapped atoms, and (ii) a
significant amount of angular momentum can be transferred
to atoms using this beam configuration.

Case 3: 3D stationary circular lattice

The intensity distribution of this lattice (figure 3) corresponds
to a set of individual ‘potential cages’ (potential wells in
all the three spatial dimensions) distributed around in a
coordinate system with circular cylindrical geometry. Nodal
surfaces define the limits of the potential cages. The

(a) (b)

Figure 7. (a) Spatial paths of atoms moving within a 3D Bessel
lattice generated by the superposition of two stationary BBs of
second order propagating in opposite directions, as described in
figure 3. (b) Angular momentum as a function of time for the same
atoms. The parameters of the two superimposing beams and the
range of initial conditions of the atoms in the analysed cloud are the
same as those of figure 5. The colours of the illustrative paths in (a)
are directly correlated to the angular momentum in (b).

numerical simulation with the cloud described above shows
that: (i) atoms initially located at a nodal surface have a high
probability of escaping from the lattice due to the lack of
potential energy, particularly when they are very close to the
axis of symmetry of the beam; (ii) for atoms initially located
within a cage, so that their total initial energy is negative, the
trapping in this lattice results very robust, regardless of the
direction of its initial momentum and in spite of the presence
of gravity. In some is, depending on its initial position and
velocity, an atom may tunnel from one cage to the next one
either along the axial or the azimuthal direction, while keeps
confined in the other directions. In the latter case, the atom
may stay trapped in a transverse plane, going around the whole
beam circumference. Illustrative examples of trajectories for
the atomic cloud described above are given in figure 7.

In figure 7, we also observe fluctuations of the orbital
angular momentum Lz at least one order of magnitude larger
than the results for the twisted helical configuration; figure 6.
These fluctuations are associated with the confinement in all
directions. Note that in this case, the mean axis of rotation of
each atomic trajectory is located in the cages, so that it does
not coincide with the axis of the beam.

Based on the high angular momentum oscillations, we
consider that this kind of lattice might be especially interesting
in the study of vortices in degenerate gases. Note as well
that it would be a more appropriate choice for the studies
of quasi-one-dimensional systems with periodic boundary
conditions along the azimuthal direction proposed by Amico
and coworkers [18], since the scheme they proposed of
interfering a plane wave with a Laguerre–Gaussian beam
would give rise to spiral fringes [36] rather than localized
spots as in this case. Furthermore, in a 3D stationary Bessel
lattice the axial confinement is achieved all-optically instead
of magneto-optically. In addition, this lattice could also be a
suitable choice for studies of atomic wavefunction interference
between components that rotate in opposite directions.

Case 4: toroidal train lattice

The optical potential energy in this case corresponds to a set of
toroidal cages aligned along the z-axis; the intensity pattern of
the light field is shown in figure 4. In general, an atom initially
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(b)(a)

Figure 8. (a) Spatial path of atoms moving within a toroidal Bessel
lattice generated by the superposition of rotating BBs of second
order propagating in opposite directions, as described in figure 4.
(b) Angular momentum as a function of time for the same atoms.
The parameters of the two superimposing beams and the range of
initial conditions of the atoms in the analysed cloud are the same as
those of figure 5. The colours of the illustrative paths in (a) are
directly correlated to the angular momentum in (b).

located at an antinodal z plane (z = nλz/2) will remain
trapped in a single torus, waving along the radial and axial
directions and rotating around the beam axis, provided its total
initial energy is negative. On the other hand, atoms initially
located at a nodal surface may hop to neighbour toroidal
traps either one way or the other, while keeping trapped in
the radial direction and rotating around the beam axis. This
hopping behaviour may be exhibited during relatively long
time intervals (t ≈ 105 �−1) before the atom finally escapes.
Typical examples of paths followed by atoms of a cloud trapped
in this lattice can be seen in figure 8(a). If an atom has a non-
null azimuthal component of its initial velocity, it will remain
rotating around the beam axis at practically constant average
angular velocity. This can be appreciated from figure 8(b),
where the angular momenta of the different atoms remain
almost constant and have the same order of magnitude than in
case 1 of the propagating rotating BB, which is much smaller
than in the other two cases studied here.

5. 3D atom circuits with combination of Bessel
lattices

With a clear picture of the mechanical behaviour of atoms in
the different light fields we have discussed so far, we are in
a position to elucidate a more sophisticated application. By
alternating the operation of different lattices in an appropriated
combination, it is possible to create what we call ‘atom loops’.
These loops can either be ‘open’ or ‘closed’. By a ‘closed’
loop we do not mean, of course, that the atom will come back
to its initial position, but rather to approximately the same
spatial region.

For instance, consider a cloud of atoms downloaded into a
toroidal train lattice. After a transitory time, we obtain a steady
cloud of atoms trapped in the radial and axial directions moving
essentially with their initial angular momentum. By applying
the twisted helical Bessel lattice, they will move downwards
or upwards depending on the helicity of the light field and
the direction of the atomic azimuthal velocity. In general,

the twisted helical lattice preserves the radial trapping and
modifies the atomic angular momentum Lz. Now, by turning
on a toroidal train lattice just after the twisted helical lattice is
turned off, the atoms will be again axially trapped. If most of
the atoms in the first toroidal lattice moved nearby the z = 0
plane, in the final configuration, we expect that most atoms
rotating in toroidal cages with z > 0 will have an opposite
angular momentum Lz to those rotating in cages with z < 0.
We confirmed these ideas by performing several numerical
simulations of the process. For instance, consider an atomic
cloud with an initial average kinetic energy 〈Kin〉 ≈ 10 μK
and an initial angular momentum average 〈|Lz|〉 ≈ 50h̄.
The twisted helical lattice is applied during a time interval
�T = 5×104 �−1. In the final configuration, in each toroidal
cage, ∼85% of the trapped atoms had a common direction of
rotation about the z-axis. This direction was opposite for z > 0
and for z < 0. During the process, 10% of the atoms were
radially lost.

With the current technology of spatial light modulators,
the switching among different options of optical lattices may
be performed at reasonably high speeds, limited only by the
response time of the specific light modulation device. An
experimental study on the interactive generation and switching
of the light patterns analysed here will be reported elsewhere.
Here we assume valid a sudden approximation in which the
atoms do not modify their state of motion during the switching.

We analysed other loops. As expected, in all cases, the
higher the number of steps to obtain a predesigned path, the
lower the number of atoms in a cloud that are able to follow
it. This can become an advantage of the procedure when
the purpose is to select atoms with predetermined mechanical
parameters.

As a particular example, let us consider the following
five-step circuit: step (1): an atom cloud is trapped in a
toroidal cage for a given time interval; step (2): a twisted
helical Bessel lattice is applied with the proper helicity to
send the atoms upwards (downwards) if ϕ̇ > 0 (ϕ̇ < 0); step
(3): they are trapped again in a toroidal cage; step (4): they
are sent downwards (upwards) using a twisted helical lattice
with opposite helicity than that in step (2); step (5): they
are trapped again by a toroidal cage. This circuit admits
the possibility of obtaining closed atomic loops. This is
illustrated in figure 9 for an atomic cloud that had an initial
average kinetic energy 〈Kin〉 ≈ 10 μK and an initial angular
momentum 〈|Lz|〉 ≈ 50h̄. The application time intervals
for each step were optimized to obtain a closed loop for a
small, 5%, subset of atoms corresponding to those with the
larger initial radial position (R ∼ 6λ). In the procedure,
we observed that most radial loses occur in the first three
steps. After that about 10% of the trajectories corresponded
to closed loops. All those atoms had the same direction of
rotation. Figure 9 illustrates an example of this loop, but other
combinations can be explored for different purposes. Note that
atoms with preselected energies and momenta could be guided
in different directions, so that circuits could be designed with
the possibility of performing atom interference experiments.
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Figure 9. Some illustrative closed and open atom loops obtained by
the effect of five different light fields operated consecutively:
(1) toroidal, (2) twisted helical, (3) toroidal, (4) twisted helical with
opposite helicity than in (2), (5) toroidal. The general parameters of
the light fields correspond to those in figures (6) and (8). The initial
average kinetic energy is 〈Kin〉 = 10 μK and the initial angular
momentum is 〈|Lz|〉50h̄. The application times of each step were
optimized to obtain a closed loop for atoms with initial conditions
close to those of the blue trajectory. Most of the atoms performed
‘open-loop’ trajectories, such as the red or purple ones, since their
final trajectory is not close to the initial one. However, radial looses
were not too frequent during the whole procedure (about 15%) and
most of them occur in the first three steps.

6. Conclusions

We have analysed the dynamical behaviour of an atomic cloud
moving under the action of four different configurations of
light fields with circular cylindrical geometry: a propagating–
rotating Bessel beam of order m, a twisted helical lattice or
twisted helical field, a 3D stationary circular lattice and a
toroidal train lattice. We presented the fundamental equation
for the optical force, based on [26, 34], and gave the specific
expressions for the conservative �α and dissipative �β terms of
the force in each of the cases under study. In section 4, we
discussed the numerical results, case by case, of the solution
of the motion equations for the atom, for a red-detuned far-off-
resonance system. We found that the single rotating Bessel
beam and the twisted helical lattice can be used to guide
atoms, in the latter case along 2|m| separate channels. In
contrast, the 3D stationary circular lattice and the toroidal
train lattice can be applied to obtain 3D confinement within
a small region of the space. The twisted helical lattice can
be used to select atomic helicities and gives rise to strong
angular momentum oscillations. The 3D stationary circular
lattice define a mean rotation axis for the atomic trajectories
located at each potential cage. Finally, on the basis of our
numerical results, we proposed an application consisting of
the consecutive operation of the different options of light fields

studied here, in order to create atom loops in predesigned ways
by all-optical means.

Even when we have restricted our analysis here to the
case of Bessel modes, it is worth appreciating that, in the
paraxial versions, all the lattices or light fields discussed above
would have an analogous in terms of Laguerre–Gaussian laser
modes, which might be easier to generate experimentally. In
that case, however, beam spreading on propagation should
be taken into account; the waist plane of the interfering
beams should coincide and the alignment may become an
issue. Additionally, the beam spreading of Laguerre–Gaussian
modes may prevent the formation of atomic loops in the sense
defined above. In general, however, regardless of the specific
form of the radial profile, any beam with circular cylindrical
symmetry could be useful for generating similar lattices to
those studied here, and the behaviour of cold atoms in such
lattices is expected to be analogous to that discussed in this
paper. It is worth mentioning as well that in the specific case of
Bessel lattices with light irradiance of about 6 mW μm−2, we
found that atoms with initial kinetic energies of up to 30 μK
can be trapped not only in the first ring of the Bessel profile,
but also in the second and even in the third outer rings.

There are also very interesting features occurring in the
cases of near-resonance conditions and blue-detuned systems
that are by themselves worthy of other thorough studies. For
instance, Gommers and coworkers considered near-resonance
conventional lattices to experimentally generate an atomic
ratchet [37]. The lattices studied here may represent very
attractive novel options for this purpose, since one can generate
quasiperiodic systems with open-boundary conditions along
the z-axis, but also with closed-boundary conditions along
the azimuthal coordinate, and ratchet systems with new
geometries can be explored as well. Therefore, a possibility
of performing novel studies on stochastic dynamics in atomic
systems is opened both classically and quantum-mechanically,
since atomic temperatures will define the proper dynamics. A
quantum description of the dynamics of atoms in cylindrical
beams will be reported elsewhere.
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