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Abstract

Optically trapped objects are rotated controllably in the interference pattern between a Laguerre—Gaussian (LG)
beam and a Gaussian beam. In this work the interference pattern is analysed and its properties as it propagates are
modelled, showing the important role played by the Guoy-phase of the two interfering beams. An analysis of producing
controlled rotation of the interference pattern using a glass plate is presented demonstrating the ease with which the
rotation can be controlled. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Optical manipulation and confinement of mi-
croscopic particles is a powerful technique that has
found many applications in its short history, par-
ticularly in biology. In this technique the optical
“gradient” or dipole force attracts microscopic
particles to the region of highest light intensity such
that a tightly focused light beam can trap a micro-
scopic particle in three dimensions. These “optical
tweezers” pioneered by Ashkin and co-workers
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[1-3] have seen many advances in the decade since
their first demonstration, each of which has in-
creased the scope of optical micro-manipulation.
In addition to the ability to translate a particle
in three dimensions, the freedom to rotate opti-
cally trapped particles has attracted a lot of at-
tention recently. Optically induced rotation offers
a non-contact mechanism for driving optical mi-
cro-machines and micro-components such as cogs
[4,5]. From a biological viewpoint rotation of
trapped particles offers the ability to easily orient
biological specimens such that active sites on en-
zymes attached to beads could be aligned to latch
onto one another. Several schemes have been
proposed and implemented to induce particle ro-
tation at the microscopic level. For example, spe-
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cially fabricated microscopic components can ro-
tate due to the manner in which the light is scat-
tered from the component [6-8] or a revolving
laser pattern can be used to rotate optically trap-
ped particles [9]. Schemes have also been realised
where either the spin or orbital angular momen-
tum of light can be transferred to a trapped par-
ticle. The transfer of orbital angular momentum
can be achieved by partial absorption of the
trapping light, though this leads to undesirable
heating of the tweezed particle [10-13]. Spin an-
gular momentum can be transferred to trapped
birefringent particles without any absorption and
can lead to high rotation rates in a manner similar
to Beth’s original experiment [14—17]. This tech-
nique can also be used to align and controllably
rotate birefringent particles [18].

In recent work, we have introduced an alter-
native scheme to rotate tweezed particles that does
not rely on specific particle properties [19]. This
technique uses the ability to trap microscopic
particles in an interference pattern [20,21]. Specif-
ically we have trapped objects (in 2D) in the
interference pattern between a suitable Laguerre—
Gaussian (LG) beam and a Gaussian beam [22].
By changing the path length of one of the beams
we are able to cause the interference pattern (and
thus the trapped particles) to rotate in a controlled
fashion about the axis of the spiral pattern. This
rotation is due to the helical nature of the wave-
fronts of an LG light beam [23].

In this paper we describe in detail how the
pattern evolves as it propagates and how the
Guoy-phase shift affects the shape of the pattern as
it is focussed to achieve optical trapping. Possible
aberrations in the pattern arising from various
forms of misalignment are discussed, showing that
the pattern is fairly resilient to such misalignment.
The manner in which a glass plate can be used to
controllably produce rotations in the pattern is
modelled and compared to actual results.

2. Interference pattern between a Laguerre—Gauss-
ian and Gaussian beam

An LG beam has two mode indices to fully
describe the mode: / and p. A given mode will have

[ complete cycles of phase (21) upon going around
the mode circumference so that / is known as the
azimuthal index. The index p gives the number
(p+ 1) of radial nodes. LG light beams are well
known to possess orbital angular momentum in
the light beam due to an €'/% phase term in the
mode description where @ is the azimuthal phase
[23]. This angular momentum of magnitude of /7 is
distinct from the spin angular momentum due to
the polarisation state of the light. The full mode
description is given by Eq. (1),
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where z is the distance from the beam waist, zg is the
Rayleigh range, k is the wave number, o is
the Gaussian beam waist, r is the radius and Ll‘f lis
the generalised Laguerre polynomial [13]. Several
methods exist for generating LG beams including
the use of a spiral phase plate [24] or the direct
formation of the beam inside a laser resonator
[25,26]. However, the most practical methods are
the use of a mode converter to transform a higher-
order Hermite—Gaussian beam into an LG beam
[27] and the use of holographic elements [28-32].
The mode converter results in a pure LG beam but
the holographic method is more versatile in that one
only needs to illuminate the hologram with a TEMj,
mode and conversion efficiencies in excess of 75%
are possible. However, the output mode from a
hologram is a superposition of various modes of
different p but the same azimuthal index /[32].

Using a hologram to produce the LG beam
results in the LG beam having a different beam
waist from the incident Gaussian beam [29]. The
difference between the beam waists of the incident
beam on the hologram ' and the LG beam
produced wd™ (input and output beams) is given
by Eq. (2):

o™ 1

(2)
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On examination of Eq. (1) it is seen that the phase
fronts of the beam describe a helix with / inter-
twined surfaces. Hence for p = 0 the phase fronts
of an LG / =2 beam will be a double start helix
and an / =3 beam will be a triple start helix. A
helix with index / will repeat every //. In this study
we limit our discussion to single-ringed (p =0),
LG beams.

The Guoy-phase shift diéfoy (Eq. (3)) gives the
perturbation near a focus of the propagating he-
lical phase fronts from that of a spherical wave:

z
(Déﬁ’oy = (2p+ || + 1) arctan (Z_R> (3)

The matching mode description for a fundamental
Gaussian beam however is given by Eq. (1) when
[ =0 and p = 0, hence the Guoy-phase shift cDguoy
is now just arctan(z/zg). So we see that both the
curvature of the wavefronts of the LG and
Gaussian beams and their Guoy-phase shifts will
be different.

By interfering an LG beam with a Gaussian
beam the azimuthal phase variation of the LG
beam is transformed into an azimuthal intensity
variation with / nodes. A simulation of the pattern
produced by interfering a Gaussian beam and an
LG beam of azimuthal index / = 3 as the pattern
travels through a focus is shown in Fig. 1. This is
shown for of = 2wiC which is the ratio of the
beam waists for an / = 3 LG beam as determined
from Eq. (2). It can be seen that the pattern has a
spiral shape, which is a result of the mismatch
between the curvatures of the LG and Gaussian
wavefronts. The interference pattern will always
have a spiral shape unless the wavefronts of the

two beams have the same curvature, such as at a
focus, in which case the pattern will look like /
intense spots of light. An example of this is shown
in Fig. 1 where the pattern reduces to a set of three
spots at the focus. Fig. 1 also shows the spiral
pattern rotating slightly as it propagates through
the focus. This is due to the differences between the
Guoy-phase shifts @g..y of the LG and Gaussian
beams [33]. A further effect is the reversal of the
sense of the spiral as it passes through the focus.
This is due to the reversal of the curvature of the
wavefronts and does not affect the sense of rota-
tion of the spiral due to the Guoy-phase shift
mismatch.

The pattern is fairly resilient to beam mis-
alignment as is shown in simulations in Fig. 2
where the beam has been displaced in three dif-
ferent ways. In Fig. 2(a) the Gaussian beam has
half the beam waist w, of the LG beam which
makes it difficult to resolve the pattern at the fo-
cus, Fig. 2(b) shows the effect of the Gaussian
beam coming to a focus earlier than the LG beam
by 5zg (Rayleigh range of the LG beam) and Fig.
2(c) shows the effect of a transverse misalignment
of the beams by a whole LG beam radius wj.

Though the intensity cross-section of the inter-
ference pattern changes slightly in space as the
beam propagates, in the absence of a frequency
separation between the two beams, the pattern
does not change in time unless the relative phase of
the beams is changed in time. If we do change the
relative axial phase of the two beams in time the
interference pattern will rotate around the beam
axis. As an analogy, this is akin to considering
what occurs along a length of rope that consists of

Fig. 1. Propagation of the spiral interference pattern through a focus. The white dot indicates the rotation of the pattern due to the
different Guoy-phase shifts of equal intensity LG (/ = 3) and Gaussian beams when the beam waists are related by of = 20}C.
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Fig. 2. Pattern aberations when a Gaussian beam is misaligned with respect to an LG [ = 3 beam: (a) of = ~4-; (b) focus longitu-

dinally displaced by 5zk° and (c) transversely displaced by w}©.

[ intertwined cords (see Fig. 3(a)). If you look at
the cross-section of the rope as you travel along it
the individual cords appear to rotate around the
axis of the rope. Moving along the rope like this is
analogous to altering the optical path length of
one of the interfering beams, hence the spiral
pattern as observed at a fixed plane in space can be
rotated by changing the path length of one of the
two interfering beams (see Fig. 3(b)). The helix of
the phase in the LG beam repeats every [/, thus a

(@)

(b)

>

path length change in one beam of /4 will cause the
pattern to rotate through 360°. The fact that the
pattern propagates and rotates evenly at every
cross-section of the interfering beams suggests that
it is suitable for achieving z-trapping in optical
tweezers. This is in contrast to a pattern produced
by simply imaging a shaped aperture, where there
is little or no propagation of the pattern. It is
worth noting that using patterns produced from
LG beams of differing azimuthal index offers the

Fig. 3. (a) Analogy: rope consisting of three intertwined cords analogous to the phase of an LG beam with azimuthal index / = 3.
(b) Simulation: the rotation of the interference pattern at a focus as the path length of one of the beams is changed. The white dot

indicates the anti-clockwise rotation.
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prospect of trapping and rotating different shaped
objects and groups of objects [34].

3. Producing pattern rotation

The interference pattern between an LG beam
and a Gaussian beam can be made to rotate
around the axis of the beam by displacing the two
beams either through a change in the relative
longitudinal (axial) phase of the two beams or by
creating a frequency difference between the two
beams.

The frequency of one of the beams can be
shifted by as little as a few H,, through the use of
two acousto-optic modulators (one to step the
frequency up and the other to shift it back down).
This causes the pattern to rotate continuously at a
rate directly related to the beat frequency between
the two beams. Through control of the frequency
shift between the two beams the sense and speed of
rotation could be accurately controlled, making
this technique the most suited to the situation
where continuous or high repetition rate rotation
is desired.

Control of the relative longitudinal phase be-
tween the LG and Gaussian beams can be
achieved by manipulating the path length in one
arm of the interferometer using for example: the
piezo-electric activation of a mirror in the inter-
ferometer, the rotation of a radial phase plate in
one arm of the interferometer, with the aid of an
LCD phase actuator or simply through the tilting
of a glass plate. This can give very accurate
alignment of the pattern and a high degree of
control over any particle trapped within it.

The technique used in this work was the sim-
plest of the above, namely the tilting of a glass
plate. What follows is an analysis of the use of a
glass plate for giving a limited number of rotations
in the pattern.

The necessary parameters for calculating the
effect of tilting the glass plate are shown in Fig. 4.
The change in path length 4 produced by a tilt angle
0 (6 = ¢;) in the glass plate is given by Eq. (4):

A:t{n( 1 _1>+1_M}. (4)
COS @, CoS @,

laser (VN
beam

glass plate

Fig. 4. Schematic of a glass plate showing the relevant pa-
rameters: ¢;, angle of incidence; ¢,, angle of refraction; d, beam
deflection; ¢, plate thickness and n, refractive index of glass
plate.

Applying Snell’s Law, it is possible to determine ¢,
and hence the number of rotations N produced in
the spiral interference pattern from Eq. (5),

A
where / again is the azimuthal index of the LG
beam and 4 is the wavelength. For the purposes of
accurate alignment of the beam it is more useful to
express rotation as an angle a in radians: o = 27N.
There is a resultant displacement d in the beam
which can be found from Eq. (6),

d = tSll’l (9_(/)r)7 (6)
COs @,

though there is no angular deflection so long as the
sides of the plate are parallel. It is clear that both
the number of rotations the glass plate can induce
in the spiral and the resultant deflection of the
beam are directly proportional to the plate thick-
ness ¢. This means that the ratio N/d is always the
same for a given tilt angle. The rotation of the
pattern and the lateral displacement of the beam as
the glass plate is tilted are shown in Fig. 5. The
rotations achieved in an / = 2 interference pattern
from tilting a glass microscope slide and cover
glass are shown in Fig. 6 where we see very good
agreement with theory. One full rotation of the
[ = 3 spiral is shown in Fig. 3 as a result of tilting
the glass plate through 8° from the normal. Since
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Fig. 5. Number of rotations N of the spiral patterns and dis-
placement d of the beam as the glass plate is tilted.
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Fig. 6. The diamonds and squares show the number of rota-
tions measured in an LG / = 2 interference pattern as a glass
microscope slide and a glass cover slip are tilted from normal.
The line curves show Eq. (5) for a glass plate of thickness
t = 1.04 mm and cover glass = 0.103 mm.

the displacement d is not proportional to the
number of rotations N, the displacement that re-
sults from a given number of rotations will be
different depending on what tilt angle the glass
plate has as a starting angle. In practice the
smallest displacement possible should be sought
and this is found when tilting the glass plate from
normal (6 = 0°).

It is clear that the number of rotations achiev-
able is greater for a thicker plate but that the
possible displacement is also larger. A further
consideration is that a thick plate requires a
smaller angle of rotation to create the same num-
ber of rotations as a thin plate but for a given
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Fig. 7. The displacement d for various values of N (for values
given in legend) as the plate thickness ¢ is varied for an / =3
interference pattern.

maximum desired number of rotations it is always
best to take the thinnest plate available to avoid
undue displacement of the beam. This is illustrated
in Fig. 7 which shows continually increasing values
of displacement d with plate thickness ¢ for the
[ = 3 interference pattern when the plate is tilted
from the normal. It can also be seen that the dis-
placement becomes very large if high numbers of
rotations are made.

In summary the use of a glass plate to produce
the rotation in the interference pattern (and hence
the trapped particles) is most suitable when the
number of rotations required is limited. If a max-
imum required number of rotations is known, then
the thinnest plate that can achieve this number of
rotations should be used. If continuous rotation of
the pattern is necessary then a method such as the
AOM technique, for giving rotation rates related
to the beat frequency between two frequency
shifted beams, should be used.

4. Experiment

The experimental setup used was equivalent to
that seen in [19] and is shown in Fig. 8. A holo-
graphically produced LG beam was interfered
with the zeroth-order beam in order to generate
the interference pattern which was then directed
into a microscope using a 40x objective such that
objects could be trapped and rotated.
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Fig. 9. Three | um diameter silica spheres being rotated in the interference pattern produced with an LG / = 3 beam. One of the beads

is tracked with an arrow.

The rotation of trapped particles in an inter-
ference pattern between an LG (/ = 3) mode and a
Gaussian beam can be seen in Fig. 9, where we see
three trapped 1 pm silica spheres rotate in this
pattern. One of the spheres is tracked in the images
and the series of pictures charts the progress of this
structure of spheres as the pattern is rotated. We
note that DNA could be attached between these
spheres in order to position and stretch the mole-
cule [35] or the spheres could be attached to pro-
teins such as the motor protein kinesin in order to
measure their working strokes [36]. Spheres have
also been rotated in closely packed groups of two
or three [19]. The two sphere arrangement required
the use of an / = 2 LG interference pattern which
was also used to rotate microscopic glass rods and
Chinese hamster chromosomes [19].

5. Conclusion

In conclusion, we have analysed the propa-
gation of the interference pattern produced be-
tween an LG beam and a Gaussian beam as
they pass through a focus. We have shown how
this pattern could be controllably rotated with
particular attention to tilting a glass plate
showing that this was especially suited to the
situation where a limited number of rotations in
trapped sample are required. This gives better
understanding of how these beam can be used to
controllably rotate optically trapped microscopic
particles using an interference pattern. As a
further demonstration of the power of this
technique we have shown the controlled rotation
of an open structure of three trapped silica
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spheres. The method is a fully controllable, non-
invasive technique which should find widespread
applications in generating optical and biological
micromachines.
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