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We present an experimental demonstration of a deterministic optical rocking ratchet. A periodic and

asymmetric light pattern is created to interact with dielectric microparticles in water, giving rise to a

ratchet potential. The sample is moved with respect to the pattern with an unbiased time-periodic rocking

function, which tilts the potential in alternating opposite directions. We obtain a current of particles whose

direction can be controlled in real time and show that particles of different sizes may experience opposite

currents. Moreover, we observed current reversals as a function of the magnitude and period of the rocking

force.
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The study of transport induced by symmetry breaking
under unbiased forces has flourished as one of the most
active and diverse fields in recent times. It includes the
study of the so-called Brownian motors and ratchets, ini-
tially motivated by the transport of molecular motors in the
biological realm, but soon extended to many other domains
in classical and quantum physics: single-particle transport,
cold atoms in optical lattices, superconducting devices,
granular flows, and colloidal sorting, to name but a few
[1]. Among the many kinds of ratchets, an import class
refers to classical deterministic ratchets in which the dy-
namics does not have any randomness or stochastic ele-
ments [2]. The paradigmatic model is a classical particle in
a periodic asymmetric (ratchet) potential, acted upon by an
additional external time-dependent force of zero average.
If this external force is additive, we are considering a
rocking ratchet.

There have been some experiments using optical lattices
to trap colloidal Brownian particles, in order to obtain a
systematic transport in the presence of unbiased forces
(ratchet effect) [3–5]. In these cases, the amplitude of the
periodic potential is modulated in time, corresponding to
the so-called flashing or pulsating ratchet. On the other
hand, the ratchet effect has been obtained for symmetric
optical lattices with an asymmetric time-dependent rock-
ing force, and also for asymmetric optical potential with a
pulsating activation, but in the quantum domain and in the
inertial regime [6,7]. However, there are interesting pre-
dicted phenomena for rocking ratchets in the classical
deterministic and overdamped regime [8–10], which have
not been observed so far. In this Letter we will describe an
experimental model of such a ratchet and show that we are
able to obtain nontrivial particle transport, whose direction
can be controlled in real time as a function of different
experimental parameters. Furthermore, we present the first
experimental verification of the current reversals in this
regime, predicted since 1998 [8].

In order to generate a periodic asymmetric optical lat-
tice, we designed the experimental setup shown schemati-
cally in Fig. 1. Three beams are interfered by pairs by
appropriately setting their respective polarization states in
a three-armed Mach-Zehnder interferometer. Two of the
beams have orthogonal linear polarization states, while the
third one is linearly polarized at an angle ’ with respect to
the horizontal [Fig. 1(b)], which is set with a half-wave
plate (HWP). We generate two superimposed patterns of
fringes, one of them with twice the period of the other,
determined by the angles� and 2�, which can be varied by

FIG. 1 (color online). (a) Experimental setup: (HWP) half-
wave plate, (BS) beam splitter, (PBS) polarizing beam splitter,
(M) mirrors, (GP) glass plate, (L) lenses, (CL) cylindrical lens,
(DM) dichroic mirrors, (� 5 and �20) microscope objectives,
(x) translation stage, (CCD) cameras. The velocity function
driving the translation stage is illustrated on the bottom right.
(b) Schematic of the interference by pairs indicating the polar-
ization states of beams (B) 1, 2, and 3.
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adjusting the mirrors M1 and M3. The relative intensities
of the two patterns can be controlled by the polarization
angle ’ and a relative phase between them can be intro-
duced by tilting a thin glass plate (GP) in one arm of the
interferometer. The tilting of GP is done via a motorized
actuator. The three beams are directed into a sample cell
placed on an XYZ translation stage.

Our samples consist of borosilicate glass microspheres
immersed in water with radii in the range of 3:5 �m to
7:75 �m, density of � ¼ 2:5 g=cm3, and refractive index
n ¼ 1:56. For this range of sizes, at room temperature, the
thermal fluctuations are negligible [11]. We use a laser
(� ¼ 532 nm) with a fundamental Gaussian emission
mode. A cylindrical lens (CL) is used to narrow the result-
ing pattern in the y direction. The light intensity distribu-
tion at the sample plane is described by
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where P denotes the incident optical power at the sample
plane. The periods of the two patterns of fringes are � and
�=2, and the width of the Gaussian envelope along the x
and y directions is, respectively, wx ¼ ð745� 5Þ �m and
wy ¼ ð19� 2Þ �m. We are in a regime where wx � �,

wx � wy, and wx � 2R0, with R0 the radius of the micro-

spheres. In addition, the dynamics of the particles is ob-
served within the central region of the pattern (about
250 �m long). Therefore, we can disregard the effect of
the Gaussian envelope along the x direction and consider
that we have a one-dimensional optical lattice of period �.
The coefficients sin2’ and cos2’ are associated with the
polarization angle of beam 1 [Fig. 1(b)], which was set as
’ ¼ �=4 in the set of experiments reported here. The
parameter � represents a phase difference between the
two superimposed patterns, and it was chosen so that
when � ¼ �=2 they are in phase. The motion of the
particles is recorded with a standard video microscopy
system (CCD2). An additional camera (CCD1) is used to
monitor the light pattern [Fig. 1(a)].

The dynamics of a particle in our system is described by

� _x ¼ �@VðxÞ=@xþ FRðtÞ; (2)

where we have used the fact that the motion is deterministic
and overdamped, with � representing an effective drag
coefficient [11]. Thus, the time-inversion symmetry is bro-
ken. The optical potential is denoted by VðxÞ, and FRðtÞ is
the rocking force, which acts only along the x direction. The
motion of the particle can be considered as one-dimensional
along x, since it is confined by a strong optical gradient
force along the y direction with a single stable equilibrium
position, and the weight of the particles is large enough to
overcome the scattering optical force along the z direction.

The rocking mechanism is introduced by means of a
periodic motion of the translation stage driven with a

precision motorized actuator along the direction of the
periodicity x. The time-periodic force is given by FRðtÞ ¼
�vðtÞ, where

vðtÞ ¼

8>><
>>:

v0 if 0 � t < �1;
0 if �1 � t < �1 þ �0;
�v0 if �1 þ �0 � t < T � �0;
0 if T � �0 � t < T:

(3)

Here v0 is a constant speed (see bottom right in Fig. 1). The
waiting time �0 plays a fundamental role in the dynamics,
as we shall see below. Importantly, the time average of
FRðtÞ over an entire period, T ¼ 2ð�0 þ �1Þ, is zero in
order to have an unbiased forcing and, thus, the nontrivial
ratchet transport.
Recapping, our experimental setup allows the control of

the following parameters: the relative intensity of the two
periodic patterns (given by ’), the relative phase between
them (�), the period of the light intensity distribution (�),
and the magnitude (via v0) and period (T) of the rocking
force.
The gradient optical force exerted on a particle by a

periodic and symmetric pattern of fringes has the same
periodicity, but its magnitude depends on the ratio R0=�
[11–14]. In the case of the superposition of two periodic
patterns of fringes, the total gradient force acting on a
dielectric sphere can be written as

Fðx; �; R0Þ ¼ P
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c denoting the light speed in vacuum. The coefficients
A?ð�;R0Þ and Akð�=2;R0Þ determine the optical force

for each of the superimposed light lattices with polariza-
tions normal (? ) and parallel (k ) with respect to the
incidence plane. These coefficients vary not only in mag-
nitude but also in sign. We have chosen the definition (4) in
a way that when the value of A? or Ak is positive (nega-

tive), the particle is pulled towards the minima (maxima) of
the corresponding intensity distribution. We have calcu-
lated them using a ray tracing model that we experimen-
tally validated in a previous work for very similar
conditions [11].
From Eq. (4), the optical potential can be expressed as
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where V0 ¼ PjA?j�=2�c and K ¼ Ak=jA?j, for

jA?j � 0. On the first term on the right-hand side of
Eq. (5), we have ignored a prefactor signðA?Þ because it
leaves invariant the shape of the potential. Importantly, the
asymmetry of VðxÞ is determined by the parameters K and
�. When K ¼ 0:5 and � ¼ 0, Eq. (5) describes the typical
ratchet potential [1,2]. If K < 0 or � ¼ �, the asymmetry
of the potential is inverted, and � ¼ ��=2 lead to a
symmetric potential. While � can be varied at will in our
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experiment, the value of K depends on the force exerted on
the particle by each of the two periodic light patterns. When
A? � 0 and Ak � 0, the value of K can be optimized by

controlling the relative intensities of the two patterns of
fringes via the polarization angle ’. Notice, however, that
the sign of K depends directly on the sign of Ak, which
depends in turn on the radius of the particle for a given
period. Therefore, we have found that it is possible to obtain
simultaneous opposite motion of particles with different
sizes within the same light pattern in our ratchet system.

In our experimental system, we were able to obtain a
directed transport of particles along the light pattern of
asymmetric fringes by means of the unbiased external
force FRðtÞ ¼ �vðtÞ, as defined in Eq. (3). Moreover, we
were able to control the direction of motion of the particles
in real time by controlling the phase �. Figure 2 shows
experimental results (see supplementary material [15]) for
the position of a sphere as a function of time. In the time
interval labeled as (a), the phase between the two interfer-
ence patterns is � � �=2, giving rise to an approximately
symmetric intensity distribution, shown on the top left
corner. In the intervals labeled as (b) and (d), the phase
was changed to � ¼ 0, giving rise to a positive current
(intensity distributions shown in the bottom). Finally, a
negative current is observed in the time interval (c), for
which � � � and hence the asymmetry of the optical
lattice is inverted (intensity shown on the top right corner).

On the other hand, Fig. 3 shows experimental results
(see supplementary material [16]) for the simultaneous

motion of two particles of radii R0 ¼ ð4:70� 0:15Þ �m
and R0 ¼ ð6:00� 0:15Þ �m in an asymmetric light lattice
of period � ¼ ð13:4� 0:1Þ �m. Successive frames of the
two particles indicating the time evolution are shown
in Fig. 3(a). Their positions as a function of time are plotted
in Fig. 3(b). The two particles are simultaneously moving
in opposite directions due to the inverted asymmetry of
their corresponding potentials. In the first stage of their
paths � � 0, and the two particles move towards each
other. Then the particles meet at the center of the observa-
tion region and they cannot continue their paths. Finally,
we change � � � and the particles invert their motion
direction, moving apart from each other. The insets indi-
cate the calculated potential experienced by each of the
spheres during the initial and final stages of their motion.
The most important parameter characterizing a ratchet

system is the particle current, usually defined as the mean

FIG. 2. Experimental results for x vs t for a particle of radius
R0 ¼ ð7:20� 0:15Þ �m in an optical lattice of period � ¼
ð15:3� 0:1Þ �m. The optical power at the sample is P ¼
ð1:25� 0:05Þ W. The parameters of the rocking force,
Eq. (3), are v0 ¼ ð18:8� 0:5Þ �m=s, �0 ¼ ð2:00� 0:05Þ s,
and �1 ¼ ð2:03� 0:05Þ s. The different time intervals corre-
spond to (a) � ¼ �=2, (b) � ¼ 0, (c) � ¼ �, and (d) � ¼ 0.
Experimental plots of the light intensity distribution for each
case are shown on the top and on the bottom.

FIG. 3. Experimental results for the simultaneous motion of
particles of radii: ð6:00� 0:15Þ �m and ð4:70� 0:15Þ �m. The
period of the light lattice is � ¼ ð13:4� 0:1Þ �m. The optical
power at the sample plane was P ¼ ð1:67� 0:05Þ W. The
parameters of the rocking force are v0 ¼ ð11:3� 0:4Þ �m=s,
�0 ¼ ð1:60� 0:05Þ s, and �1 ¼ ð1:03� 0:05Þ s. (a) Successive
frames of the system; the time evolution is indicated at the
bottom. (b) x vs t. The different behaviors observed as the
time evolves correspond to different values of the parameter �.
The insets show the calculated optical potential for each particle
in the indicated regions.
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particle velocity in stationary conditions: J ¼ vðtÞ for
t ! 1. In our case, the waiting time �0 is long enough to
allow the particle to reach a stable equilibrium position
after each activation semicycle �1. This means that the
particle starts every new cycle with the same initial con-
ditions regarding its relative position in a potential well,
and thus we are in a periodic regime. In these circum-
stances, the current can be expressed as J ¼ �x=�, which
has been normalized with respect to �=T. �x represents
the net displacement over an entire activation cycle T, and
it is always given by an integer number of periods.
Therefore, J ¼ n�m, where n (m) is the number of
periods the particle is able to move along the direction of
lowest (highest) slope in the potential in each semicycle.
The values of n and m depend on �1 and v0 for a given
potential. Figure 4 shows experimental and theoretical
results for J, including the value of (n�m), as a function
of v0 for two different values of �1. While the structure of
discrete jumps exhibited by these plots is a well-known
phenomenon, the current reversals shown in Fig. 4(b),
which arise when m> n, were predicted in this regime
more than a decade ago [8] and not previously observed.
The role of �0 � 0 is key for the observation of current
reversals, and it may also be key for the eventual observa-
tion of chaos in a different regime when �0 ! 0 [9].

In summary, we have presented the first experimental
realization of a deterministic optical rocking ratchet. We
obtained a current of particles, whose direction can be
controlled by changing the asymmetry of the potential in
real time. Our results led us to establish the conditions for
observing (1) simultaneous currents in opposite directions
for particles with different sizes in a given light pattern and
(2) current reversals for a given particle by varying the
magnitude and period of the rocking force. The simplicity
and versatility of our system facilitates the comparisonwith
theoretical models, opening the possibility to explore new
aspects and solving important questions raised about ratchet
dynamics, such as the crucial effect of current reversals.
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FIG. 4 (color online). Current as a function of v0 for given
values of �1. The markers represent experimental points and the
curves correspond to theoretical calculations for �1 � 	 (blue
dash-dotted line), �1 (black solid line), and �1 þ 	 (red dashed
line), where (a) �1 ¼ 3:43 s, 	 ¼ 0:31 s, and (b) �1 ¼ 1:70 s,
	1 ¼ 0:13 s. 	 denotes the uncertainty in the experimental value
of the parameter �1. In all cases �0 ¼ ð2:00� 0:05Þ s.

PRL 106, 168104 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

22 APRIL 2011

168104-4

http://dx.doi.org/10.1103/RevModPhys.81.387
http://dx.doi.org/10.1103/RevModPhys.81.387
http://dx.doi.org/10.1103/PhysRevLett.84.258
http://dx.doi.org/10.1103/PhysRevLett.74.1504
http://dx.doi.org/10.1103/PhysRevLett.94.110601
http://dx.doi.org/10.1103/PhysRevLett.94.110601
http://dx.doi.org/10.1103/PhysRevLett.101.220601
http://dx.doi.org/10.1103/PhysRevLett.96.240604
http://dx.doi.org/10.1103/PhysRevLett.96.240604
http://dx.doi.org/10.1126/science.1179546
http://dx.doi.org/10.1209/epl/i1998-00488-0
http://dx.doi.org/10.1103/PhysRevE.80.011127
http://dx.doi.org/10.1103/PhysRevLett.96.134101
http://dx.doi.org/10.1364/OE.17.003429
http://dx.doi.org/10.1364/OE.17.003429
http://dx.doi.org/10.1063/1.2183357
http://dx.doi.org/10.1063/1.2183357
http://dx.doi.org/10.1016/S0091-679X(06)82017-0
http://dx.doi.org/10.1002/elps.200800484
http://dx.doi.org/10.1002/elps.200800484
http://link.aps.org/supplemental/10.1103/PhysRevLett.106.168104
http://link.aps.org/supplemental/10.1103/PhysRevLett.106.168104
http://link.aps.org/supplemental/10.1103/PhysRevLett.106.168104
http://link.aps.org/supplemental/10.1103/PhysRevLett.106.168104

