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ABSTRACT

The Floquet spectrum in an anisotropic tilted Dirac semimetal modulated by linearly polarized light is addressed through the solution of
the time-dependent Schrödinger equation for the two-dimensional Dirac Hamiltonian via the Floquet theorem. The time-dependent wave
functions and the quasienergy spectrum of the two-dimensional Dirac Hamiltonian under the normal incidence of linearly polarized waves
are obtained for an arbitrarily intense electromagnetic radiation. We applied a set of unitary transformations to reduce the Schrödinger
equation to an ordinary second-order differential Hill equation with complex coefficients. Through the stability analysis of this differential
equation, the weak and strong field regimes are clearly distinguished in the quasi-spectrum. In the weak electric field regime, above a certain
threshold given by the field parameters, the spectrum mostly resembles that of free electrons in graphene. Below this threshold, in the strong
electric field regime, the spectrum abruptly becomes highly anisotropic and a gap opens up. As an example, we apply the results to the
particular case of borophene.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0007576

I. INTRODUCTION

The superior physical, mechanical, and chemical properties of
two-dimensional (2D) materials make them an ideal playground to
study new and exciting kinds of quantum phases.1–7 Their remark-
able electronic and optical features have intensely driven the devel-
opment of novel and innovative optoelectronic devices8–10 as
broadband optical modulators,11–13 solar cells,14,15 infrared photo-
detectors,16 and hybrid plasmonic devices.17,18

In the last decade, persistent efforts have been made to
harness the unique features of graphene’s so-called dressed
electrons8,16,19–27 to design different kinds of optoelectronic

devices. Now, it is well established that electromagnetic dressing,
attained when electrons strongly couple to electromagnetic fields,
substantially renormalize the energy and the velocities in
graphene.19,27–29 In turn, renormalized parameters highly depend
on the light polarization: in graphene, circularly polarized fields
open a dynamical gap in the Dirac point, while linearly polarized
fields leave it intact.29 Particularly, dressed electrons under linearly
polarized light induce an anisotropy of the electron dispersion rela-
tion.26 Electromagnetic dressing could, therefore, be used to tune
the electronic and optical properties of graphene, including bandg-
aps and carrier velocities,27 which are clearly manifested in several
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measurable physical properties as the photocurrent.23,30 A similar
approach has been adopted in ultrafast material science promising
optical and mechanical control of the physical properties of 2D
materials.31 In this case, it is a time-dependent strain that acts as a
pseudo-electromagnetic field.32

In graphene, the weak-field regime, where light-matter cou-
pling is perturbative,33–35 is well understood. It may be pictured as
a quantized-photon field interacting with massless Dirac fermions
having a conic dispersion relation. However, in the intense-field
regime, this perturbative expansion cannot converge. The Dirac
dispersion relation is highly distorted as a result of the electronic
dressing rendering the quantized-photon picture invalid. It is clear
then that this emerging field requires new theoretical tools that go
beyond the conventional techniques.36,37 There are numerous pro-
posals to approach this problem,19–22,24–26 but, even for graphene,
some aspects of the interaction between carriers and strong time-
driven fields remain elusive.

Another essential question that remains to be fully answered is
how such an intense electromagnetic radiation would affect other
Dirac materials38,39 as borophene or black-phosphorus,40–43 for
example. Particularly, borophene is a remarkable anisotropic mate-
rial.2,6,44,45 After being theoretically predicted 30 years ago,46 it was
until 2015 that it was synthetized.47 Borophene turns out to be
stronger and even more flexible than graphene. It is a good conduc-
tor of both electricity and heat, and it is expected to be a supercon-
ductor48 with relatively high transition temperatures.

In a series of recent papers, we have investigated time-driven
anisotropic Dirac Hamiltonians as the one that describes boro-
phene.44,45,49,50 However, the mathematical complexity of the
problem required several approximations that are only valid for
very intense fields.45,50 Therefore, the critical link between weak
fields, treatable with the perturbation theory, and strong fields is
still missing. In particular, the cases of linearly and elliptically
polarized light were studied in the intense-field regime,45,50 where
the rather convoluted Hill equation with time dependent coeffi-
cients was simplified into the very well known Mathieu equation
with constant coefficients. Nevertheless, the complete study of the
Hill equation entails the interplay between the strong and weak
field-intensity regimes, key to comprehend the formation of the
quasienergy spectrum. This effect can be thoroughly studied by
analyzing the quasi-energy spectrum using the Floquet theory.51–61

In this paper, we address the general problem of a particle that
obeys the anisotropic Dirac Hamiltonian subject to linearly polarized
light with an arbitrarily large field intensity. The calculation of the
quasienergy spectrum and the wave function is achieved through a
set of unitary transformations that enable reducing the matrix differ-
ential equation into a scalar differential equation. This, in turn, is
readily solved via the Floquet theorem and a Fourier spectral decom-
position of the periodical part of the solution. It is shown that in the
intense field regime, the quasienergy spectrum abruptly develops an
anisotropic structure, absent in the weak field regime.

Finally, it is important to put our present findings in the
context of earlier studies made by other authors. Most of the inter-
est has been placed in Dirac or Weyl Hamiltonians without tilting,
and for these cases, perturbative methods were used to find the
Floquet spectrum.28,29 Here, we show an analytic expression valid
for all field intensities, as it was made for graphene many years

ago.19 The strong anisotropy reported here for borophene cannot
be obtained by usual perturbation techniques.

The paper is organized as follows. In Sec. II, we introduce the
low-energy effective two-dimensional anisotropic Dirac Hamiltonian,
and we study the case of borophene subject to an arbitrarily intense
linearly polarized electromagnetic field. Subsequently, in Sec. III,
we analyze the quasienergy spectrum that emerges from the Hill
equation by means of the Floquet approach. Also, we find the time-
dependent wave functions. Finally, we summarize and conclude in
Sec. IV.

II. TWO-DIMENSIONAL ELECTRONS IN A TILTED DIRAC
CONE SUBJECT TO ELECTROMAGNETIC FIELDS

A. The anisotropic Dirac Hamiltonian

We start by considering a low-energy anisotropic Dirac
Hamiltonian close to one of the Dirac points. In the particular case
of 8-Pmmn borophene, it is given by44,45,49,62

Ĥ ¼ �hvtkyσ̂0 þ �h vxkxσ̂x þ vykyσ̂y
� �

, (1)

where kx and ky are the components of the two-dimensional
momentum vector k, σ̂x and σ̂y are the Pauli matrices, and σ̂0

is the 2� 2 identity matrix. The three velocities in the anisotropic
8-Pmmn borophene Dirac Hamiltonian (1) are given by
vx ¼ 0:86 vF, vy ¼ 0:69 vF, and vt ¼ 0:32 vF, where vF ¼ 106 m=s49

is the Fermi velocity. In Eq. (1), the last two terms give rise to the
familiar form of the kinetic energy, leading to the Dirac cone and
the first one tilts the Dirac cone in the ky direction. These two fea-
tures are contained in the energy dispersion relation,50

Eν;k ¼ vt
vy

� �
~ky þ νε, (2)

where

ε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k
2
x þ ~k

2
y

q
, (3)

and ν ¼ +1 is the band index. In Eq. (2), we used the set of renor-
malized moments ~kx ¼ �hvxkx , ~ky ¼ �hvyky . The corresponding free
electron wave function is

ψν(k) ¼
1ffiffiffi
2

p 1
νexp(iθk)

� �
, (4)

where θk ¼ tan�1 (~ky=~kx).

B. Linearly polarized waves

Now, we consider a charge carrier, described by the two-
dimensional anisotropic Dirac Hamiltonian, subject to an electromag-
netic wave that propagates along a direction perpendicular to the
surface of the crystal. The effects of the electromagnetic field are
introduced in the Hamiltonian (1) through the Peierls substitution63

�hk ! �hk � eA, where A ¼ (Ax , Ay) is the vector potential of the
electromagnetic wave. A considerable simplification can be achieved
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by adopting a gauge in which A only depends on time. The
Hamiltonian (1) is thus transformed into

Ĥ ¼ vt
vy

~ky � evyAy

	 

σ̂0

þ ~kx � evxAx

	 

σ̂x þ ~ky � evyAy

	 

σ̂y: (5)

In principle, in the expression above, the polarization can be
linear, circular, or elliptical. Although the cases of circularly or
elliptically polarized light are very interesting, the nature of the
solution presented here is much more involved for these cases. The
reason is that linear polarization breaks the spatial symmetry. This
is not the case for other kinds of polarizations, and thus, the trans-
formations proposed here are strongly modified. However, from
results in other 2D materials in the weak field regime using pertur-
bation approaches, we can expect a gap opening.28,29 Assuming
that the electromagnetic wave is linearly polarized, the vector
potential can be written as

A ¼ E0
Ω

cos(Ωt)r̂, (6)

where r̂ ¼ (1, 0) is the polarization vector, E0 is the uniform ampli-
tude of the electric field, and Ω is the angular frequency of the elec-
tromagnetic wave. Observe that here, the field A is not quantized
and is treated classically. Thus, our results are valid for a field with
a large number of photons, which can be represented by a
quantum coherent field.

In the Schrödinger equation corresponding to (5),

i�h
d
dt

Ψ(t) ¼ ĤΨ(t), (7)

the two-dimensional spinor can be expressed as Ψ(t) ¼ ΨA(t),ð
ΨB(t)Þ`, where A and B label the two sublattices.

The main difficulty in deducing the wave function’s explicit
form resides in that the Hamiltonian (5) couples the differential
equations for the ΨA(t) and ΨB(t) spinor components due to the
terms that are proportional to σ̂x and σ̂y . To uncouple the spinor
components, we proceed as follows. First, applying a 45� rotation
around the ky axis of the form

Ψ(t) ¼ exp � i
�h

π

4

	 

σ̂y

� �
Φ(t) (8)

conveniently transforms the non-diagonal σ̂x matrix into σ̂z .
Indeed, substituting (8) into Eq. (7) yields

i
d
df

Φ(f) ¼ 2
�hΩ

vt
vy

� �
~kyσ̂0 þ ~Πxσ̂z þ ~kyσ̂y

� �
Φ(f), (9)

where the only non-diagonal remaining term is the one propor-
tional to σ̂y . In the foregoing equation, f ¼ Ωt=2, ~Πx ¼ ~kx
�ζxcos(2f), and ζx ¼ evxEx=Ω. The spinor components of
Φ(f) ¼ Φþ(f), Φ�(f)ð Þ` are given by Φþ(f) ¼ [ΨA(f)þ
ΨB(f)]=

ffiffiffi
2

p
and Φ�(f) ¼ [ΨA(f)�ΨB(f)]=

ffiffiffi
2

p
. Second, the term

proportional to σ̂0 in Eq. (9) is removed by adding a time-
dependent phase to the wave function,

Φ(f) ¼ exp �2i
vt
vy

� � ~ky
�hΩ

f σ̂0

" #
χ(f), (10)

where χ(f) ¼ (χþ1(f), χ�1(f))
`. Finally, after inserting Eq. (10)

into Eq. (9), we follow the procedure shown in Appendix A of
Ref. 50. The resulting diferential equation takes on the form of the
Hill equation,64

χ00(f)þ F(f)χ(f) ¼ 0, (11)

where the matrix F(f) is defined as

F(f) ¼ aþ q1cos(2f)þ q2cos(4f)½ �σ̂0 þ q3sin(2f)σ̂z: (12)

The Hill equation parameters,

a ¼ 2ε
�hΩ

� �2

þq2, (13)

q1 ¼ �4
ffiffiffiffiffiffiffi
2q2

p ~kx
�hΩ

 !
, (14)

q3 ¼ 2i
ffiffiffiffiffiffiffi
2q2

p
, (15)

where q2 is given by

q2 ¼ 2
ζx
�hΩ

� �2

, (16)

are expressed in terms of the ratios of the characteristic energies of
the system. Thereby, ε=�hΩ is the ratio of the electron kinetic
energy to the photon energy, ζx=�hΩ is the ratio of the work done
on the charged carriers by the electromagnetic wave to the photon
energy, and ~kx=�hΩ is the ratio of the x part of the electron kinetic
energy to the photon energy.

Expressing (11) as a second-order differential equation is
quite advantageous for the calculations that follow. First, the evolu-
tion operator that propagates the state χ in time must be diagonal
since F(f) is solely composed of the diagonal matrices σ̂0 and σ̂z .
As a consequence of this, the scalar differential equations for the
χþ1(f) and χ�1(f) spinor components decouple. Moreover, the
differential equation for the χ�1(f) component turns out to be the
complex conjugate of the one for χþ1(f). Both differential equa-
tions may be summarized by

χ00η(f)þ aþ q1cos(2f)þ q2cos(4f)½
þ ηq3sin(2f)�χη(f) ¼ 0, (17)

where η ¼ +1.
This alternative form of the Schrödinger equation considerably

simplifies the computation and analysis of the stability spectrum.
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III. QUASIENERGY SPECTRUM AND WAVE FUNCTION

A. Quasienergy spectrum

In this section, we analyze the quasienergy spectrum produced
by the Hill equation (17) and its relations with the stability of its
solutions. The determination of the stability regions of this differ-
ential equation is quite challenging mainly due to the imaginary
coefficient q3. The real coefficients a, q1, and q2 alone give rise to
the Whittaker–Hill equation,65 widely discussed in the spectral
theory of periodic differential equations. The imaginary coefficient
q3, however, introduces additional difficulties that are rarely
addressed in the literature.66 Among other things, it yields complex
characteristic values. Despite the added complexity, Eq. (17) may
be approached by Whitakker’s original assumption64,67 that the sol-
ution should take the Floquet normal form

χη(f) ¼ exp iμηf
� �

uη(f) (18)

due to the periodicity of the Hamiltonian. Also, according to the
Floquet theorem, uη(f) must be a function with the period π. The
function μη(a) is termed the characteristic exponent. As detailed in
Sec. III B, the characteristic exponent and the quasienergy spectrum
are closely connected. Thanks to the periodicity of the uη(f) func-
tion, χμ(f) might be expressed as a Fourier series expansion. In
this manner, the second-order differential equation with time-
variable periodic coefficients is traded for a matrix eigenvalue
problem. The eigenvalues that stem from it are precisely the charac-
teristic exponents μη(a). These have the form

μη(a) ¼
1
π
cos�1 1þ Δη(0) cos(

ffiffiffi
a

p
π)� 1

� �� �
, (19)

where a and Δη(0) are given by Eqs. (13) and (9), respectively. For
a detailed calculation of μη(a), refer to the Appendix.

In general, the solutions of the Hill equation (17) fall either on
stable (Im[μη(a)] ¼ 0) or unstable regions (Im[μη(a)] = 0)
depending on the values taken by the coefficients a, q1, q2, and q3
provided they are being considered as independent parameters.65–67

Furthermore, if we chart the stable and unstable regions in the
(a, ζx=�hΩ) domain, the resulting stability diagram greatly resem-
bles that of the Mathieu differential equation. Surprisingly, all the
physical solutions fall on the stable regions when these coefficients
are restricted by the parametrization of Eqs. (13)–(15) for seem-
ingly arbitrary domain spaces of ~kx , ~ky , and ζx . The mathematical
reason behind the stability comes from the extra relationships that
exist between parameters. By looking at the definitions of a, q1, q2,
and q3, it is clear that once q2 is given, only ε and ~kx remain as
free parameters. Yet, these two are related by the dispersion
equation (3). Thus, there are extra constraints that reduce the space
of possible solutions when compared with a stability diagram made
by considering independent parameters. Physically, such relations
between parameters arise as a consequence of energy-momentum
conservation. As an example, consider Eq. (13) in the limit where
ε=�hΩ � ffiffiffiffiffi

q2
p

. Thus, a � q2 from where it follows that

2ε
�hΩ

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
a� q2

p � ffiffiffi
a

p
1� q2

2a

	 

: (20)

At the same time, the condition ε=�hΩ � ffiffiffiffiffi
q2

p
implies by the dis-

persion relationship that along the x-axis, ~kx=�hΩ � ffiffiffiffiffi
q2

p
, and by

Eqs. (14)–(16), jq1j � q2, jq3j. In this limit, Eq. (17) can be
reduced to the Mathieu equation where gaps occur for

ffiffiffi
a

p � n for
an integer n. Therefore, Eq. (20) represents a dressed valence to
conduction band transition, as for q2 ! 0, we recover the energy
conservation 2ε � n�hΩ of photon absorption by the electron. This
limiting case is obtainable from simple perturbation techniques. In
the Floquet theory, the extra q2 term results from the
electron-dressing and keeps the transition slightly away from the
resonance-gap opening condition.

We have, therefore, numerically determined the stability diagram
of the Hill equation in the (a, ζx=�hΩ)-plane and systematically con-
firmed that the parametrization given by Eqs. (13)–(15) indeed falls in
the stability region. Figure 1 shows a density plot the characteristic
exponent spectrum for μþ1(a) as a function of the normalized
momenta ~kx=�hΩ and ~ky=�hΩ. Over the entire parameter space
covered in this figure, the solutions of the Hill equation are stable.

One of the most striking features of the spectrum emerges
when one compares the quasienergies at low, intermediate, and
high electric field amplitudes. The contrast between the effects of
weak (Ex ¼ 10�4 V/m, ζx=�hΩ ¼ 10�3), intermediate (Ex ¼ 4:85 V/
m, ζx=�hΩ ¼ 2:5), and strong (Ex ¼ 9:7 V/m, ζx=�hΩ ¼ 5) electric
field amplitudes is shown in Figs. 1(a)–1(c), respectively. In the
weak electric field regime [see Fig. 1(a)], the isolines of the charac-
teristic exponent μþ1(a) as a function of the normalized momenta
form a pattern of concentric circles. In the intermediate electric
field regimes [see Fig. 1(b)], a spectrum of vertical lines, perpendic-
ular to the electric field direction, emerges close to the Dirac point
(~kx ¼ ~ky ¼ 0). The vertical grill is surrounded by an elliptical
outline that is approximately delimited by the white circle of radius
ε ¼ ζx . In the vicinity of this contour (ε . ζx), the spectrum takes
on an elliptical form but further out (ε � ζx), the spectrum recov-
ers the circular shape observed in the low electric field regime. For
intense electric fields, the spectrum has the same overall behavior
as the intermediate case. The main difference is the radius of the
white circle and the number of vertical lines, which are increased in
the strong field case.

The appearance of the vertical grill in the quasienergy spec-
trum is due to the interplay between the terms cos(2f), sin(2f),
and cos(4f) in Eq. (17). For example, ε , ζx implies that q2 . q3j j
and q3j j . q1; therefore, the most significant term is cos(4f). By
contrast, ε . ζx implies that q1 . q3j j and q3j j . q1, and the dom-
inant element is cos(2f).

Further details of the spectrum are appreciated in Fig. 2 where
we show a 3D plot of the quasienergy μþ1(a) as a function of ~kx
and ~ky in the high electric field regime (ζx=�hΩ ¼ 5).

B. Wave function and the Floquet spectrum

As mentioned above, the wave function in (7) must satisfy
the Floquet theorem as a result of the time periodicity of the
Hamiltonian (5). Hence, following the Floquet theorem, Eqs. (8), (10),
and (18) can be combined into the wave function,

Ψ(f) ¼ N exp � i
�h

π

4

	 

σ̂y

� �
U(f)χ(0), (21)
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where N is a normalization constant, χ(0) ¼ (χþ1(0), χ�1(0))
` is

the initial state vector in (17), and U(f) denotes the time evolution
operator such that χ(f) ¼ U(f)χ(0). As we pointed out before,
because F(f) is a diagonal matrix, the evolution operator must also
be diagonal. Thus, it can be expressed quite generally as

U(f) ¼ exp[� iεþ1f]uþ1(f) 0
0 exp[� iε�1f]u�1(f)

� �
, (22)

where u�1(f) ¼ u*þ1(f) has the period π, and

εη ¼ 2
vt
vy

~ky
�hΩ

þ μη(a): (23)

It is easy to verify that the wave function (21) reduces to the free-
particle wave function (4) when the electric field vanishes. From the
Floquet theory,68–71 the time evolution operator is periodic
U(f) ¼ U(fþ lπ), and quasienergy can be expressed as

Eη,l ¼ εη þ l ¼ 2
vt
vy

~ky
�hΩ

þ μη,l(a), (24)

where

μη,l(a) ¼ μη(a)þ l, l [ Z (25)

is the characteristic exponent for different Brillouin zones, which are
tagged by the integer subscript l.

In Fig. 3, we show the quasienergy for Eþ1,0. At the bottom of
this figure, a density plot of μþ1,0(a) is shown for reference. One
notes that the spectrum consists of the quasienergies μþ1(a),
plotted in Fig. 2, onto the tilt that comes from the first term of

FIG. 2. Characteristic exponent spectrum μþ1(a) as a function of the normal-
ized momenta ~kx=�hΩ and ~ky=�hΩ in the intense electric field regime. This plot
was made for ζx=�hΩ ¼ 5 with Ex ¼ 9:7 V/m and Ω ¼ 50� 109 Hz.

FIG. 1. Density plot of the characteristic exponent spectrum μþ1(a) as a func-
tion of ~kx=�hΩ and ~ky=�hΩ for (a) ζx=�hΩ ¼ 10�3 with Ex ¼ 10�4 V/m, (b)
ζx=�hΩ ¼ 2:5 with Ex ¼ 4:85 V/m, and (c) ζx=�hΩ ¼ 5 with Ex ¼ 9:7 V/m. In
all cases, the frequency of the electromagnetic field has a value
Ω ¼ 50� 109 Hz. The white circle indicates the theoretical threshold given by
the radius ε ¼ ζx at which there is a transition from a field-driven strong to
weak anisotropy solution. The black dots denote the limits of the white circle in
the cases where ~kx=�hΩ ¼ 0 and ~ky=�hΩ ¼ 0.
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Eq. (24). It arises from the anisotropic character of the
Hamiltonian (1). Even though it strongly distorts the symmetry of
the Dirac cone, it has been shown that interband transitions are
not affected by it in the zero-temperature limit.62

Different cross sections of the quasienergy spectrum μη,l(a) are
shown in Fig. 4 for the Brillouin zones l ¼ �1, 0, 1. Panels (a) and
(b) show the spectrum section planes ~ky ¼ 0 and ~kx ¼ 0, respec-
tively, in the weak electric field regime ( ζx=�hΩ ¼ 10�3,
Ex ¼ 10�3 V/m, and Ω ¼ 50� 109 Hz). In this case, both ~ky ¼ 0
and ~kx ¼ 0 cross sections are almost identical since the electric
field is not intense enough to provoke any distortion to the free-
particle spectrum. The quasienergies for the many Brillouin zones
as functions of ~kx [panel (a)] or ~ky [panel (b)] have the form of a
triangular function. In the intermediate electric field regime
(ζx=�hΩ ¼ 2:5, Ex ¼ 4:85 V/m, and Ω ¼ 50� 109 Hz) and the
strong electric field regime (ζx=�hΩ ¼ 5, Ex ¼ 9:7 V/m, and
Ω ¼ 50� 109 Hz), both cuts are radically different. In panel (c) for
intermediate and (e) for strong electric fields, we note that the
~ky ¼ 0 cross section of the spectrum resembles those corresponding
to the weak electric field regime also exhibiting a triangular shaped
function of ~kx . However, in the ~kx ¼ 0 panels [panels (d) and (f )],
the presence of the electromagnetic field becomes evident as the
spectrum is warped approximately in the domain �1 , ~ky , 1 for
intermediate and �2 , ~ky , 2 for strong electric fields. At both
ends of this range, the quasienergy abruptly recovers the triangular
feature that characterizes the spectrum in the absence of electro-
magnetic radiation. This distortion is roughly bounded by the two
black vertical lines that correspond to the black dots in Figs. 1(b)
and 1(c) where the strength of the electromagnetic field is compa-
rable to the energy of the unperturbed system; i.e., ε ¼ ζx . A quite
robust feature of the spectrum is the preservation of the gapless
Dirac cone in the vicinity of the Dirac point: the quasienergies μþ1,l
and μ�1,l as well as Eþ1,l and E�1,l touch at the tip of the Dirac
point despite the intensity of the linearly polarized electromagnetic
field. Nevertheless, the conic dispersion relation is stretched along

the ky direction as a result of the renormalization of the vy compo-
nent of the velocity due to electronic dressing. Despite the absolute
absence of a gap at the tip of the Dirac cone, it is possible to open
up gaps in other zones of the spectrum. In Fig. 4(d), the appear-
ance of a small gap between μþ1,l and μ�1,l can be appreciated at
~ky=�hΩ � +2.

FIG. 3. Quasienergy Eþ1,0 spectrum as a function of the normalized momenta
~kx=�hΩ and ~ky=�hΩ in the strong electric field regime (ζx=�hΩ ¼ 5, Ex ¼ 9:7 V/
m) for Ω ¼ 50� 109 Hz. The density plot at the bottom of the plot is a projec-
tion of the 3D plot at the top (see1(b)).

FIG. 4. Section planes of the quasienergy μη,l (a) as a function of ~kx=�hΩ or
~ky=�hΩ for the Brillouin zones l ¼ �1, 0, 1. Panels (a) and (b) correspond to
the weak electric field regime (ζx=�hΩ ¼ 10�3 and Ex ¼ 10�3 V/m). The inter-
mediate electric field regime (ζx=�hΩ ¼ 2:5 and Ex ¼ 4:85 V/m) is shown in
panels (c) and (d). The strong electric field regime (ζx=�hΩ ¼ 5 and
Ex ¼ 9:7 V/m) is shown in panels (e) and (f ). In all cases, the frequency of the
electromagnetic field has a value of Ω ¼ 50� 109 Hz. The solid orange and
blue lines correspond to the quasienergies μþ1,0(a) and μ�1,0(a), respectively.
The light dots plot the quasienergy μ+1,+1(a) in the adjacent Brillouin zones
(l ¼ +1). The threshold ε ¼ ζx , where the energy of the electric field ζx is
identical to the unperturbed energy ε, is indicated by the vertical black lines in
panels (c) and (d).
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Finally, as an experimental layout to observe the results pre-
sented in this work, we propose to use borophene over a dielectric
substrate like SiO2 or h-BN. Like in graphene experiments that
measure induced photocurrents,33,72 a Ti:sapphire laser (650–
1100 nm) is the most convenient. Using this electromagnetic wave
source with a frequency Ω ¼ 1713 THz and powers per unit area of
6:7� 10�9 W/nm2 � P � 0:2W/nm2, corresponding to the field
strength in the interval of 0:02 V/nm � Ex � 11:23 V/nm, it should
be possible to find the spectra of Fig. 1 with 10�3 , (ζx=�hΩ) , 5.

IV. CONCLUSIONS

We investigated the quasienergy spectrum of an anisotropic
tilted Dirac material subject to an arbitrarily intense linearly polar-
ized electromagnetic field. To this end, we studied the behavior of
8-Pmmn borophene under the normal incidence of a linearly polar-
ized field. We worked out the time-dependent wave function and
the quasienergy spectrum from the Schöendiger equation via the
Floquet theory. The quasienergy spectrum exhibits a sharp differ-
ence between the weak and strong electromagnetic field regimes.
While in the first, the quasienergy as a function of the quasimo-
menta (~kx and ~ky) is highly isotropic, the latter presents an aniso-
tropic pattern in the low-energy region that resembles a grid
aligned perpendicularly to the direction of the radiation’s electric
field. This pattern abruptly disappears beyond the threshold where
the free kinetic energy of the carriers is larger than the energy asso-
ciated with the electric field. Near this threshold, a gap opens up.
Probably, the most astonishing feature of this spectrum is that,
even though the gapless Dirac cone is preserved, the dispersion
relation is stretched along the direction perpendicular to the field’s
polarization. This is an outcome of the electronic dressing and the
consequent rescaling of the velocity. This mechanism could be
exploited to tune the electronic properties of Dirac materials
through the field parameters. A fundamental aspect, yet to be
addressed, is the capability of circularly polarized fields to adjust
these properties.

The potential of electron dynamics direction-control using
irradiation has many interesting potential applications. For
example, in combination with other semiconductors, graphene has
proven to be a good platform to build polarization-sensitive photo-
detectors.73 Our results suggest that in 2D Dirac materials, the pho-
toconductivity must be strongly influenced by the polarization
direction as a consequence of the quasi-spectrum orientation. This
property, along with the large mobility presented by these materi-
als, could be exploited to overcome the limitations of the most
common polarimeter architectures that either limit compactness,74

spatial,75 or temporal resolution.73,76 One can thus envision gra-
phene or borophene based fast and monolithic linear polarization-
sensitive photodetectors. Moreover, it is known that under circu-
larly polarized light, 2D materials exhibit the formation of a
dynamical gap in the Dirac point27 (not addressed in this paper).
This could extend the sensing capabilities of 2D Dirac materials to
circularly polarized light.
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APPENDIX: WHITTAKER METHOD TO FIND THE
CHARACTERISTIC EXPONENTS

This appendix covers the method developed by Whittaker64,67

to determine the characteristic exponent (19). Equation (17) is
the starting point. This equation is periodic, and therefore, its
solution must comply with the Floquet theorem. Thus, the solution
is given by

χη(f) ¼ eiμηfuη(f), (A1)

where η ¼ +1, uη(f) is a function with the period π
and μη denotes the characteristic exponent. Thanks to the peri-
odicity of uη(f), the wave function can be expanded as a Fourier
series as

χη(f) ¼ eiμηf
X1
r¼�1

C(η)
2r e

i2rf: (A2)

Substituting the preceding equation into (17) and rearranging
the coefficients, we obtain the following recurrence relation:

γ2rC
(η)
2(r�2) þ α2rC

(η)
2(r�1) þ C(η)

2r þ β2rC
(η)
2(rþ1) þ γ2rC

(η)
2(rþ2) ¼ 0,

(A3)

where

α2r ¼ 1
2

q1 � iηq3
a� (μþ 2r)2

, (A4)

β2r ¼
1
2

q1 þ iηq3
a� (μþ 2r)2

, (A5)

γ2r ¼
1
2

q2
a� (μþ 2r)2

: (A6)

The equation parameters a, q1, q2, and q3 are defined in
Eqs. (13)–(15). The recurrence relation (3) can be put in the
form of a linear equation as

Ar μ, η, a, q1, q2, q3ð ÞC(η) ¼ 0, (A7)
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where C(η) ¼ C(η)
2 , C(η)

4 , C(η)
6 , . . .

	 
`
and

Ar 0, η, a, q1, q2, q3ð Þ

¼

1 α2r γ2r 0 0 0 0 0 0

β2r�2 	 	 	 	 	 	 	 0

0 	 1 α4 γ4 0 0 	 0

0 	 β2 1 α2 γ2 0 	 0

0 	 γ0 β0 1 α0 γ0 	 0

0 	 0 γ�2 β�2 1 α�2 	 0

0 	 0 0 γ�4 β�4 1 	 0

0 	 	 	 	 	 	 	 α�2rþ2

0 0 0 0 0 0 γ�2r β�2r 1

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

:

(A8)

To avoid the trivial solution, we demand that the determinant of
the precedent matrix vanishes,

Δη(0) ¼ det Ar 0, η, a, q1, q2, q3ð Þ½ � ¼ 0: (A9)

It can be proven that this determinant may be written in the
compact form,67

sin2 μη(a)
π

2

	 

¼ Δη(0) sin

2 ffiffiffi
a

p π

2

	 

: (A10)

Solving the above equation for μη(a), we obtain

μη(a) ¼
1
π
cos�1 1þ Δη(0)(cos(

ffiffiffi
a

p
π)� 1)

� �
: (A11)

This expression presents the advantage of being efficiently
evaluated by using numerical methods. Strictly speaking, Ar is
infinite-dimensional; however, good numerical convergence of
μη(a) is achieved by cutting it down to a 400� 400 matrix.
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