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We analyze the quasienergy-spectrum and the valence to conduction-band transition probabilities
of a tilted anisotropic Dirac material subject to linearly and circularly polarized electromagnetic
fields. The quasienergy-spectrum is numerically calculated from the monodromy matrix of the
Schrödinger equation via the Floquet theorem for arbitrarily intense electromagnetic fields. To asses
the valence to conduction-band transition times we deduced a Rabi-like formula in the rotating wave
approximation. In the strong-field regime the spectrum as a function of the momentum components
divides into two very distinctive regions. In the first, located around the Dirac point, the quasi-
spectrum is significantly distorted by the field as the electronic parameters are renormalized by
electronic-dressing. In the second, all the characteristics of the free carrier spectrum are retained.
Linearly polarized light anisotropically deforms the spectrum according to the field polarization
direction. Dirac-like points form around the original Dirac point. The quasi-spectrum of circularly
polarized light, instead, exhibits a gap formation in the Dirac point and has elliptical symmetry.
We show that, in contrast to the single-photon resonant transitions that characterize the weak-field
regime, the strong-field regime is dominated by multiphoton resonances.

I. INTRODUCTION

The extraordinary electronic and optical properties of
graphene make it an ideal platform for the development
of diverse optoelectronic devices and applications1–3 such
as THz generators4, plasmonic devices5,6, polarization-
sensitive, broad band photodectectors7,8, broad band op-
tical modulators9–11, infrared photodetectors12 and solar
cells13,14.

Because of its broadband and ultrafast optical re-
sponse and weak screening15, graphene is a particu-
larly attractive material for the implementation of at-
tosecond science applications8,16–18. This field has been
rapidly growing19 since the first demonstration of sub-
femtosecond pulse generation20 with the prospect of new
time-resolved spectroscopic techniques and overcoming
the speed limitations of electronics19. These applications
rely on the high light-matter coupling between carriers
and strong optical fields.

The limit of strong electromagnetic fields is of great
interest also because it may give rise to exotic and novel
quantum phases coherently induced by light. Two strik-
ing examples of Floquet-engineered topological phases
in graphene are the Photovoltaic Hall effect21 and the
light-induced anomalous Hall effect22. Astonishingly the
Hall effect, produced in the absence of a magnetic field,
arises from a light-induced Berry curvature absent in
the static case22. The dressing of electrons, i.e. elec-
trons bounded to a strong electromagnetic field1,12,23–31,
has become a key concept in understanding the interac-
tion of electromagnetic radiation with charge carriers in
graphene23,28,32. Electromagnetic dressing substantially
renormalizes the energy spectrum as well as other elec-

tronic parameters of graphene28,30,31,33 and could, there-
fore, be exploited to adjust its optoelectronic properties.

Unlike metals, semiconductors and other conventional
materials used in electronics, Dirac materials have a lin-
ear dispersion relation near the band edge that can be
characterized by the Dirac Hamiltonian. This hinders
the application of some of the standard solid-state theo-
retical tools. Such is the case of carriers interacting with
a strong electromagnetic field. The purpose of this pa-
per is to analyze the dynamics of electrons in a Dirac
material coupled to an intense electromagnetic field, and
at the same time, to introduce a numerical technique to
find the temporal evolution of quantum, systems.

The research presented here is a follow up of our previ-
ous work concerning electromagnetic waves in the strong
field regime acting on borophene34,35. The methods and
results introduced in this paper are of a far more general
character. In former investigations we were only able to
tackle the strong-field regime in an approximate manner,
due to the lack of a method capable to bridge the gap
between the low and high electromagnetic field intensity.
In this work we have developed methods that allow us to
approach the calculations of the quasienergy-spectrum,
time-dependent wave function and transition probabili-
ties without any restrictions in field parameters such as
polarization, intensity and time duration. These meth-
ods allow us to continuously go from the weak to the
strong-field regime without any approximations. This is
a fundamental requirement in the comparison of spectra
and transition probabilities in both regimes. Moreover,
the deviced methods open the door to the study of many
other time-driven quantum systems36–38.

We center our discussion in the effects on the
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quasienergy spectrum and the valence to conduction
band transition probability. In order for our study to
be general enough we utilize the low energy Hamiltonian
of an anisotropic tilted Dirac material. Specifically, we
present results for borophene34,39–41, the paradigmatic
example of tilted Dirac materials. For the sake of com-
parison, we calculated the quasi-spectra in the weak and
strong-field regimes for linearly and circularly polarized
light.

We show that, regardless of the field polarization, un-
der strong illumination the quasi-spectrum can be sep-
arated in two very well defined regions in k-space. The
first, where the electromagnetic field is perturbative, re-
sembles that of the free carrier spectrum. In the second,
where the field effects are more dramatic, new Dirac-
like points as well as gaps are generated. The boundary
where the sharp transition from one regime to the other
takes place is accurately determined. Under circularly
polarized light we clearly demonstrate the emergence of
a gap in the Dirac point. In the strong field region,
an anisotropic quasi-spectrum emerges for linearly polar-
ized light. The anisotropy is oriented in accordance with
the filed polarization direction. We demonstrate that, in
stark contrast with the perturbative regime, where tran-
sitions happen between energy levels whose energy differ-
ence match the photon energy, in the strong field regime
they take place well outside the single photon resonance
condition. This indicates the presence of multiphoton
excitations.

The paper is organized as follows. In Sec. II we
introduce the low energy Hamiltonian of a 2D tilted
anisotropic Dirac material, while in Sec. III we set up the
basic equations for the model system under an electro-
magnetic field with arbitrary polarization. A method to
compute the quasienergy-spectrum via the Floquet theo-
rem and the monodromy matrix is presented in Sec. IV.
Section V is devoted to the derivation of a Rabi-like for-
mula by adopting the rotating wave approximation. A
comparison between the diverse quasienergy-spectra and
valence to conduction-band transition probabilities un-
der different illumination conditions is shown in Sec. VI,
while a discussion of the results is presented in Sec. VII.
We conclude and summarize in VIII.

II. TILTED ANISOTROPIC DIRAC
HAMILTONIAN MODEL

The K valley low energy Hamiltonian of a 2D tilted
anisotropic Dirac material is given by34,35,40,42,43

H0 = vtpyσ0 + vxpxσx + vypyσy, (1)

where σ0 is the 2× 2 identity matrix, σx,y are the Pauli
matrices, px,y are the components of the 2D momentum
operator p and vx, vy are the anisotropic Fermi veloci-
ties. The velocity vt gives the tilting of the energy dis-
persion with respect to the energy axis40,42. The well

known graphene energy dispersion is recovered by set-
ting vt = 0 and vx = vy = vF ≈ c/300 ≈ 106m/s with
vF and c being the Fermi velocity42 and the speed of
light respectively. In 8-Pmmm borophene, such veloci-
ties are vt = 0.32vF , vx = 0.86vF and vy = 0.69vF . To
simplify the presentation, from here on, we restrict our
calculations to the K valley. To retrieve the expressions
corresponding to the K ′ valley it suffices to invert the
sing of vt. The sings of vx and vy depend on the chosen
basis40. The free electron wave function corresponding
to (1) is given by the spinor

Ψη(r) =
exp(ik · r)√

2

(
1

ηeiθ(k)

)
, (2)

where kx and ky are the wave vector k components,
θ(k) = tan−1(vyky/vxkx) and η = ±1 is the band index.
The eigenenergies associated with this wave function are

Eη(k) = ~vtky + ηε(k), (3)

where

ε(k) = ~
√
v2xk

2
x + v2yk

2
y. (4)

It is important here to underline that the Hamiltonian
matrix (1), as well as the wave function vector (2), are
expanded in terms of the sublattice state basis.

III. TILTED ANISOTROPIC DIRAC
MATERIALS UNDER AN ELLIPTICALLY

POLARIZED FIELD

Under the action of a normally incident electromag-
netic plane wave, the Hamiltonian (1) transforms accord-
ing to the Peierls substitution p→ p− eA as44

H = vt (py − eAy)σ0

+ vx (px − eAx)σx + vy (py − eAy)σy, (5)

where A = Axı̂ + Ay ̂ is the radiation vector potential.
It is convenient to adopt a gauge in which the vector
potential only depends on time as

A(t) = −Ex
ω

cos (ωt+ δ) ı̂− Ey
ω

cos (ωt+ δ + φ) ̂, (6)

where ω is the angular frequency of the radiation. For
Ex = Ey the parameter φ allows to continuously vary
the field polarization from linear (φ = 0) to circular (φ =
±π/2). The initial field phase is given by δ. We drop
the initial phase δ for the moment and will restore it
later by doing ωt → ωt + δ. The electric field of the
electromagnetic wave is given by

E = −∂A
∂t

= −Ex sin (ωt) ı̂− Ey sin (ωt+ φ) ̂. (7)
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FIG. 1. Quasienergy-spectrum Eη,j,m(k) − ~vtky in the zero field regime (Ex = Ey = 0) for the K Dirac point η = 1; (a)
Quasienergy spectrum as a function of the momentum components kx and ky in the vicinity of the Dirac point for the j = 1
(solid blue surface) and j = 2 (transparent green surface) bands. Only the first Floquet zone m = 0 is plotted. (b) Quasienergy-
spectrum as a function of the momentum components kx and ky covering many different sections of the Dirac cone for the
j = 1 (solid blue surface) and j = 2 (transparent green surface) bands. Only the first Floquet zone m = 0 is plotted. (c)
Density plot of the quasienergy spectrum as a function of the momentum components kx and ky for the first band j = 1.
(d) Quasienergy spectrum as a function of the momentum component kx and fixed ky = 0 for the j = 1, 2 bands (blue and
green solid lines respectively) and the first three Floquet zones (m = −1, 0, 1). (e) Quasienergy spectrum as a function of the
momentum component ky and fixed kx = 0 for the j = 1, 2 bands (blue and green solid lines respectively) and the first three
Floquet zones (m = −1, 0, 1).

The time-dependent Schrödinger equation that arises
from the Hamiltonian (5),

i~
∂

∂t
Ψ(t, r) = HΨ(t, r), (8)

is easily solved by making the ansatz

Ψ(t, r) = exp(ik · r)ψ(t). (9)

This substitution considerably simplifies the problem by
yielding the Schrödinger equation in k-space

i~
d

dt
ψ(t) = H(t)ψ(t), (10)

where the wave function ψ(t) and the Hamiltonian

H(t) = vt [~ky − eAy(t)]σ0

+ vx [~kx − eAx(t)]σx + vy [~ky − eAy(t)]σy, (11)

depend entirely on time.

Substituting the particular form of the vector potential

(6) into the Hamiltonian (11) gives

H(t) = vt

[
~ky + e

Ey
ω

cos(ωt+ φ)

]
σ0

+ vx

[
~kx + e

Ex
ω

cos(ωt)

]
σx

+ vy

[
~ky + e

Ey
ω

cos(ωt+ φ)

]
σy. (12)

A simple inspection of this Hamiltonian reveals the limit
between the strong and the weak field regimes. When the
kinetic energy excels the radio frequency strength, ~k >
eE/ω the system is in a weak field regime. Otherwise, it
is in a strong field regime. In other words, the circle with
radius

k = eE/~ω, (13)

is the boundary between the weak (k > eE/~ω) and
strong field (k < eE/~ω) regions.
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FIG. 2. Quasienergy-spectrum Eη,j,m(k) − ~vtky in the strong field regime for a linearly polarized wave (ExevF /~ω2 = 2.0,
Ey = 0, φ = 0) in the K Dirac point η = 1; (a) Quasienergy-spectrum as a function of the momentum components kx and ky
for the j = 1 (solid blue surface) and j = 2 (transparent green surface) bands. Only the first Floquet zone m = 0 is plotted. A
zoom of the original and two new Dirac points is shown. (b) Quasienergy-spectrum as a function of the momentum components
kx and ky for the j = 1 (solid blue surface) and j = 2 (transparent green surface) bands. Only the first Floquet zone m = 0
is plotted. The wider range of k allows to see the three Dirac points emerging in the middle of the zero-field quasi-spectrum.
(c) Density plot of the quasienergy-spectrum as a function of the momentum components kx and ky for the j = 1 band.
(d) Quasienergy-spectrum as a function of the momentum component kx and fixed ky = 0 for the j = 1, 2 bands (blue and
green solid lines respectively) and the first three Floquet zones (m = −1, 0, 1). (e) Quasienergy-spectrum as a function of the
momentum component ky and fixed kx = 0 for the j = 1, 2 bands (blue and green solid lines respectively) and the first three
Floquet zones (m = −1, 0, 1). The white curve in panels (a), (b) and (c) indicates the circle k = eE/~ω = 2vF /ω that divides
the strong (k < eE/~ω) and weak field regions (k > eE/~ω). The vertical dotted lines in panels (d) and (e) correspond to the
position of edges of the circle k = eE/~ω = ±2vF /ω.

IV. TIME-EVOLUTION,
QUASIENERGY-SPECTRUM AND THE

MONODROMY MATRIX

Only a small number of very restrictive simple cases
of Eq. (10) are exactly solvable. The most general
and interesting cases are only approachable via numerical
methods. The foregoing differential equation is usually
addressed through the Floquet theorem and the subse-
quent Fourier time-frequency decomposition of the peri-
odical part of the solution36,45. This approach trades the
time-dependent differential equation (10) by an infinite-
dimensional time-independent Hamiltonian matrix eigen-
value problem. This method presents two major draw-
backs. First, to determine the quasienergy-spectrum
through the diagonalization of the infinite-dimensional
matrix it has to be chopped up to a required accuracy.
The diagonalization process of such large matrices is of
course numerical. Second, recovering the wave function
in its spinor form requires the inverse Fourier transform
of a very large dimensional eigenvector. Although this
last step is not numerical, it relies in the numerically

obtained eigenvectors. Since the complexity of the prob-
lem presses for the use of numerical methods, instead,
we compute the monodromy matrix from the numerical
solution of the system of ordinary differential equations
that stem from the Schrödinger equation. Conveniently,
the quasi-states in the spinor form are a direct outcome
of the previous calculation. The Schrödinger equation for
the time evolution operator is44

i~
d

dt
U(t) = H(t)U(t), (14)

where H(t) if given by (11), and U(t) is the time evo-
lution operator. For the sake of simplicity, we set the
initial condition U(0) = 1 where 1 is the 2 × 2 identity
matrix. Eq. (14) consists of four coupled scalar ordi-
nary differential equations for the elements Uij(t) with
initial conditions Uij(0) = δij . Therefore, the solution
of (14) encodes all the dynamical information of the sys-
tem. Moreover, as a result of the Floquet theorem, the
solution in any time interval can be extracted from the
domain t ∈ [0, T ]. Indeed, due to the periodicity of the
Hamiltonian, H(t) = H(t+T ) where T = 2π/ω, the evo-
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FIG. 3. Quasienergy-spectrum Eη,j,m(k) − ~vtky in the strong field regime for a circularly polarized wave (ExevF /~ω2 =
EyevF /~ω2 =

√
2, φ = −π/2) in the K Dirac point η = 1; (a) Quasienergy-spectrum as a function of the momentum

components kx and ky for the j = 1 (solid blue surface) and j = 2 (transparent green surface) bands. Only the first Floquet
zone m = 0 is plotted. (b) Quasienergy-spectrum as a function of the momentum components kx and ky for the j = 1 (solid
blue surface) and j = 2 (transparent green surface) bands. Only the first Floquet zone m = 0 is plotted. The wider range
of k allows to see the three Dirac points emerging in the middle of the zero-field quasi-spectrum. (c) Density plot of the
quasienergy-spectrum as a function of the momentum components kx and ky for the j = 1 band. (d) Quasienergy-spectrum
as a function of the momentum component kx and fixed ky = 0 for the j = 1, 2 bands (blue and green solid lines respectively)
and the first three Floquet zones (m = −1, 0, 1). (e) Quasienergy-spectrum as a function of the momentum component ky and
fixed kx = 0 for the j = 1, 2 bands (blue and green solid lines respectively) and the first three Floquet zones (m = −1, 0, 1).
The white curve in panels (a), (b) and (c) indicates the circle k = eE/~ω = 2vF /ω that divides the strong (k < eE/~ω) and
weak field regions (k > eE/~ω). The vertical dotted lines in panels (d) and (e) correspond to the position of edges of the circle
k = eE/~ω = ±2vF /ω.

lution operator must comply with the Floquet theorem.
It states that36,46

U(t) = exp

(
− i
~
Het

)
W(t), (15)

where W(t + T ) = W(t) and He is termed the effective
Hamiltonian. The eigenvalues of He are precisely the
quasienergies of H(t). Thus, (15) allows us to compute
the quasienergies and the time-dependent wave function
ψ(t) for t ∈ [0,∞) provided that the evolution operator is
known in the interval t ∈ [0, T ]. Let us assume that U(t)
is known in the domain t ∈ [0, T ], for example, through
the numerical solution of Eq. (14), for a given set of kx
and ky values. Since, by definition

U(T ) = exp

(
− i
~
HeT

)
W(T ) = exp

(
− i
~
HeT

)
, (16)

the quasienergies are given by

Eη,j,m(k) = −~ω
2π

arg[uη,j(k)] +m~ω, (17)

where uη,j(k) are the two eigenvalues of U(T ), and the
subscripts j = 1, 2 and m = 0,±1,±2, . . . tag the band
and the Floquet zone respectively. In the language of
ordinary differential equations theory, U(T ) is called the
monodromy matrix46,47, its eigenvalues uη,j,k are named
characteristic multipliers and i arg(uη,j,k)/T are the char-
acteristic exponents. Meanwhile, the evolution operator
at any time is

U(t) =W(T )bt/TcU (mod(t, T )) , (18)

where bt/T c = floor(t/T ).

V. RABI FORMULA

In many 2D materials, like graphene or borophene, the
conduction and valence bands are symmetric with respect
to the Fermi level. Thus, numerous similarities are shared
with two-level systems48. In this section, we develop such
analogy for the present model.

In a two-level system, two important parameters en-
sue from the Rabi formula44,49: the detuning parameter
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FIG. 4. Comparison of the single-photon mode transition
time ~ω/

∣∣ΓS1 (k)
∣∣ as a function of the momentum direction

given by the angle ϕ for graphene and borophene-like materi-
als in the weak and strong-field regimes. (a) vt = 0, vx = vF ,
vy = vF (graphenel) and ExevF /~ω2 = EyevF /~ω2 = 0.1/

√
2

(weak-field regime); (b) vt = 0.32vF , vx = vF , vy = vF
(borophene) and ExevF /~ω2 = EyevF /~ω2 = 0.1/

√
2 (weak-

field regime); (c) vt = 0, vx = vF , vy = vF (graphene)
and ExevF /~ω2 = EyevF /~ω2 = 1/

√
2 (strong-field regime);

(d) vt = 0.32vF , vx = vF , vy = vF (borophene) and
ExevF /~ω2 = EyevF /~ω2 = 1/

√
2 (strong-field regime).

Three polarization cases are presented: φ = 0 (linear po-
larization), φ = −π/2 (circular polarization) and φ = −π/4
(elliptical polarization).

FIG. 5. (a) Three-dimensional and (b) density plots of the
transition probability PCV (t) as a function of the momentum
components kx and ky under linearly polarized light (φ = 0)
in the weak-field regime (ExevF /~ω2 = EyevF /~ω2 = 0.01).
In panel (a) the solid dark blue elliptical line over the plot
marks the zone where the single-photon resonant condition
2ε(k) = ~ω is fulfilled.

∆ and the characteristic frequency Ω. The detuning pa-
rameter is a measure of how off is the field frequency
from the quantum two-level system’s resonant frequency.
When the field is tuned to the resonant frequency, i.e.
∆ = 0, the system is capable of transitioning from one-
level to the other with probability equal to 1 after a cer-
tain time. In contrast, when ∆ 6= 0, the system will at
best reach a superposition of both states. The change
rate from one state to the other is given by the charac-
teristic frequency: a fourth of its period τ = π/2Ω is the
time elapsed between the start and the completion of the

FIG. 6. (a) Three-dimensional and (b) density plots of the
transition probability PCV (t) as a function of the momentum
components kx,y under circularly polarized light (φ = −π/2)
in the weak-field regime (ExevF /~ω2 = EyevF /~ω2 = 0.01).
In panel (a) the solid dark blue elliptical line over the plot
marks the zone where the single-photon resonant condition
2ε(k) = ~ω is fulfilled.

FIG. 7. (a) Three-dimensional and (b) density plots of the
transition probability PCV (t) as a function of the momentum
components kx,y under linearly polarized light (φ = 0) in the
strong-field regime (ExevF /~ω2 = 1, EyevF /~ω2 = 0). The
solid dark blue (a) and white (b) elliptical lines mark the
zone where the single-photon resonant condition 2ε(k) = ~ω
is fulfilled.

quantum transition44. Even though, it is usually pro-
portional to the quantum system-radiation interaction
strength, we will see further on that the added complex-
ity of 2D Dirac materials yields a considerably richer and
more intricate behaviour.

Our main goal is now to identify these two Rabi param-
eters from the Schrödinger equation (10). This will allow
us to predict the conditions for producing Rabi cycles
and their duration. We follow a three stage strategy in
which we first move to the conduction-valence band ba-
sis, then remove the time-dependent diagonal elements
of the Hamiltonian and finally adopt the rotating wave
approximation. This procedure requires a total of four
unitary transformations.

In the case studied here, the two-state quantum system
is embodied by the conduction and valence band states
at a given momentum state of the 2D Dirac material.
In particular, we are concerned with the field stimulated
transitions that occur between the valence and conduc-
tion band. Therefore, as a starting point, we wish to
express the Hamiltonian (11) in the basis of the valence
and conduction band states (2). To this end let us act
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FIG. 8. (a) Three-dimensional and (b) density plots of the
transition probability PCV (t) as a function of the momentum
components kx,y under circularly polarized light (φ = −π/2)
in the strong-field regime (ExevF /~ω2 = EyevF /~ω2 =
1/
√

2). The solid dark blue (a) and white (b) elliptical lines
mark the zone where the single-photon resonant condition
2ε(k) = ~ω is fulfilled.

(10) by the first unitary transformation

R1 =
1√
2

(
1 1

eiθ(k) −eiθ(k)

)
=

eiθ(k)/2√
2

{
cos

[
θ(k)

2

]
(σx + σz)

+ sin

[
θ(k)

2

]
(σy − iσ0)

}
. (19)

The Schrödinger equation for the transformed evolution

operator U = R†1U(t)R in the conduction and valence
band base takes the form

0 = R†1
[
i~
d

dt
−H(t)

]
U(t)R1

=

{
i~
d

dt
− [γ(k) + λ(k) cos(ωt+ φ)]σ0

− [ε(k) + α(k) cos(ωt) + β(k) cos(ωt+ φ)]σz

− i [µ(k) cos(ωt)− ν(k) cos(ωt+ φ)] (σ+ − σ−)

}
U(t),

(20)

where the spin ladder operators are defined by

σ+ =
σx + iσy

2
, (21)

σ− =
σx − iσy

2
, (22)

the k-dependent coefficients as,

α(k) = ~
v2xkxeEx
ωε(k)

, (23)

β(k) = ~
v2ykyeEy

ωε(k)
, (24)

γ(k) = ~vtky, (25)

λ(k) =
vteEy
ω

, (26)

µ(k) = ~
vxvykyeEx
ωε(k)

, (27)

ν(k) = ~
vxvykxeEy
ωε(k)

, (28)

and ε(k) is given by (4). The next two transformations
are devoted to eliminating the time-dependent elements
in the diagonal of the Schrödinger equation. First, we
remove the terms proportional to σ0 by means of applying

R2 = exp

[
− i

~
Ξ(k, t)σ0

]
. (29)

where α(k) and β(k) have been absorbed in the complex
number

Ξ(k, t) = γ(k)t+
λ(k)

ω
[sin(ωt+ φ)− sin(φ)] . (30)

Under this transformation, the Schrödinger equation be-
comes

0 = R†2
[
i~
d

dt
−H(t)

]
U(t)R2

=

{
i~
d

dt
−
[
ε(k) + α(k) cos(ωt) + β(k) cos(ωt+ φ)

]
σz

− i
[
µ(k) cos(ωt)− ν(k) cos(ωt+ φ)

]
× (σ+ − σ−)

}
U2(t), (31)

where U2(t) = R†2U(t)R2 . In a similar way, the following
transformation lifts the time-dependence from the entries
proportional to σz. This transformation is given by the
following rotation around the z axis

R3 = exp

[
− i

~
Λ(k, t)σz

]
. (32)

The time-dependent transformation parameter is given
by

Λ(k, t) =
1

ω

[
α(k) sin(ωt)

+ β(k) sin(ωt+ φ)− β(k) sin(φ)
]

=
χ(k)

ω
cos (ωt+ ζ(k))− β(k)

ω
sin (φ) , (33)
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where

χ(k)eiζ(k) =
α(k) + β(k)eiφ

i
. (34)

The reduced Schrödinger equation takes the form

0 = R†3R
†
2

[
i~
d

dt
−H(t)

]
U(t)R2R3

=

[
i~
d

dt
− ε(k)σz

+ Γ(k, t)σ+ + Γ∗(k, t)σ−

]
U3(t), (35)

where the transformed evolution operator is U3(t) =

R†3R
†
2U(t)R2R3 and

Γ(k, t) = − i
2

[µ(k) cos(ωt) + ν(k) cos(ωt+ φ)]

× exp

[
−2iΛ(k, t)

~

]
. (36)

At this stage, the Schrödinger equation takes the more
familiar form where the diagonal elements (proportional
to σz) are constant and the time-dependent ones are se-
cluded to the off-diagonal entries (proportional to σ+ and
σ−). We can, therefore, move on to the rotating wave
approximation50. It consists in setting the system in a
rotating frame that revolves around the z axis at an angu-
lar velocity ω keeping the constant terms and discarding
those that rapidly oscillate50. In the standard analysis
of Rabi oscillations, the radio frequency field may be de-
composed into the two circular components. One rotates
in the same direction as the rotating frame and the other
in the opposite direction51 . While the component rotat-
ing synchronously with the frame becomes constant, the
other rapidly oscillates at an angular frequency 2ω. The
last one is neglected as it is quickly averaged over time
yielding an approximated constant Hamiltonian. This
approximation is justified as long as the static field is
larger than the oscillating one51.

In our case, however, a fundamental difference surfaces
when we look closely at the parameter Γ(k, t). Using the
Jacobi-Anger expansion

exp(iz cosϕ) =

∞∑
n=−∞

inJn(z) exp(inϕ), (37)

we obtain the following Fourier series:

Γ(k, t) =
i

2
exp

[
−2iβ(k)

~ω
sinφ

]
×

∞∑
n=−∞

in exp [inζ(k)] Jn

[
2χ(k)

~ω

]
×
{[

ν(k)eiφ − µ(k)
]

exp [i(n+ 1) (ωt+ δ)]

+
[
ν(k)e−iφ − µ(k)

]
exp [i(n− 1) (ωt+ δ)]

}
, (38)

where in the previous expression we have restored the
initial field phase δ.

In contrast with the classical treatment of Rabi os-
cillations, where only one oscillating mode is present,
here, the Hamiltonian is composed of an infinite num-
ber of Fourier modes. This is our first evidence as to
why multi-photon modes are generated in Dirac materi-
als while in standard Rabi systems only the single-photon
one is present. We can nevertheless follow the usual pre-
scription of the rotating wave approximation with a slight
modification. Rotating around the z axis by a phase
−qωt, where q ∈ Z, we tune in with each one of the
Fourier modes. This is accomplished through the rota-
tion operator

R4 = exp

(
− i

2
qωtσz

)
. (39)

In the rotating frame the Schrödinger equation (35) takes
the form

0 = R†4R
†
3R
†
2R
†
1

[
i~
d

dt
−H(t)

]
U(t)R1R2R3R4

=

{
i~
d

dt
−
[
ε(k)− q~ω

2

]
σz

+ Γ(k, t)eiqωtσ+ + Γ∗(k, t)e−iqωtσ−

}
U4(t). (40)

where, as before, the transformed evolution operator is

U4(t) = R†4R
†
3R
†
2U(t)R2R3R4. (41)

By the Fourier expansion (38) we readily identify the
synchronous terms

ΓSq (k) =
iq

2
e−iq[δ+ζ(k)] exp

[
−2iβ(k)

~ω
sinφ

]
×
{

eiζ(k)Jq−1

[
2χ(k)

~ω

] [
ν(k)e−iφ − µ(k)

]
− e−iζ(k)Jq+1

[
2χ(k)

~ω

] [
ν(k)eiφ − µ(k)

]}
. (42)

Neglecting all the components rotating with higher fre-
quencies, we end up with a static equation,

0 =

{
i~
d

dt
−
[
ε(k)− q~ω

2

]
σz

+ ΓSq (k)σ+ + ΓS∗q (k)σ−

}
U4(t). (43)

In order for this approximation to be valid, the static
entries [ε(k)] must be larger than the oscillating ones
[ΓSq (k)], thus

ε(k)�
∣∣ΓSq (k)

∣∣ . (44)
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The formal solution of (43) is

U4(t) = exp

{
it

~

[
ε(k)− q~ω

2

]
σz

− it

~
[
ΓSq (k)σ+ + ΓS∗q (k)σ−

]}
= cos[Ωq(k)t]σ0 +

i

~Ωq(k)
sin[Ωq(k)t]

×
[
∆q(k)σz − ΓSq (k)σ+ − ΓS∗q (k)σ−

]
, (45)

where

∆q(k) = ε(k)− q~ω
2
, (46)

Ωq(k) =
1

~

√
∆2
q(k) +

∣∣ΓSq (k)
∣∣2, (47)

As one of the last steps, we have to work back the solution
for the actual evolution operator from (41)

U(t) = R2R3R4U4(t)R†4R
†
3R
†
2

= cos[Ωq(k)t]σ0 +
i

~Ωq(k)
sin[Ωq(k)t]

×
{

∆q(k)σz − exp

[
−2iΛ(k, t)

~
− iqωt

]
ΓSq (k)σ+

− exp

[
2iΛ(k, t)

~
+ iqωt

]
ΓS∗q (k)σ−

}
. (48)

Finally, the probability of transitioning from the conduc-
tion to the valence band is

PCV (t) =
∣∣∣ψ†V U(t)ψC

∣∣∣2 =

∣∣ΓSq (k)
∣∣2

[~Ωq(k)]
2 sin2

[
Ω2
q(k)t

]
,

(49)
where, in the conduction-valence band base we have

ψC = (1, 0)> , ψV = (0, 1)>. (50)

Equation (49) is the Rabi equation. From it we can infer
that the detuning parameter is ∆q(k) = ε(k)−q~ω/2. It
is hardly surprising that the maximum transition prob-
ability amplitude is attained when ∆q(k) = 0 or equiv-
alently when Ωq(k) = |ΓSq (k)|. This simply means that,
in the kx− ky plane, full transitions between the valence
and conduction bands may occur between points having
the same k values and whose energy difference complies
with

2ε(k) = q~ω. (51)

We call this the resonance condition. One can thus pic-
ture electron transitions as occurring vertically from one
ellipse in the valence band to another one in the conduc-
tion band.

The truly significant behaviours arise from the convo-
luted structure of the transition time

τq(k) =
π~

2

√[
ε(k)− q~ω

2

]2
+
∣∣ΓSq (k)

∣∣2 . (52)

Despite the highly symmetrical condition imposed by the
detuning parameter, the transition time is able to intro-
duce a high degree of anisotropy as we will show later on.
If the resonance condition (51) is met

τq(k) =
π~∣∣ΓSq (k)

∣∣ . (53)

This relation deserves special attention since it estab-
lishes a connection between the intensity of the electric
field and multi-photon processes. When the rotating
frame synchronizes with the ω (q = 1) mode, one of the
terms of ΓSq (k) is proportional to the Bessel function of
zeroth order J0[2χ(k)/~ω]. This is the only integer order
Bessel function that does not vanish upon being evalu-
ated at zero. Since χ(k) is proportional to the magnitude
of the electric field, |ΓS1 (k)| (q = 1) is the dominant syn-
chronous entry in Eq. (40) for low electromagnetic fields.
As the intensity of the electromagnetic field rises, it acti-
vates synchronous terms with larger q that involve more
photon interactions. These are proportional to Bessel
functions of higher order that vanish when evaluated at
zero, and therefore come in to play for large values of
the amplitude of the electric field. In virtue of the reso-
nance condition (51), a high intensity light pulse might
hit multi-photon resonances (q > 1) aside from the single-
photon one, that is always triggered regardless of the field
strength.

VI. NUMERICAL RESULTS

The quasienergies of Hamiltonian (11) are computed
through Eq. (17). By numerically solving the four differ-
ential equations that arise from (14), the evolution oper-
ator U(t) matrix elements are determined in the time in-
terval t ∈ [0, T ]. These, in turn, are used to compute the
eigenvalues uη,j(k) of U(T ) that enter Eq. (17). Through
these calculations, we have analyzed three cases: van-
ishing, linearly polarized and circularly polarized intense
fields.

Figure 1 shows the zero-field quasi-spectrum. For the
sake of simplicity, in this figure and the ones that follow
we have removed the tilting by plotting ΓSq (k) − ~vtky.
Although most readers familiar with Dirac materials and
Floquet theory will immediately recognize the zero-field
quasi-spectrum in this figure, it is worthwhile reviewing it
in order to be able to make a proper comparison with the
two other cases. If the field vanishes one can either obtain
the energy or the quasienergy-spectrum given that, under
such conditions, the Hamiltonian is time-independent.
However, when a periodical time-varying electromagnetic
field is present, the notion of energy is rendered meaning-
less and we can only speak of quasienergies. Even though
the energy spectrum in vanisghing fields is widely known,
the quasienergy requires some further consideration. It
is comprised of two valence and conduction band cones
whose tips touch in the Dirac point as can be seen in
Fig. (1) (a) . Both cones extend to infinity in opposite
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directions in k-space. By definition, the quasienergy is a
phase and, as such, it is only unambiguously defined in
0 ≤ Eη,j,m(k) ≤ ~ω. Any quasienergy value lying outside
will thus be echoed in the same range. As we mentioned
earlier, we call this range Floquet zone. These repeti-
tions are clearly seen in Fig. 1 (b) where the quasienergy
spectrum is plotted as a function of the momentum com-
ponents kx,y for zero-field case. The two bands j = 1
(transparent green) and j = 2 (solid blue) of the first
Floquet band (m = 0) are shown in Fig. 1 (a). We
readily spot the tips of both bands’ Dirac cones touching
in kx = ky = 0. As both cones extend and reach the
edges of the Floquet zone, they reemerge in the oppo-
site side as part of the other band (m = 1 → m = 2 or
m = 2 → m = 1). In this manner, the multiple sections
of the Dirac cone are arranged concentrically around the
tip of the Dirac cone. Panel (c) shows the quasi-spectrum
density plot. The Dirac point is located in the center of
the dark elliptical zone (kx = ky = 0) and the contours
of the cylindrical sections that reach the upper boundary
of the Floquet zone are depicted as bright lines. Figures
(1) (d) and (e) show cross sections of the quasienergy for
ky = 0 and kx = 0 respectively. In these figures we clearly
see the multiple sections of the cones switching from one
band to the other as they cross from one Floquet zone
(m = −1, 0, 1) to the next.

The effects of an linearly polarized electromagnetic
field in the quasienergy-spectrum as a function of the
momentum components kx and ky can be viewed in Fig.
2. The polarization of the electromagnetic field is along
the x direction (Ex = 2~ω2/evF and Ey = 0). In panel
(a) we have plotted the quasienergies of the two bands
(j = 1 and j = 2). In panel (b) we can appreciate further
details in the quasienergy density plot of the first band
(j = 1). We immediately notice a striking difference with
the zero field quasi-spectrum: the concentric circles are
replaced by a grid pattern. The grid lines are oriented
along the direction perpendicular to the field polarization
and a complex pattern of new Dirac-like points emerges
around the original one. The quasienergy spectrum cross
sections at ky = 0 and kx = 0 are shown in panels (d) and
(e). While the ky = 0 cross section seems unaltered by
the presence of the electromagnetic radiation, the quasi-
spectrum is significantly elongated in the kx = 0 pro-
jection. This can be attributed to a renormalization of
the material parameters, mainly the vx and vy velocities
in the vicinity of the original Dirac point an the newly
formed ones. The deformation of the spectrum may be
understood as the result of electronic dressing31. It is
important to underline that, even though the spectrum
has been considerably deformed, the original Dirac point
is preserved under the action of a linearly polarized field.
This same behaviour has been observed by us by a com-
pletely different mathematical approach that relies in the
Fourier spectral decomposition of the wave function33.

The boundary between the weak (k > eE/~ω) and
strong field (k < eE/~ω) regimes is indicated with a
solid white line in Figs. (2) (a), (b) and (c). In Figs.

(2) (d) and (e) the edges of the circle are marked vertical
dotted black lines. It can be seen that the deformation of
the quasienergy-spectrum with respect to the zero field
case is always restricted to the strong field region.

Figure 3 exhibits the quasienergy-spectrum under a
circularly polarized illumination. The fundamental dif-
ference with the spectrum of linearly polarized radiation
is that for circularly polarized light a Gap opens up in the
Dirac point. Similarly as under linearly polarized light,
the spectrum is strongly distorted within the strong field
region k < eE/~ω, however, the distortion has cylindri-
cal symmetry. In the same manner as for the linearly
polarized field, in Figs. 3 (a), (b) and (c) the white circle
indicates the boundary between the strong and the weak
field regimes. Likewise, in Figs. 3 (d) and (e) the vertical
dotted black lines mark the edges between both regions.

VII. DISCUSSION

Now we would like to establish a link between the
structure of the spectrum and the transition probability
under pulsed illumination. Before proceeding further, it
is instructive to examine the behaviour of the transition
time π~/

∣∣ΓS1 (k)
∣∣ subject to a resonant field (~ω = 2ε(k)).

A suitable parametrization of the momentum vector un-
der these conditions is

k =
ω

2vx
cosϕı̂ +

ω

2vy
sinϕ̂, (54)

where the parameter ϕ is a directional angle in the
kx−ky-plane. Figure 4 presents plots of the single-photon
mode transition time π~/|ΓS1 (k)| as a function of the pa-
rameter ϕ for graphene (vt = 0 and vx = vy) [(a) and (c)]
and borophene-like (vt 6= 0 and vx 6= vy) [(b) and (d)]
materials submitted to weak and strong fields. The rota-
tional symmetry of graphene provides a reference point
to discriminate if the transition time behaviour originates
in the anisotropic velocities or the field polarization. In
these figures we can appreciate that while circularly po-
larized light has no directional effects, in highly symmet-
rical materials, linearly polarized field consistently ex-
hibits variations in the transition time regardless of the
field intensity. We also infer that small variations of the
transition time are expected for anisotropic materials un-
der circularly polarized illumination. Much larger fluc-
tuations are, however, expected under linearly polarized
light.

Having examined the behaviour of the resonant tran-
sition time we now turn to the analysis of the transition
probability of carriers under a pulsed light excitation. To
this end we use the vector potential of a square pulse

A(t) = −Ex
ω

cos (ωt+ δ) Θ[τ1(k), t− t0 ]̂ı

− Ey
ω

cos (ωt+ δ + φ) Θ[τ1(k), t− t0]̂, (55)
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where the step function is defined as

Θ[τ1(k), t] =

{
1, 0 ≤ t ≤ τ1(k),

0, 0 > t > τ1(k).
(56)

Plugging this expression for the vector potential into the
Schrödinger equation (14) and numerically calculating
the evolution operator U(t) we readily obtain the transi-
tion probability

PCV (t) =
∣∣∣ψ†C U(t)ψV

∣∣∣2 , (57)

where the valence and conduction band states are ex-
pressed in the sublattice state basis as

ψV =
1√
2

(
1,−eiθ(k)

)>
, ψC =

1√
2

(
1, eiθ(k)

)>
. (58)

The duration of the pulse matches the single-photon
resonant transition time τ1,k for a momentum state char-
acterized by k. After the pulse, the wave function of the
system will reach a steady state if it is allowed to evolve
for a sufficiently long time t > t0+τ1,k. One would expect
that such a pulse will induce a full transition (PCV = 1)
between the valence ψV and the conduction ψC band
states provided that their energy difference matches the
resonant condition 2ε(k) = ~ω. While this is true in the
weak-field regime, the strong-field regime presents a far
more complex behaviour.

Figure 5 shows plots of PCV [t > t0 + τ1(k)] as a func-
tion of kx and ky for a linearly polarized field (φ = 0)
in the weak field regime (ExevF /~ω2 = EyevF /~ω2 =
0.01). We clearly observe that transitions are strictly
confined to the k-space region where the resonant con-
dition 2ε(k) = ~ω is met. In panel (a) this region is
indicated by the elliptical solid line above the plot. Fur-
thermore, along this line the probability is not uniform
and is oriented in accord with the electric field direction.
The density plot in panel (b) shows a vanishing probabil-
ity along the polarization line. Given that the resonant
condition is perfectly elliptical, this asymmetry is rather
attributed to the anisotropies of the transition time.

Unlike linearly polarized light, circularly polarized
light (φ = −π/2, ExevF /~ω2 = EyevF /~ω2 = 0.01) pro-
duces a largely even transition probability as can be seen
in Fig. 6. As expected, full transitions occur only where
the resonant condition is fulfilled as suggested by the con-
sistency between PCV and the solid elliptical line above
the plot in panel (a). Though not visible in panel (b),
smooth variations of the probability are noticeable close
to PCV = 1 in panel (a). As we discussed above, these
small changes in PCV are due to the fluctuations of the
transition time as a function of k. These in turn are due
to the anisotropic velocities vx and vy.

The transition probability as a function of kx and ky
exhibits completely different features in the strong field
regime. Figures 7 and 8 present PCV (t) plots alike those
in Figs. 5 and 6, but in the strong field regime. A

common feature to both polarizations is that a pulse of
given frequency ω and duration τ1,k is capable of excit-
ing states that fall well outside the single-photon reso-
nant region. This is an indication that the pulse has also
induced some transitions through multi-photon modes.
Since the pulse duration is tuned in to given valence and
conduction band states, some of the transitions may not
be complete (PCV < 1) and may take place outside the
single and multi-photon resonance regions. Though more
accentuated in the linear case (Fig. 7), both plots are
consistently anisotropic. Under linearly polarized light
the lack of rotational invariance is due to the preferred
orientation of the polarization direction. In contrast, the
origin of the anisotropy produced in the transition prob-
ability by circularly polarized light is two-fold: the un-
matching velocities, i.e. vx 6= vy, and the field’s initial
phase δ.

VIII. CONCLUSIONS

We have analyzed the quasienergy-spectrum and the
valence to conduction band transition probability of an
anisotropic tilted Dirac material subject to an arbitrarily
intense electromagnetic field. The weak and strong field
regimes have been studied as well as the linear and circu-
lar polariztions. The quasienergy-spectrum in the weak
field regime strongly resembles the energy-spectrum of
free carries regardless of the field polarization. At the
crossover between the weak and the strong field regimes
in k = eE/~ω, the structure of the quasi spectrum
changes abruptly. Mainly two kinds of deviations with
respect to free carriers can be identified in the strong
field regime. The first type of deviation corresponds to
deformation of the spectra in k-space. Within the strong
field region, where k < eE/~ω, the spectrum stretches as
the electronic parameters renormalize due to electronic-
dressing. Under linearly polarized light this deformation
occurs exclusively in the direction perpendicular to the
field polarization. On the contrary, circularly polarized
light stretches the quasienergy spectrum in both, kx and
ky directions. The second type of deviation is associated
with the formation of gaps. Linearly polarized light pro-
duces a complicated pattern of new gaps and Dirac points
around the original one located in kx = ky = 0. Instead,
circularly polarized light opens up a gap in kx = ky = 0.

In the weak-field regime the light-matter coupling
is perturbative and consequently the free carrier conic
quasienergy spectrum remains almost unaltered. Hence,
in this limit the electromagnetic field merely induces
transitions between the quantum levels of free carriers
without modifying their spectrum. Full transitions are
therefore strictly constrained by the single photon reso-
nance condition 2ε(k) = ω. For a linearly polarized pulse
of a given duration not all of the transitions that com-
ply with the resonant condition might take place due to
the directional fluctuation of the transition time. Put
another way, there are transitions that require very long
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transition times and therefore do not fully occur. Circu-
larly polarized pulses produce very symmetrical patterns
with very smooth variations caused by the small fluctua-
tions of the transition time and the anisotropic velocities.

Strong electromagnetic fields, on the other hand, pro-
foundly distort the quasienergy spectrum. Thus, in the
strong-field regime, transitions that escape the single-
photon resonance condition may take place. Linearly po-
larized pulses generate a pattern in the transition proba-
bility as a function of the k components that is oriented in
agreement with the polarization direction. Quasi-spectra
with almost perfect cylindrical symmetry are obtained
under the action of circularly polarized pulses. The
small deviations from circular symmetry are due to the
anisotropic velocities (vx 6= vy) and the initial phase δ of
the radiation pulse.

To obtain many of the previous results, a new method

to compute the time evolution operator in quantum me-
chanics was developed. This method, based on the deter-
mination of the monodromy matrix, has further capaci-
ties that were not exploited in this work. Among other
things, in combination with the density matrix approach
it can be used to compute non-linear electrical currents
to examine light-field-driven currents in Dirac materials.
Another application of this approach is the study of high
harmonic generation.
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