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a b s t r a c t

Spin-crossover has a wide range of applications from memory devices to sensors. This
has to do mainly with the nature of the transition, which may be abrupt, gradual or
incomplete and may also present hysteresis. This transition alters the properties of a
given sample, such as magnetic moment, color and electric resistance to name some.
Yet, a thorough understanding of the phenomenon is still lacking. In this work a simple
model is provided to mimic some of the properties known to occur in spin-crossover. A
detailed study of the model parameters is presented using a mean field approach and
exhaustive Monte Carlo simulations. A good agreement is found between the analytical
results and the simulations for certain regions in the parameter-space. This mean field
approach breaks down in parameter regions where the correlations and cooperativity
may no longer be averaged over.

© 2020 Published by Elsevier B.V.

1. Introduction

Research around several phenomena in the overlap between solid state and condensed matter have the peculiar
behavior of having periods of time where it is quite and some other periods of time where a lot of research is being done.
Such is the case of spin-crossover (SCO) phenomena, which spans broadly nine decades (see Ref. [1] for a compilation of
research over the years together with Refs. [2,3]). The SCO phenomenon is the transition between a low spin (LS) and a
high spin (HS) state on a metal ion with d4 −d7 electronic configuration. Experimental evidence suggest that the cause of
his transition has to do with the competition between the strength of the field of ligands and the spin-coupling energy
etween electrons [4]. For instance, octahedral compounds Transition Metals Series 3d4−7 present this type of transition,

in which they can be in a high or low spin state, depending on whether the ligand field is stronger or weaker than the
matching energy.

Furthermore, in the case of thermally induced SCO transition, the free energy difference between both states should
be of the order of thermal energy, i.e., kBT (henceforth we consider kB = 1) [5]. In this sense, high temperature favors
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HS whereas low temperature favors LS. Interestingly, the phenomenon is rather ubiquitous in nature. For instance, in the
case of the transition in FeII complexes between t62g (S = 0) and t62g (S = 2) configurations, SCO is responsible for oxygen
ransport in hemoglobin and probably for the change under pressure of ferropericlase in the Earth’s mantle [6]. In solids,
CO can be found in many transition metal oxides, organometallic complexes, inorganic salts or organic radicals and has a
ooperative nature, frequently leading to abrupt changes of macroscopic physical properties and hysteresis. Perhaps even
ore appealing are the applications of SCO which range from display and memory devices and electroluminescent devices

o MRI contrast agent [1,7]. Additionally, the use of SCO combined with the properties of nanoporous metal–organic
rameworks may also be used in molecular sensing [8].

The HS and LS phases have different properties that depend on the electronic distribution in 3d orbitals. In this sense,
he HS to LS transition has a large impact on the physical properties of a material, such as the magnetic moment, the
olor, the dielectric constant as well as the electrical resistance, among other properties. In other words, features such as
ptical, vibrational, magnetic and structural differ between one phase and the other. Hence, measuring these properties
erve as a proxy to measure and monitor the SCO induced by external perturbation, such as light, pressure or temperature,
or instance [9–13]. Several techniques such as magnetic susceptibility measurements, as well as optical and vibrational
pectroscopy of the kind of UV, IR, Raman and Mossbauer spectroscopy are used for this end. However, the holy grail is
redicting the spin curve for a given material under cooling and heating together with the critical temperature and the
ysteresis loop. There has been various efforts in this directions [10,14], yet there is still a lack of a theory, which should
ot come as a surprise given the great variety of materials having SCO. A complete microscopic description requires the
onsideration of three basic ingredients: (i) the spin and vibrational states of individual octahedral complexes, (ii) the
nteraction between them leading to cooperative effects and (iii) the coupling with external factors such as temperature,
ressure as well as external electric or magnetic field . In this regard, for instance, in oxides cooperativity is attributed to
lectronic exchange while in molecular crystals to electron–phonon coupling [15].
In a previous paper by two of the authors [16], a theoretical approach to SCO in mononuclear molecular crystals

ontaining FeII ions was presented, where a simple effective interaction between neighboring local breathing modes
as considered. Only electrons in eg states are linearly coupled to vibrations, being that the case there is no need for
wo breathing modes with different vibrational frequencies and coupling parameters. Furthermore, decoupling breathing
odes with successive canonical transformations leads to a lattice model where short range and long range ferromagnetic
nd antiferromagnetic interactions arise in a straightforward manner. In the present paper we further study the phase
iagram by means of Monte Carlo simulations and analytical derivations. The structure of the paper is as follows: In the
ext section we present the model and its features, in Section 3 we solve the model in the thermodynamical limit, in
ection 4 we compare the analytics with the simulations and discuss the results, finally Section 5 is for conclusions.

. Model

Consider a d- dimensional periodic array of i (1, . . . ,N) mono-nuclear metal complexes, each containing an ion FeII in
n octahedral site surrounded by non-magnetic ligands. The number of electrons occupying eg states at the ith ion will
e denoted with ni which represent the spin on the lattice site i and can take the values 0,1 or 2. We further consider
he degeneracy for each state, gn, such that g0 = 1, g1 = 9 and g2 = 15. In our model we call LS and HS phase the
acroscopic state where the mean spin value equals 0 and 2, respectively. In addition, we call intermediate spin (IS)
hase the macroscopic state with mean spin value 0 < ⟨n⟩ < 2. Since the charge density distribution of the antibonding
g states is more localized near their octahedral neighbors, these electrons are strongly coupled with a local breathing
ibration mode described by the operators â†

i and âi. Here the operator â†
i creates at site i a breathing mode quanta while

ˆ i is the corresponding aniquilation operator. Such modes have the following Hamiltonian,

Ĥbr
i =

(
â†
i âi +

1
2

)
h̄ω, (1)

where ω is the frequency of the breathing modes. Here we will measure all energies in terms of such frequency. Thus, in
what follows h̄ω is set to one.

It has been shown previously that the surrounding ligands have a role in two types of interactions, viz, local vibrations
and propagating phonons [17,18].

Given the complex nature of SCO, there is a trade-off between detailed modeling and a basic physical understanding of
the phenomenon. Here we tilt the balance towards the latter. In this spirit, we simply hard-wire the ion interaction with
the breathing mode at the same site through a coupling parameter α while we also couple neighbor breathing modes
through a coupling parameter λ. However, we stress that this coupling parameters contain rich information regarding the
physics of the SCO. These coupling parameters in reality are frequency dependent and, thus, phase-dependent [17,18].
Here we use the Hizhnyakov et al. bilinear coupling form where the ion–phonon coupling is taken into account by the
interaction of the local vibrations with phonons [19]. The coupling of the electronic shells of the metal ions with the
molecular modes is given by the local strain-field written in normal modes Q̂i, and the interaction Hamiltonian is [19,20]
H i−br

= −αniQ̂i. Then Q̂i is written in terms of the creation/anhilation operators, from where it follows that Q̂i = (â†
i + âi).

Here all constants are absorbed into the coupling α. In a similar way, local breathing modes in neighbor sites will interact
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according to the product of normal mode coordinates V̂ij = λQ̂iQ̂j. Then, the effective Hamiltonian for this electron-local
ibrations system is:

Ĥ =

N∑
i=1

Ĥi +
∑
⟨i,j⟩

V̂ij , (2)

here

Ĥi = ϵni +

(
â†
i âi +

1
2

)
− αni

(
â†
i + âi

)
, (3)

is the Hamiltonian for the ith ion, plus the harmonic oscillator that describes breathing modes at the same site, and a
term coupling both. Whereas,

V̂ij = −
λ

4

(
â†
i + âi

)(
â†
j + âj

)
(4)

takes into account the coupling between breathing modes localized in neighbor sites. The parameter ϵ > 0 is the excitation
energy per eg electron, which is obtained by subtracting the splitting energy between t2g and eg states and the pairing
energy P in t2g states. We will assume ϵ = 10 unless stated otherwise explicitly. Moreover, we consider the phonon
energy of the local breathing mode when the ion is in HS-state h̄ω = 1 as well as the Boltzmann constant kB = 1.

Coupling to local modes induces virtual transitions that renormalize electron energies, give rise to an effective electron–
electron interaction and shift atomic positions (see below). The interaction Hamiltonian V̂ij is the simplest approximation
to an effective inter-site coupling which could result from averaging over degrees of freedom (acoustical phonons)
connecting local breathing modes at neighboring sites [18].

As we show in section SN3, by introducing a new set of operators ĉ†
q and ĉq obtained through a canonical transforma-

tions of â†
i and âi, an effective Hamiltonian is obtained in which the ions operators are decoupled from the operators ĉ†

q
and ĉq,

Ĥ = Ĥe + Ĥph , (5)

where

Ĥe =

N∑
i=1

(
ϵni − α2n2

i

)
− α2λ

∑
⟨i,j⟩

ninj −
∑
i,j

Uijninj , (6)

Ĥph =

∑
q

√
|1 − λs(q)|

(
ĉ†
q ĉq +

1
2

)
, (7)

with effective parameters,

Uij =
α2λ2

N

∑
q

s2(q)
1 − λs(q)

eiq·(Ri−Rj) ,

s(q) =
1
2

z∑
j(i)=1

eiq·(Ri−Rj) . (8)

Here, the notation j(i) and ⟨i, j⟩ denote the first neighbor j for a given i and pairwise neighbors, respectively and z is the
coordination number, which we assume equal to 6 whenever is not explicitly specified.

Notice that the transformation between the operator a to c given by Eq. (S28) includes the variable n. Therefore, the
alue of the energy given by Eq. (7) may depend on n. However, we ignore this part, as one can trace out the variable c
hen the motion of c is much faster than the motion of n.
Thus Ĥph is decoupled from Ĥe and the solutions are not mixed in the Fock space. Such decoupling is achieved by paying

he price of having a q dependent effective parameters and an effective ion–ion interaction. As in this representation Ĥph
s diagonal, we can concentrate our attention in the pure ion–ion part which will contain the information about phase
ransitions.

. Mean field

In this section we present a mean field approximation of the electron–electron Hamiltonian produced in Eq. (6). The
dea is to consider first order fluctuations in spins, denoted as δni, while neglecting second order fluctuations as in Ref. [21].
o this end, we write ni = n − δni where n is the mean value of the spins. It is easy to show that the electron–electron
amiltonian in Eq. (6) becomes

Hmf
e = α2n2 λz

2
N +

N∑(
ϵ − 2nα2 λz

2

)
ni − α2n2

i

i=1
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∑
i,j

Uij − 2n
∑

i

∑
j

Uijni . (9)

Notice that under this approach, the spin–spin product between different sites no longer appears and, instead, spins
nteract with a mean field proportional to ∼ n. We have also introduced z as the coordination number. Then, computing
he partition function using the mean field Hamiltonian, using Eq. (9), is direct, and yields:

Zmf = exp

⎡⎣−β

⎛⎝α2 λz
2

N +

∑
i,j

Uij

⎞⎠ n2

⎤⎦×

N∏
i=1

(
g0 + g1e

−β

(
ϵ−2n

(
α2 λz

2 +
∑

j Uij

)
−α2

)
+ g2e

−2β
(
ϵ−2n

(
α2 λz

2 +
∑

j Uij

)
−2α2

))
(10)

Notice in the partition function (Eq. (10)) how the dependence on the index i from the product falls with the long
range interaction, i.e., Uij. In the case for N ≫ 1 we may approximate the sum of long range interactions as∑

i,j

Uij ≈ −Nα2ρ
1

(1 −
1
ρ
)

, (11)

where we have defined ρ = λz/2. The derivation of Eq. (11) is shown in the Supplementary Note (SN) 1.
Hence, using the approximation presented in Eq. (11) we further simplify the partition function to,

Zmf = exp
[
−β

n2α2ρN
1 − ρ

]
×(

g0 + g1e
−β

(
ϵ−

2nα2ρ
1−ρ

−α2
)

+ g2e
−2β

(
ϵ−

2nα2ρ
1−ρ

−2α2
))N

. (12)

From Eq. (12) we may compute any thermodynamic quantity straightforward. Since we are using a mean field
approach, the mean field free energy will depend upon the mean spin, n, which is not a proper free energy. Usually
the mean-field free energy is larger than the exact free energy.

The mean field free energy per molecule, which we denote as fmf (n, T ), is

fmf (n, T ) =
n2α2ρ

1 − ρ
− T ln

(
g0 + g1e

−β

(
ϵ−

2nα2ρ
1−ρ

−α2
)

+g2e
−2β

(
ϵ−

2nα2ρ
1−ρ

−2α2
))

. (13)

Similarly, in the case where we neglect long-range interactions, i.e., when Uij = 0 for all i, j, it is not difficult to realize
that the mean field free energy, f SRmf (n, T ), yields:

f SRmf (n, T ) = n2α2ρ − T ln
(
g0 + g1e

−β

(
ϵ−α2(2ρn+1)

)

+g2e
−2β

(
ϵ−α2(2ρn+2)

))
. (14)

The resulting free energies Eqs. (13) and (14) can be readily compared with a recent calculation of the mean field free
nergy in a SOC homogeneous single-layer molecular compound [22]. Our free energy is basically the same provided that
ne spin state is neglected, the ground energy is shifted by a constant −∆, the distance between the LS and HS is set to
= ∆ and the local spin at each site i to S iz = ni

i − 1. This results in a constant energy shift and displacement in the
agnetization when both free energies are compared. In Ref. [22], the coupling between neighboring spins is given by a
arameter (J). Here we show that such coupling comes out as an effective combination of the local normal mode-electron
oupling α and the coupling λ between different sites, i.e., J = 2α2ρ/(1 − ρ)z. Therefore, if the IS states is neglected,
he thermodynamics is similar although the cooperativity factor λ leads to a global scaling of the phase diagram . In the
ollowing we will explore the parameter space where our model is thermodynamically stable.

Notice from Eqs. (13) and (14) that for ρ ≪ 1, it follows fmf ≈ f SRmf . Conversely, under the mean field approximation
hen ρ > 1 the long range interaction does not decay with distance. Hence, this imposes a constraint over the system
hich makes it impossible to draw conclusions from a mean field approach and, in fact, we shall see that the system is
ighly size-dependent (see SN 1). In fact, if ρ is large enough, the phonon subsystem is unstable and there should appear
ome lattice distortions that reduce the elastic energy. Thus, the conclusions about this regime are unreliable unless such
istortions are included in the model.
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Now, in the case of high temperatures, i.e., T ≫ ϵ − 2nα2ρ/(1 − ρ), the mean field free energy, Eq. (13) becomes

fmf (n, T ) ≈ ϵη −
α2ρ

1 − ρ

(
η2

− (n − η)2
)
− α2σ 2

− T ln
2∑

i=0

gi , (15)

ith η =
∑2

i=0 gini/
∑2

i=0 gi and σ 2
=
∑2

i=0 gin
2
i /
∑2

i=0 gi being the high temperature mean spin and variance, respectively.
otice that the previous Eq. (15) has a minimum at n = η provided ρ < 1. Moreover, this is in agreement with the fact

that for small values of ρ, fmf ≈ f SRmf and in the case of short range interactions, at high temperatures the system must
ehave as a set of uncoupled spins. This implies that the mean spin is given by

∑2
i=0 pini, where pi = gi/

∑2
m=0 gm is the

probability obtained simply from the degeneracy of each configuration neglecting any coupling in the model.
It is also worthwhile to compare the analytical results of the present work with those reported in Ref. [23] for a

phenomenological approach to cooperativity at the antiferromagnetic quantum critical point of a two-dimensional metal.
At this fixed point the strong coupling is unequally felt: the bosonic collective mode is heavily dressed by interactions
with the electrons while the electron is only marginally renormalized [23]. In our work, after all the simplifications for
the short-range interactions limit, we see that the free energies are only marginally different from the bare result.

For ρ > 1, the point n = η in Eq. (15) becomes a maximum and the global minimum is located at n = 0, i.e., at
igh temperatures the mean spin becomes zero. In the SN 1 we show that, in fact, for ρ > 1 the long range interactions
o as N1/4 exp(N), hence any mean field approach fails in describing the model in this parameter region. Henceforth, we
onsider ρ < 1 otherwise specified.

ritical temperature

In this section we compute the critical temperature, which we will denote as Tc . In particular, we show that at low
emperatures, there are some parameter values in which the system is equally likely to have a transition where all spins
re 2 or 0. In this case, we denote the critical temperature as Tf , to distinguish from a more general case. To understand
his, let us consider the mean field free energy in the case of short range interactions (Eq. (14)). The procedure is the same
or the case of long range interactions (Eq. (13)). To show this feature in our model, we must prove that for a given set of
arameters, there is a critical temperature, Tf , where the mean field free energy has two minima, namely, at n = 0 and

n = 2 such that f SRmf (0, Tf ) = f SRmf (2, Tf ) and also the global maximum value in the mean field free energy is of the order
f Tf , i.e., Tf ≈ maxn f SRmf (n, Tf ). Rather than dealing with the cumbersome Eq. (14), we do the following: Notice that the
xponentials inside the logarithm in Eq. (14) may go to zero or infinity for low temperatures depending on the values of
he parameters as well as the mean spin. Let us consider low temperatures and that n < (ϵ − 2α2)/2ρα2. Then, for low
emperatures, we may approximate Eq. (14) with solely the first term. Similarly, in the case where n > (ϵ − 2α2)/2ρα2

e may approximate Eq. (14) thus to write:

f SRmf ≈

⎧⎨⎩
n2α2ρ , for n < (ϵ − 2α2)/2ρα2

(n − 2)2α2ρ + 2ϵ − T ln g2 − 4α2 (1 + ρ) ,

for n > (ϵ − 2α2)/2ρα2
(16)

In Fig. 1(a) we show the comparison between Eq. (14) and the approximation (16) for some fixed parameter values.
ow, given we are using mean field, the minima of the mean field free energy should correspond with the actual free
nergy. Thus, we should expect that the system is likely to choose low or high spin for the same given parameter-set
hen two things are fulfilled, namely,

• The mean field free energy at low spin is equal to the mean field free energy at high spin.
• The temperature is of the order of the maximum of the free energy.

he first condition translates into equating Eq. (16) for n = 0 with itself for n = 2 and solve for the temperature Tf .
rom this we obtain the temperature Tf = 2

(
ϵ − 2α2 (1 + ρ)

)
/ln g2. The second condition implies that Tf should be of

he order of the maximum value in the free energy. In Fig. 1(b) we have plotted the mean field free energy (Eq. (16))
t temperature T = Tf as well as the temperature Tf for a given set of parameters (see caption), in particular, we fixed
≈ 1.57. Notice that the maximum of the free energy is of the order of the temperature which is Tf ≈ 1.0. As we will

see later, the numerical simulations yield a critical temperature of ≈ 1 for the same parameter values.
The straightforward approach to compute the critical temperature Tc consists in finding the temperature where the

free energy minima shifts. However, since Tf is, in fact, a critical temperature at which the system is equally likely to
become HS or LS, we compute the critical temperature using the same approach we used to obtain Tf : first, we locate
the intersection between Eq. (16) when n < (ϵ − 2α2)/2ρα2 and itself when n > (ϵ − 2α2)/2ρα2. Let us denote this
intersection as nint (T ). It is a feasible task to obtain

nint (T ) =
2ϵ − 4α2

− T ln g2
. (17)
4α2ρ
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Fig. 1. (a) Comparison between the mean field free energy (Eq. (14)) and the approximation at low temperatures (Eq. (16)) vs. n. We have fixed
the values z = 6, ϵ = 10, T = 1, α = 1.57 and λ = 0.25. (b) Mean field free energy (Eq. (14)) evaluated at the temperature Tf which guarantees
that low spin and high spin have the same free energy. The plot also shows Tf for a fixed parameter set z = 6, ϵ = 10, α = 1.57 and λ = 0.25.
otice that Tf ∼ f SRmf (Tf ), which allows the system to choose between low spin or high spin.

hen, solving for T the Eq.

Tc = f SRmf (nint (Tc), Tc) , (18)

ields the critical temperature Tc . In Fig. 2(a) we have plotted the critical temperature vs. α from which one may appreciate
hat Tc decreases as α increases, this is qualitatively consistent with the numerical simulations to be discussed in the next
ection. We stress that the approach in Eq. (18) is convenient to find a closed expression for the critical temperature in
he region around the point where the transition to LS and HS is equally likely, modulated by the α parameter and works
rovided the low temperature approximation (Eq. (16)) holds.
We now show the transition to LS and HS dependence with α. This is done by noticing that if the intersection between

q. (16) when n < (ϵ −2α2)/2ρα2 and itself when n > (ϵ −2α2)/2ρα2 happens at n > 1 then the mean field free energy
as a minimum at n = 0. Conversely, if it happens at n < 1 then the minimum occurs at n = 2. In Fig. 2(b) we have
lotted nint (Tc) vs. α. Notice that for α < 1.57 the system goes to LS while for α > 1.57 the system goes to HS. However,
or α ≈ 1.57 the system is likely to go HS or LS.

A similar analysis may be done in case of ρ < 1 with long range interactions and the outcome is essentially the same.
owever, the critical temperature is somewhat higher than when neglecting long range interactions. In particular, for
= 0.75 and α ≈ 1.00 at T ≈ 1.41 the system is equally likely to go to LS and HS.
For the case of the IS we will show that it is only possible at high temperatures. For this purpose we use the first and

econd derivative of the mean field free energy (Eq. (13)). The extremum condition is met provided,

T = TIS ≡

2
(
ϵ −

2α2ρ

1−ρ
− 2α2

)
. (19)
ln (g2/g1)
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Fig. 2. (a) Plot of the critical temperature Tc vs. α obtained as described in the text in the mean field approximation neglecting the long interactions
Eq. (13)). (b) Plot of nint (Tc ) (Eq. (17)) vs. α. When nint (Tc ) > 1 the system goes to LS when the transition occurs. On the contrary, when nint (Tc ) < 1
he system goes to HS configuration when the transition occurs. When nint = 1 the system may go to LS or HS (see main text). The rest of the
arameters were kept fixed at ϵ = 10 and ρ = 0.75.

mposing Eq. (19) on the second derivative of Eq. (13) with respect to n and after some algebra we obtain:

fmf (n = 1, TIS) =

{
max, fmf (n = 1, TIS) > u0 − TIS ln

4u0g0
TIS

min, fmf (n = 1, TIS) < u0 − TIS ln
4u0g0
TIS

, (20)

where u0 = α2ρ/(1 − ρ) > 0. In Fig. 2(b) we have plotted Eq. (19) against α for different values of ρ, while the dashed
urve, which is obtained from Eq. (20), represents the boundary between the IS and non-IS phases.
Notice that for low temperatures, the phase n = 1 is a maximum while n = 0 or 2 is a minimum. The nature of the

ocality will depend upon the parameters and the temperature. In Fig. 3 (b-d) we have plotted the short-range mean field
ree energy against n for a fixed set of parameters (ϵ = 10, α = 1.59 and ρ = 0.75) and different temperatures, also
hown in each plot as a dashed line. At high temperatures (Fig. 3(b)) fmf has a local minimum and a global minimum.
s temperature decreases, the fmf maximum is of the order of T . This leads to a metastable state associated with the
ocal minimum. As temperature further decreases, the local and global minima swap but at this point the fmf maximum is
arger than T and the system gets stuck in the local minimum. We show how this happens in the simulations presented
nd the next section. When the system has a metastable state and a global minimum, it behaves as a two-level system
n which the potential barrier height, the energy and the local curvature of the minima determine the dynamics and
ysteresis [24,25].

. Discussion

In this section we compare the mean field results with the numerical simulations of Ĥe in Eq. (6). In particular, we
how that our MC simulations have a phase transition at T = T . Additionally, depending on the actual value of α, the
c
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Fig. 3. (a) Plot of the temperature T = TIS as a function of α for different values of ρ which increases from right to left (see legends) and ϵ = 10. For
exposition purposes, in black we show one of the family curves corresponding to ρ = 0.70 for the long range interaction case. The light green dashed
urve denotes the transition where the mean field free energy at n = 1 changes convexity. Above this curve the system can be in the intermediate
hase while below the curve this point becomes a maximum, thus the system can only be in LS or HS. This was obtained from Eqs. (19) and (20).
b) Plot of the short range mean field free energy vs n at a temperature higher that the fmf maximum value. (c) As the temperature decreases,
he mean field free energy maximum is of the order of the temperature, leading to a metastable state and a global minimum. (d) As temperature
ecreases, the global minimum becomes a local one but the temperature is lower than the global maximum leaving the system stuck in this local
inimum. We fixed ρ = 0.75 and ϵ = 10.

hase transition will be to LS or HS and for a certain window value of α the system can either become LS or HS. Our
imulations were done in C++ and Julia [26] using a Monte Carlo algorithm with a Metropolis test [27] for system sizes
03, 153, 203 and 1003 spins with periodic boundary conditions. To incorporate the long range interactions Uij in our
imulations we used the method propose in Ref. [28] and further described in SN2. We fixed the parameters ϵ = 10 and
= 6 while considering, both, λ = 0.25(ρ < 1) and λ = 0.5(ρ > 1) and then for a given fixed set of the previous values
e fixed α in the range from 0.1 to 3.0 in the simulations performed in Julia, while in the simulations performed in C++
e increased that range to 4.0. We initiate the simulations at Tin = 15 with all spins having a value equal to 2. Then, we
tart lowering the temperature in steps of ∆T = 0.25 and ∆T = 1.0 in the numerical simulation done in C++ and Julia,
espectively, until reaching T ≈ 0.

Now, in Fig. 4 we show contour plots of the mean field Eqs. (13) and (14) for different values of α and λ in a T -n
diagram. As was discussed in the previous section, the mean field approach predicts that, in the thermodynamic limit,
when long range interactions are considered and ρ < 1 for α =

√
ϵ/2(1 − ρ) the free energy is the same for LS and HS
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Fig. 4. Mean field free energy per molecule contour plot as a function of temperature and spin, at low temperatures. We have fixed the values z =

6, ϵ = 10. (a–c) Mean field free energy considering long range interactions (Eq. (13)) with λ = {0.25} and α = {α0−1/4, α0, α0+1/4} (see captions).
–f Mean field free energy considering long range interactions (Eq. (13)) with λ = 0.5 and α = {

√
ϵ(ρ − 1)/4−1/4,

√
ϵ(ρ − 1)/4,

√
ϵ(ρ − 1)/4+1/4}

(see captions). (g–i) Mean field free energy neglecting long range interactions (Eq. (14)). We fixed λ = 0.25 and consider α = {α0 −1/4, α0, α0 +1/4}
see captions). α0 is obtained from solving nint (T = 0) = 1 (see Eq. (17) for the case of short-range interactions) for α. The cases where ρ > 1
re thermodynamically prohibited since at very high temperatures the equilibrium configuration corresponds to an entropy-minimized configuration
see text for discussion), yet we consider those cases here for completeness.

tate as shown in Fig. 4(b). Similarly, when long range interactions are neglected for α =
√

ϵ/2(1 + ρ) the free energy is
he same for LS and HS state as shown in Fig. 4(h). As a matter of completeness we also show contour plots in the case
f long range interactions and ρ > 1 (Fig. 5(d-f)). Notice that the global minimum is always at n = 2. In Fig. 5 we have

plotted the mean spin obtained from the simulations, which we denote as, ⟨n⟩ vs. temperature for the aforementioned
case obtained from the simulations. Notice that the black data points in Fig. 5(a), corresponding to α = 1.5, show mean
spin equal to 0 at low temperatures. Conversely, the black data points in Fig. 5(b) show mean spin equal to 2 at low
temperatures and also correspond to α = 1.5, i.e., for the same parameter values the system is equally likely in having
mean spin equal to 2 as well as equal to 0. This is in excellent agreement with the mean field Eq. (13) where we obtained
the value α ≈ 1.57 summarized in Table 1 and has also been plotted in Fig. 2(b). We have summarized all this in Table 1.

In Fig. 6 we show the mean spin ⟨n⟩ vs. temperature obtained from our simulations for different system sizes and
parameter values which are specified in the legend of the figure. Fig. 6(a) to (c) correspond to ϵ = 10, z = 6 and
λ = 0.25 neglecting long range interactions while considering different system sizes specified in the legends of each
plot. Each curve corresponds to a fixed value of alpha that spans from 0.1 to 4.0 (Fig. 6(m) shows the color code we are
using), as was described in detail at the beginning of this section. The first thing to notice is that for the system size
we are considering, the results are robust. Secondly, notice that although initially all spins have values equal to 2, after
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α
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Table 1
Mean spin at low temperature.
(a) Considering long range interactions

α ρ n

<
√
(2ϵ − Tf ln(g2))(1 − ρ)/4 <1 0

>
√
(2ϵ − Tf ln(g2))(1 − ρ)/4 <1 2

=
√
(2ϵ − Tf ln(g2))(1 − ρ)/4 <1 0 or 2

For all values >1 2

(b) Without long range interactions

α ρ n

=
√
(2ϵ − Tf ln(g2))/4(1 + ρ) 0 or 2

>
√
(2ϵ − Tf ln(g2))/4(1 + ρ) 2

<
√
(2ϵ − Tf ln(g2))/4(1 + ρ) 0

Fig. 5. Mean spin vs. T obtained from the simulations. We have fixed the values z = 6, ϵ = 10 and λ = 0.25. The black data points correspond to
= 1.5. Notice that in panel (a) the magnetization is zero at low temperatures, while in panel (b) the magnetization is 2, i.e., the system is equally

ikely to yield magnetization equal to 0 or 2, in agreement with the mean field prediction (Eq. (13)).

he system is equilibrated the mean spin value ranges from ∼ 1.25 for low α-value, to 2.0 for high α-value. Finally, the
lack data points correspond to α ≈ 1.5, that is the value predicted by mean field theory where the system can go to
pin 0 or spin 1. Fig. 6(d) to (f) correspond to ϵ = 10, z = 6 and λ = 0.5 neglecting long range interactions while
onsidering different system sizes specified in the legends of each plot. The black data points correspond to α = 1.2.
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s
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Fig. 6. Mean spin vs. T obtained from the simulations. The system size increases from left to right (as specified in each legend). We have fixed the
values z = 6, ϵ = 10. In (a-f) long-range interactions were not considered, while in (g-l) long-range interactions were considered. Different values
of λ are shown in each plot legend. Each curve corresponds to a given value of α which spans from 0.1 to 4.0. The black data points correspond
to a certain α-value in the range ∼ 1.0 − 1.5 (see main text for discussion). The subpanels (j-l) correspond to the thermodynamically unstable.

The mean field approach predicts that for α ≈ 1.3 the system may go to spin 2 or 0 and Tf ≈ 1.23, which is consistent
with these simulation results. Altogether, for the parameter values considered, the comparison between the mean field
approach and the simulation results work well. Besides, the critical temperature predicted by the mean field approach is
close to the values obtained in the Monte Carlo simulation, though it is advisable to not relay in mean field approaches
to compute such quantities, in general.

Although in real systems the long range interactions will produce lattice distortions, it is interesting to compare the
resulting Monte Carlo Simulations since the results are not as obvious as those predicted from the mean field approach.
Fig. 6(g) to (i) correspond to ϵ = 10, z = 6 and λ = 0.25 considering long range interactions as well as different system
sizes specified in the legends of each plot. The first thing to notice is that the results obtained in the case where N = 103

does not match those obtained in the case where N = 203, thus a bigger system size is required for results to converge
to the thermodynamical limit.

Finally, Fig. 6(j) to (i) correspond to ϵ = 10, z = 6 and λ = 0.5 considering long range interactions as well as different
ystem sizes specified in the legends of each plot. Notice that the results are profoundly system size dependent, which is
hy mean field approaches are fruitless (see SN 1).



12 J.Q. Toledo-Marín, C. Rodriguez, Y. Plasencia Montesinos et al. / Physica A 559 (2020) 125069
5. Conclusions

In this work we have studied the spin-crossover transition using a simple model derived from quite general assump-
tions. We have presented a thorough discussion on the parameter space using a mean field approach and Monte Carlo
simulation. Using the mean field we were able to obtain the critical temperature where the system can become LS, HS or
both. The main result presented here is that when long range interactions are considered and ρ < 1, a rescaling of the
critical temperature is found. We also found a new phase with n = 1 which yet has not been experimentally observed.

When long range interactions were neglected, the mean field critical temperature compared well with the Monte Carlo
simulation results. We further showed, both, through the mean field approach and the Monte Carlo simulations that for a
small region in the parameter space, at low temperature the model may be in LS or HS state. Although lattice distortions
are expected, here we did not considered such effects. However the mean field approach loses accuracy compared to our
numerical results as expected due to the increased cooperativity. We further showed that when this happens, the spin
vs. T curve is highly system size dependent. We also showed that metastable states arise in the model and thus there
are hysteresis effects. As happens in rigidity theory of glass transition [29], the present model reinforce the idea that
low-frequency phonon and bistable phason modes are essential to describe the phase diagram of a system [30–32]. This
means that lattice distortion effects due to long range interactions can be important but we leave this point for future
work.
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