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and Gerardo G Naumis4
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Abstract
The response of electrons under linearly polarized light in Dirac materials as borophene or
graphene is analyzed in a continuous wave regime for an arbitrary intense field. Using a rotation
and a time-dependent phase transformation, the wave function evolution is shown to be governed
by a spinor-component decoupled Whittaker–Hill equation. The numerical solution of these
equations enables to find the quasienergy spectrum. For borophene it reveals a strong anisotropic
response. By applying an extra unitary transformation, the wave functions are proven to follow an
Ince equation. The evolution of the real and imaginary parts of the wave function is interpreted as
the trajectory of a classical charged particle under oscillating electric and magnetic field. The
topological properties of this forced quantum system are studied using this analogy. In particular,
in the adiabatic driving regime, the system is described with an effective Matthieu equation while
in the non-adiabatic regime the full Whittaker–Hill equation is needed. From there, it is possible to
separate the dynamical and Berry phase contributions to obtain the topological phase diagram due
to the driving. Therefore, a different path to perturbation theory is developed to obtain
time-driven topological phases.

1. Introduction

The possibility of inducing a nontrivial topology in condensed matter systems by means of an
electromagnetic drive has been the subject of many research works in recent years [1–10], some of which
have focused in Dirac systems such as graphene [11–18].

More recently, two dimensional (2D) boron allotropes, also called borophenes, exhibiting Dirac cones
have attracted attention due to their remarkable anisotropic properties [19–22]. In a series of previous works
we studied the effects of linear [23] and elliptical [24, 25] polarized electromagnetic fields in borophene. The
focus of such works was in finding the quasienergy spectrum, the associated photo currents and induced
transitions, useful to design 2D electronic devices [26]. In the present work, we exploit these results and
others [9, 27, 28] to study the wave function evolution and the topology induced by the interplay between an
electromagnetic drive and the electrons in a Dirac system. To do so, we introduce a drive to the continuum
model for a general tilted Dirac Hamiltonian. Then we use the Floquet formalism to establish the equivalence
between the quantum wave function evolution and the motion of a classical charged particle in a
time-dependent electromagnetic field. This is achieved through a unitary transformation that turns the
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time-dependent Schrödinger equation into a Ince differential equation. The advantage of such formalism is
that we can use previous studies of differential equations with time-dependent coefficients [29, 30].
In particular, the quantum spectrum is given by the stability charts of Mathieu’s and Hill’s equations and its
generalizations [29]. Such equations occurs in electromagnetism, mechanics, cooling of ions, aerodynamics,
marine research, biomedical engineering, celestial mechanics and general relativity [31]. Thus, the induced
topological phases in the quantum problem are discussed at different regimes from the perspective of a
classical orbital precession. In fact, what lays behind the analogy between quantum and classical system
topology is the failure of parallel transport, which usually results in orbital precession for classical systems
[32]. The archetypal example is the Focault pendulum where the phase change of its oscillating plane
precession can be found as a surface integral of the Gaussian curvature of the Earth over the interior of the
pendulum path [32].

In the following section we will present the model to be studied. The analogy with a classical system is
presented in section 3. The topological properties are discussed in section 4, and finally, the conclusions are
given.

2. Dirac materials subject to electromagnetic fields

In this section we address the model and summarize previous results concerning the Floquet theory and the
quasienergy spectrum for time-driven Dirac materials [24, 33–35].

2.1. Isotropic, anisotropic and tilted Dirac materials
The most general, low-energy Dirac Hamiltonian close to one of the Dirac points, is given by [21, 23, 36, 37]

Ĥ= ℏvtkyσ̂0 + ℏ
[
vxkxσ̂x + vykyσ̂y

]
, (1)

where kx and ky are the components of the two-dimensional momentum vector k, σ̂x and σ̂y are the Pauli
matrices, and σ̂0 is the 2× 2 identity matrix. The Pauli matrices and σ̂0 are expressed in the sublattice basis
[21]. This Hamiltonian describes, for example, 8− Pmmn borophene. The three velocities in the anisotropic
8− Pmmn borophene Dirac Hamiltonian (1) are given by vx = 0.86vF, vy = 0.69vF and vt = 0.32vF where
vF = 106 ms−1 [21] is the Fermi velocity. In equation (1), the last two terms give rise to the familiar form of
the kinetic energy leading to the Dirac cone and the first one tilts the Dirac cone in the y direction. These two
features are contained in the energy dispersion relation [24]

Eη,k=

(
vt
vy

)
k̃y + ηϵ, (2)

where

ϵk =
√

k̃2x + k̃2y , (3)

and η =±1 is the band index. In equation (2), we used the set of renormalized moments k̃x = ℏvxkx,
k̃y = ℏvyky. The corresponding free electron wave function is,

ψη(k) =
1√
2

[
1

η exp(iθk)

]
, (4)

where θk = tan−1(k̃y/k̃x). The case of graphene can be recovered by setting vt = 0 and vx = vy = vF and for
non-uniform strained graphene requires vt = 0 and vx ̸= vy.

2.2. Linearly polarized waves andWhittaker–Hill equation
Now we consider a charge carrier, described by the two-dimensional anisotropic Dirac Hamiltonian, subject
to an electromagnetic wave that propagates along a direction perpendicular to the surface of the crystal. The
effects of the electromagnetic field are introduced in the Dirac Hamiltonian (1) through the Peierls
substitution [33, 34] ℏk→ ℏk− eA where A= (Ax,Ay) is the vector potential of the electromagnetic wave.
Adopting a gauge in which A only depends on time brings a significant simplification. The Hamiltonian (1)
is thus transformed into [33, 34],

Ĥ=
vt
vy

(
k̃y − evyAy

)
σ̂0 +

(
k̃x − evxAx

)
σ̂x +

(
k̃y − evyAy

)
σ̂y. (5)

2
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Assuming the electromagnetic wave to be linearly polarized and propagating along the z direction, the vector
potential can be written as

A=
Ex
Ω

cos(Ωt)r̂, (6)

where r̂= (1,0) is the polarization vector, Ex is the uniform amplitude of the electric field and Ω is the
angular frequency of the electromagnetic wave. It is noteworthy that the field A is not quantized and is
treated classically. Thus, our results are only valid for quantum coherent field composed of a large number of
photons. In the Schrödinger equation corresponding to (5),

iℏ
d

dt
Ψ(t) = Ĥ(t)Ψ(t), (7)

the two dimensional spinor can be expressed asΨ(t) = (ΨA(t),ΨB(t))
⊤, where A and B label the two

sublattices. Formally, the solutions can be obtained from the time evolution operator Û(t) as,

Ψ(t) = Û(t)Ψ(0). (8)

Due to the time periodicity of the Hamiltonian Ĥ(t) = Ĥ(t+T) where T= 2π/Ω, solutions must
comply with the Floquet theorem [33, 38] that states that the evolution operator must have the form

Û(t) = exp

(
− i

ℏ
Ĥet

)
Ŵ(t), (9)

where Ŵ(t+T) = Ŵ(t) and Ĥe is called the effective Hamiltonian. The eigenvalues of Ĥe are the
quasienergies of Ĥ(t),

Eη,j,m(k) =−ℏΩ
2π

arg[uη,j(k)]+mℏΩ, (10)

where uη,j(k) are the two eigenvalues of Û(T), andm= 0,±1,±2, . . . and j= 1,2 denote the Floquet zone
and the band respectively [35].

The main challenge in deducing the wave function’s explicit form resides in unraveling the coupling
between the spinor componentsΨA(t) andΨB(t) that arise from terms proportional to σ̂x and σ̂y in equation
(5). To uncouple the spinor components we proceed as follows. First, to transform the non-diagonal σ̂x
matrix into σ̂z, we apply a 45◦ rotation around the y axis of the form [35],

Ψ(t) = exp
[
−i
(π
4

)
σ̂y

]
Φ(t). (11)

Substituting (11) into equation (7) we obtain

i
d

dϕ
Φ(ϕ) =

2

ℏΩ

[(
vt
vy

)
k̃yσ̂0 +Π̃xσ̂z + k̃yσ̂y

]
Φ(ϕ) , (12)

where the only off-diagonal terms originate from σ̂y. In the foregoing equation, the scaled time is defined as

ϕ=Ωt/2, the scaled momentum Π̃x = k̃x − ζx cos(2ϕ) and the frequency-weighted induced dipole moment
is,

ζx =
evxEx
Ω

. (13)

The spinor components ofΦ(ϕ) = (Φ+(ϕ),Φ−(ϕ))
⊤ are given by Φ+(ϕ) = [ΨA(ϕ)+ΨB(ϕ)]/

√
2 and

Φ−(ϕ) = [ΨA(ϕ)−ΨB(ϕ)]/
√
2. Second, the term proportional to σ̂0 in equation (12) is removed by adding

a time-dependent phase to the wave function

Φ(ϕ) = exp

[
−2i

(
vt
vy

)
k̃y
ℏΩ

ϕσ̂0

]
χ(ϕ), (14)

where χ(ϕ) = (χ+1(ϕ),χ−1(ϕ))
⊤. Finally, after inserting equation (14) into equation (12), differentiating

both sides with respect to ϕ and using equation (12) to leave out the first order derivative, the resulting
differential equation takes the form of a Whittakker–Hill equation [35, 39]

χ ′ ′(ϕ)+F(ϕ)χ(ϕ) = 0 , (15)

3
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where the matrix F(ϕ) is defined as

F(ϕ) = [ak+ q1 cos(2ϕ)+ q2 cos(4ϕ)] σ̂0 + iq3 sin(2ϕ)σ̂z. (16)

The Whittakker–Hill equation parameters are defined as,

ak =

(
2ϵk
ℏΩ

)2

+ 2q20, (17)

q1 =−8q0

(
k̃x
ℏΩ

)
, (18)

q2 = 2q20, (19)

q3 = 4q0, (20)

where

q0 =
ζx
ℏΩ

=
evxEx
ℏΩ2

, (21)

is the ratio between two characteristic energies of the system: the electric-field-induced dipole moment
evx/Ω with energy evxEx/Ω and the photon energy ℏΩ [24, 40]. Thereby, 2ϵk/ℏΩ is the ratio of the electron
kinetic energy to the photon energy, ζx/ℏΩ is the ratio of the work done on the charged carriers by the
electromagnetic wave to the photon energy and k̃x/ℏΩ is the ratio of the x contribution of the electron
kinetic energy to the photon energy.

Expressing (15) as a second order differential equation is quite advantageous for the calculations that
follow. First, the evolution operator that propagates the state χ(ϕ) in time must be diagonal since F(ϕ) is
solely composed of the diagonal matrices σ̂0 and σ̂z. As a consequence of this, the scalar differential equations
for the χ+1(ϕ) and χ−1(ϕ) spinor components decouple. Moreover, the differential equation for the χ−1(ϕ)
component turns out to be the complex conjugate of the one for χ+1(ϕ). Both differential equations may be
summarized by

χ ′ ′
η (ϕ)+ [ak+ q1 cos(2ϕ)+ q2 cos(4ϕ)+ iηq3 sin(2ϕ)]χη(ϕ) = 0, (22)

where η =±1. In principle, we can obtain the solution for η =−1 from the η =+1 solution. This is done by
making the replacement ϕ→−ϕ in equation (22), as η sin2ϕ= sin2ηϕ. The cosines and second derivative
terms are not affected by a change of sign of ϕ. Therefore, the solutions are related by,

χ−1(ϕ) = χ+1(−ϕ). (23)

However, in general the initial conditions on the first derivative of χη(ϕ) are restricted by equation (12) and
thus equation (23) can only be used for k̃y = 0.

We can also obtain a useful alternative expression to equation (22) by writing ϵk in terms of the scaled
moments,

χ ′ ′
η (ϕ)+ 4

[(
k̃x
ℏΩ

− q0 cos(2ϕ)

)2

+

(
k̃y
ℏΩ

)2

+ iηq0 sin(2ϕ)

]
χη(ϕ) = 0. (24)

In the previous equation, or equation (22), the spinor components are decoupled considerably simplifying
the computation and the quasienergy spectrum analysis. Another gain of using this particular base is that
χ+1(ϕ) and χ−1(ϕ) are the probability amplitudes of the valence and conduction bands, respectively.

In figure 1 we present the corresponding quasienergy spectrum obtained by using a very powerful
numerical method developed in a previous work: the monodromy matrix method [25]. In the case of
figure 1 we present the CB (η =+1) and the Floquet zonem= 0. This is equivalent to finding the stability
regions of equation (22). Notice the two different regions in the spectrum. One is at the center where an
American football ball-like shape is seen. The other, in the outer regions of the spectrum, exhibits concentric
circles. As we will discuss, the nature of such regions can be identified by looking at the different behaviors in
equation (22) depending on its coefficient values. However, it is useful to consider first how these coefficients
are related with the physics of the system. For example, in ak appears the ratio between twice the energy of

4
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Figure 1. Density plot of quasienergy spectrum Eη,j,m/(ℏΩ)− vtk̃y/(vyℏΩ) for η =+1 andm= 0 as a function of k̃x/ℏΩ and

k̃y/ℏΩ. The amplitude and frequency of the electromagnetic wave are Ex = 4.5 Vm−1 andΩ= 50× 109 Hz. The horizontal

dashed black and blue lines correspond to fixed values k̃y/ℏΩ= 0 and k̃y/ℏΩ= 1.5, respectively. The dots are the states that were
chosen to produce the trajectories in figures 2 and 3.

the electrons (2ϵk) and the energy of a photon (ℏΩ). If for a given k we consider the difference in energy
between the valence and conduction band, it turns out to be precisely 2ϵk. Moreover, we can consider that for
such k the system behaves as a driven two-level system, akin to the Rabi problem. Therefore, transitions
between states will not be produced whenever the field is such that 2ϵk/ℏΩ> 1. But if transitions are
observed, the system is considered as non-adiabatic [41]. By looking at equation (3) we can relate the
non-adiabatic condition with a region of k̃ around the origin. A second condition for having adiabaticity is
that Ex must be small in order to have a perturbation. As Ex only enters in q0 and by taking into account all
these previous considerations, the condition that defines the crossover between the adiabatic and
non-adiabatic regimes is given by,

ϵk ≈ ζx = ℏΩq0. (25)

It turns out that this condition coincides with the, numerically found, ball limit seen in figure 1. Therefore,
we conclude that outside the ball the system can be considered in a weak interaction regime where the
quasienergy spectrum is almost similar to the non-perturbed energy dispersion as expected .

It is worthwhile to observe that for Dirac systems there is no gap, and thus this is the only way to give a
meaning to a topological phase as in the presence of an external field there is always a small region near the
Dirac point where these transitions are observed. This is testified by the fact that the optical absorption of
graphene is flat with respect to the field frequency. Usually, this condition is ignored and an arbitrary
trajectory in k-space is used to find the Chern number without any further reflection about the limits of its
use.

Let us then consider three different regimes: the adiabatic (evxEx/ℏΩ2 < 1), the non-adiabatic
(evxEx/ℏΩ2 > 1) and the transitional (evxEx/ℏΩ2 ≈ 1) regimes. In figures 2(b), (e), and 3(b), we present the
evolution of the real and imaginary parts of the first spinor component χ+1(ϕ) for states chosen at different
points of the Borophene’s quasienergy spectrum. These states, indicated with dots in figure 1, correspond to
the four most representative cases listed below:

(a) Adiabatic regime with k̃y ̸= 0 (green dot),

(b) Non-adiabatic regime with k̃y = 0 (purple dot),

(c) Non-adiabatic regime with k̃y ̸= 0 (blue dot),

(d) Transitional regime with k̃y = 0 (orange dot).

The trajectories seen in figures 2(b) and (e), 3(b) and (e) were obtained from a numerical simulation
made by solving equation (22). As the initial state, we chose a band eigenstate of the time-independent

5
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Figure 2. Quasienergy spectrum Eη,j,m/(ℏΩ)− vtk̃y/(vyℏΩ) and the Floquet quantum wave real and imaginary part for the

Wittaker–Hill and Ince equations. In panels (a) and (d), we show the quasienergy spectra as a function of the momentum k̃x/ℏΩ
using the fixed values k̃y/ℏΩ= 0 and k̃y/ℏΩ= 1.5 for j= 1, 2 andm= 0,±1, . . . ,±5 (Floquet zones), respectively. In these

panels, the purple dot correspond to the state where (k̃x/ℏΩ, Eη,j,m/(ℏΩ)− vtk̃y/(vyℏΩ)) = (0.50, 0.50) and the corresponding

blue dot is the state (k̃x/ℏΩ, Eη,j,m/(ℏΩ)− vtk̃y/(vyℏΩ)) = (1.79, 2.31). The solid gray lines correspond to the dispersion

relation given by equation (3) for fixed k̃y/ℏΩ values mentioned above. In panels (b) and (c), we show the trajectories for the

Whittaker–Hill and Ince equations for η =+1 and (k̃x/ℏΩ, Eη,j,m/(ℏΩ)− vtk̃y/(vyℏΩ)) = (0.5, 0.50), respectively. The panels

(e) and (f) are the corresponding trajectories for η =+1 and (k̃x/ℏΩ, Eη,j,m/(ℏΩ)− vtk̃y/(vyℏΩ)) = (1.79, 2.31). In all these
panels the value of amplitude and frequency of the electromagnetic wave are Ex = 4.85 Vm−1 andΩ= 50× 109 Hz,
corresponding to q0 = 2.35. Observe how trajectories with k̃y/ℏΩ= 0 describe circles in agreement with equation (26).

problem. Since (22) is a second order differential equation, it requires an additional initial condition that
comes from the first derivative of the wave function in equation (12). In figures 2(a) and (d), 3(a) and (d) we
indicate the chosen states in several quasi spectrum cross sections. The Floquet zone replicas are also tagged.
We have confirmed that these solutions for the wave functions as well as the quasienergy spectrum are
consistent with the ones obtained via the time-independent effective Hamiltonian ensued by the
monodromy matrix [25]. In [42], the weak-field and high-frequency regime was studied for graphene. We
have verified that numerically, our obtained solutions are equal to those of [42]. For the particular case
k̃y = 0 (ky = 0), the analytical solution given in [42] is identical to our equations (26) and (27).

From figures 2(b) and (e), 3(b) and (e), we observe that as the wave functions evolve their real and
imaginary parts may either move along complex paths or even describe simple circular trajectories. In
particular, in figures 2(b) and 3(b), the real and imaginary parts of the wave function describe circular paths.
This can be understood from equation (24), or more directly from equation (12), as in this case k̃y = 0 the
spinor components are decoupled right from the beginning and there is no need to go into the second
derivative calculation. Thus, χ(ϕ) = (χ+1(ϕ),χ−1(ϕ)) and the solution is,

χη(ϕ) = χη(0)exp

[
2iη

ˆ ϕ

0

(
q0 cos(2ϕ

′)− k̃x
ℏΩ

)
dϕ ′

]
, (26)

or using that in this case ϵk = k̃x and ϕ=Ωt/2, we obtain that,

χη(t) = χη(0)exp
[
iη
(
q0 sin(Ωt)−

ϵkt

ℏ

)]
. (27)

The real and imaginary parts of this solution describe the circular paths shown in figures 2(b) and 3(b).
What is remarkable here is that equation (27) holds in the non-adiabatic, the adiabatic and the transitional

6
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Figure 3. Quasienergy spectrum Eη,j,m/(ℏΩ)− vtk̃y/(vyℏΩ) and the Floquet quantum wave real and imaginary part for the

Wittaker–Hill and Ince equations. In panels (a) and (d), we show the quasienergy spectra as a function of the momentum k̃x/ℏΩ
using the fixed values k̃y/ℏΩ= 0 and k̃y/ℏΩ= 1.5 for j= 1, 2 andm= 0,±1, . . . ,±5 (Floquet zones), respectively. In these

panels, the orange dot correspond to the state where (k̃x/ℏΩ, Eη,j,m/(ℏΩ)− vtk̃y/(vyℏΩ)) = (4.5, 4.5) and the corresponding

green dot is the state (k̃x/ℏΩ, Eη,j,m/(ℏΩ)− vtk̃y/(vyℏΩ)) = (4.2, 4.49). The solid gray lines corresponds to the dispersion

relation given by equation (3) for fixed k̃y/ℏΩ values mentioned above. In panels (b) and (c), we show the trajectories for the

Whittaker–Hill and Ince equations for η =+1 and (k̃x/ℏΩ, Eη,j,m/(ℏΩ)− vtk̃y/(vyℏΩ)) = (4.5, 4.5), respectively. The panels

(e) and (f) are the corresponding trajectories for η =+1 and (k̃x/ℏΩ, Eη,j,m/(ℏΩ)− vtk̃y/(vyℏΩ)) = (4.2, 4.49). In all these
panels the value of amplitude and frequency of the electromagnetic wave are Ex = 4.85 Vm−1 andΩ= 50× 109 Hz,
corresponding to q0 = 2.35. Observe how trajectories with k̃y/ℏΩ= 0 describe circles in agreement with equation (26).

regime, i.e. it covers items (b) and (d) of the list of most representative cases. As we will see in the following
section, this allows to characterize the Berry phase in a simple way.

Now let us return to the case where in equation (18) k̃x ̸= 0 and k̃y ̸= 0 but q1 ≫ q20. Under these

conditions the solution of equation (18) requires setting k̃x ≫ q0ℏΩ from where ϵk ≫ ℏΩq0. According to
equation (25) such a case corresponds to states well inside the adiabatic regime. Using equation (19) we
neglect q2 and equation (24) takes the form

χ ′ ′
η (ϕ)+ [ak+ q1 cos(2ϕ)+ iηq3 sin(2ϕ)]χη(ϕ) = 0. (28)

This is a generalized Matthieu equation [29], but if we further assume that k̃x ≫ ℏΩ/2 and therefore photons
are far from inducing transitions, then equation (22) transforms into a simple Matthieu equation as q1 ≫ q0
giving

χ ′ ′
η (ϕ)+ [ak+ q1 cos(2ϕ)]χη(ϕ) = 0. (29)

This very well known equation describes a pendulum with time-driven variable length, or alternatively, an
harmonic oscillator with natural frequency

√
ak with a periodically perturbed time-dependent spring

constant variation−q1 cos(2ϕ). The physical relevant solutions are given by a stability chart in the ak and q1
parameter space, divided in forbidden and allowed regions [29]. Resonances appear around

√
ak = n with n

integer. In this quantum context, the forbidden regions correspond to the spectral gaps as they represent
non-physical runaway solutions. Each resonance defines the limit of the Floquet zone. Including the initial
conditions, the solutions are given by,

χ−(ϕ) =
C
(
ak,− q1

2 ,ϕ
)

C
(
ak,− q1

2 ,0
) − 2i

(
k̃x − ℏΩq0

)
S
(
ak,− q1

2 ,ϕ
)

ℏΩS ′
(
ak,− q1

2 ,0
) , (30)

7
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χ+(ϕ) =
2k̃yS

(
ak,− q1

2 ,ϕ
)

ℏΩS ′
(
ak,− q1

2 ,0
) , (31)

where C(ak,−q1/2,ϕ) and S(ak,−q1/2,ϕ) are the Mathieu cosine and sine functions, respectively.
The first derivatives of the Mathieu functions are C ′(ak,−q1/2,ϕ) = (d/dϕ)C(ak,−q1/2,ϕ) and
S ′(ak,−q1/2,ϕ) = (d/dϕ)S(ak,−q1/2,ϕ). Aside from the initial conditions ensued by equation (12), in the
previous equations we have also assumed that χ+1(0) = 0 and χ−1(0) = 1 which means that initially the
electron is in the valence band. The quasienergies are obtained by using the Fourier expansion of such
functions. This is a very interesting result as in the adiabatic regime we have both the oscillator’s fundamental
frequency and the oscillating drive’s frequency. Such two frequencies are reflected in the orbital precession
seen in figures 3(e) and (f). As we will discuss, our results must be akin to those of Thouless concerning
adiabatic phases and thus Berry topology. However, here we arrived to such result not by perturbation theory
but from a non-perturbative approach. Moreover, our generalized Whittaker–Hill equation (22) allows to
find extra contributions and explore non-adiabatic regimes.

Also, the previous analysis of particular cases opens the question whether for q3 ̸= 0 we can develop a
suitable classical analogy to the quantum equations. This is the subject of the following section.

3. Ince equation: quantumwave functions as classical trajectories under
electromagnetic fields

The previous section showed how a quantum wave function evolution of a time-driven system can be
described in some particular cases by a simple classical problem. In this section we show how to fully extend
the analogy to a classical system. In particular, we study the trajectories that arise when the Whittaker–Hill
equation (15) is transformed into the Ince equation. Consider the following unitary transformation

χη(ϕ) = exp [iηq0 sin(2ϕ)]ψη(ϕ), (32)

Substituting this last expression into equation (15), turns the Wittaker–Hill equation into a Ince equation for
ψη(ϕ), i.e.

ψ ′ ′
η (ϕ)+ ifη(ϕ)ψ

′
η(ϕ)+ g(ϕ)ψη(ϕ) = 0, (33)

where

fη(ϕ) = η|q3|cos(2ϕ) , (34)

g(ϕ) =

(
2ϵk
ℏΩ

)2

+ q1 cos(2ϕ). (35)

There are two advantages of the transformation given by equation (32). One is evident by comparing
with equation (26), as it separates the contribution that comes from k̃x whenever k̃y = 0. But what is more
important here is the possibility of finding a suitable classical analogy. Although this can be done in the
Whitaker–Hill equation, the resulting fields are far from simple known physical cases. The solution of the
Ince differential equation can be decomposed into its real part and its imaginary part, that is,
ψη(ϕ) = ψR

η(ϕ)+ iψI
η(ϕ), and we find the following set of coupled differential equations

d2

dϕ2
ψR
η(ϕ)− fη(ϕ)

d

dϕ
ψI
η(ϕ)+ g(ϕ)ψR

η(ϕ) = 0, (36)

d2

dϕ2
ψI
η(ϕ)+ fη(ϕ)

d

dϕ
ψR
η(ϕ)+ g(ϕ)ψI

η(ϕ) = 0. (37)

Let us now explore the classical analogy. We propose the following replacement ψR
η(ϕ)→ X(ϕ),

ψI
η(ϕ)→ Y(ϕ). Notice that to keep the derivation simple, we drop η and then quote the result for η =−1 at

the end of the calculation. The resulting Ince equations are written as,

d2X(ϕ)

dϕ2
− fη(ϕ)

d

dϕ
Y(ϕ)+ g(ϕ)X(ϕ) = 0, (38)

d2Y(ϕ)

dϕ2
+ fη(ϕ)

d

dϕ
X(ϕ)+ g(ϕ)Y(ϕ) = 0. (39)
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Consider the problem of classical particle with massm and charge Qmoving in a plane under an
electromagnetic field given by a radial time dependent electric field,

E(t) =−g(t)

Q
r, (40)

with r= (X,Y,0) the position vector and a perpendicular time dependent magnetic field,

B(t) =
f(t)

Q
k̂, (41)

with k̂= (0,0,1). The classical particle equation of motion is,

m
d2r

dt2
= QE(t)+Qv×B(t), (42)

with v= dr/dt. The equation for the other valley is obtained by reversing the direction of the magnetic field
in the−k̂ direction.

Comparing the set of differential equations (38) and (39) arising from Ince equation with the equation
(42) of a charged particle motion problem we see that they are similar. The classical problem of the charged
particle in presence of a time-dependent electromagnetic fields with axial symmetry was studied long time
ago by using the Lewis–Riesenfeld invariant theory [43, 44]. The Lorentz force equation (42) does not have
the exactly same time-dependent axial symmetry as those in such classical works, therefore we can not
compare both cases directly. However, we can visualize the phase of the wave function and ask what is the
relationship between such trajectories and the topological properties of the wave function phases. This is the
subject of the following section.

4. Topological phases of Dirac systems under linearly polarized light

As is well known, the initial spark in the study of topological phases was the discovery by Berry [45] that a
quantum system subjected to an adiabatic change in its parameters gets a geometrical phase γB in the wave
function evolution, known as the Berry phase [46, 47]. This phase, which due to the Floquet theorem must
be γB = 2πn with n an integer when a closed path is made with the parameters (where the case n= 0 is
considered as topologically trivial), adds to the dynamical phase determined by the instantaneous
eigenvalues ϵk(A(t)) of the Hamiltonian, i.e. the total wave-function is,

ψk(t) = exp [iγB(t)]exp

[
− i

ℏ

ˆ t

0
ϵk(t

′)dt ′
]
|k(A(t))⟩, (43)

where |k(A(t))⟩ is an instantaneous eigenvector which satisfies,

Ĥ(t)|k(t)⟩= ϵk(A(t))|k(A(t))⟩, (44)

and γB(t) is the geometrical phase at time t such that,

γB = γB(T)− γB(0). (45)

The argument A(t) appears here to highlight the parameter that performs the external driving. Therefore, the
total phase obtained by the wavefunction after a one-cycle drive is,

γk(T) = γB + γD(T), (46)

where we defined the dynamical phase as,

γD(t) =

ˆ t

0
ϵk(t

′)dt ′. (47)

In our system,

ϵk(ϕ) =±

√√√√( k̃x
ℏΩ

− q0 cos(2ϕ)

)2

+

(
k̃y
ℏΩ

)2

. (48)
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As equation (24) allows to find the total wave function and γD(t) is easy to find, it is clear that in
principle we can recover the Berry phase from γB = γk(T)− γD(T). Although such definition works for
adiabatic and non-adiabatic cases, in the non-adiabatic case the phase is not necessarily geometric. However,
in the adiabatic regime γB(t) coincides with the usual definition of Berry phase.

Consider as an example the case k̃y = 0. The analytical solution equation (26) can be written as,

χ±1(t) = χ±1(0)exp

[
− i

ℏ

ˆ t

0
ϵk(t

′)dt ′
]
. (49)

By comparing with equation (43), we conclude that γB = 0 implying that in the line k̃y = 0 the system is
topologically trivial. This explains why in a previous work, it was found numerically that states at such line
do not have transitions to other states, even at very high fields [25]. Mathematically, such a result follows
from a special condition that the instantaneous eigenvalues satisfy for k̃y = 0,

dϵk(ϕ)

dϕ
= 2q0 sin2ϕ, (50)

and from where the Whittaker–Hill equation is,

χ ′ ′
η (ϕ)+

[
4ϵ2k(ϕ)− i2η

dϵk(ϕ)

dϕ

]
χη(ϕ) = 0. (51)

Meanwhile, from equation (43) it is clear that the classical trajectories are circular in the Whittaker–Hill and
Ince pictures, as in this case the resulting equations are similar. Therefore, topologically trivial phases are
given by circular trajectories. Intuitively, such result is to be expected as for trivial topological phases there is
not a sort of ‘phase leaking’ to higher energy states. Physically, as linear polarized light is made from a
superposition of the same amount of left and right photon polarization, due to momentum conservation,
transitions are forbidden if the electron does not have momentum in a perpendicular direction to A(r).

Now consider the adiabatic regime for k̃y ̸= 0. Such conditions corresponds to item (a) of the list of most
representative cases and to the green dot in the quasi-energy spectrum of figure 1. In this limit, the solution is
determined by the pure Mathieu equation (29) and the initial conditions. Following Thouless [41], we
consider that at ϕ= 0 (t= 0) the system is in a pure valence band state of the stationary problem. According
to equation (30), this is translated into χ+1(0) = 0 and χ−1(0) = 1. Notice here that due to the properties of
the Mathieu sine function, S ′(ak,−q1/2,0) ̸= 0 and thus the denominator of χ+1(ϕ) = 0 is well defined. For
k̃y ̸= 0 we see from equation (30) that χ+1(ϕ) can be different from zero as time evolves. As a consequence,

for k̃y ̸= 0 there will be a small projection onto the conduction band. This is the hallmark of a topological
phase. To understand this, here we quote the result by Thouless applied to a time-driven two level system
[41]. In the absence of a field, the ground state has an energy ε0 and a high energy state an energy ε1. If the
system is at the ground state for t= 0, in the adiabatic regime the time evolution of the wave function is [41],

|ψ(t)⟩ ≈ e−
i
ℏ
´ t
0 ϵ1(t

′)dt ′

(
|ψ0(t)⟩+ |ψ1(t)⟩

iℏ⟨ψ2(t)|ψ̇1(t)⟩
ϵ1(t)− ϵ0(t)

)
(52)

where ψ0(t) and ψ1(t) are the instantaneous states of the time dependent two-level Hamiltonian, each with
instantaneous energies ϵ0(t) and ϵ1(t) respectively. The second term of equation (52) is the projection into
the high-energy state and gives the extra geometrical phase [41]. This solution is meant to be compared with
equation (30), showing that the second term is a projection of the time evolution into the high-energy state.
Notice that the Mathieu functions C

(
ak,− q1

2 ,ϕ
)
and S

(
ak,− q1

2 ,ϕ
)
already contain in their definition the

integral in time of the quasi-energy, as they have the general form eiµ(ak,−q1/2,ϕ)F(ak,−q1/2,ϕ), where
F(ak,−q1/2,ϕ) is a polynomial and µ(ak,−q1/2,ϕ) is the Floquet exponent [35, 48]. The small projection of
the solution into the high energy state can be seen in figures 3(e) and (f) as an orbital precession due to the
two frequencies involved. Thus, the topology is reflected in an orbital precession of the phase, in agreement
with the general expected result for classical systems [32].

Moreover, to further understand how equation (30) is related with the topology, we remark that such
equation is consistent for k̃y = 0, as for this case χ+1(ϕ) = 0 at all times and thus the system has no
projection in the conduction band resulting in a trivial topology. As there is no projection into the upper
state, the phase describes circular trajectories.

Finally, for the non-adiabatic k̃y ̸= 0 case (blue dot state), the classical trajectories are far from circles as
the conduction band component is not small and in fact transitions are induced. Moreover, the full
Whittaker–Hill equation is needed as in this case the term q2, which corresponds to a doubling of the drive
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Figure 4. Numerically obtainedΨk(t) phases for k̃y ̸= 0: (a) quasienergy, (b) dynamical phase and (c) Berry phase as functions of

the momentum k̃=
√

k̃2x + k̃2y where k̃x = k̃cos(π/4) and k̃y = k̃ sin(π/4). The intensity of the electric field is Ex = 4.5 Vm−1

andΩ= 5× 109 Hz. The solid blue and green lines correspond to the positive and negative eigenvalues, respectively. The solid
red lines in panel (a) indicate the free electron eigen energies. For k̃> evxEx/ℏΩ2, corresponding to states outside the ball, the
Berry phase saturates into a non-trivial phase which corresponds to the result obtained in the adiabatic case. However, inside the
non-adiabatic region, many new different field-induced phases are seen.

frequency, will dominate. Not surprisingly, the same equation appears in the calculation of celestial bodies
orbital precession [31].

So far we have calculated the Berry phase for regimes that allow an analytical solution: mainly k̃y = 0, the
adiabatic approximation and q1 ≫ q20. Obtaining the Berry phase in the general case requires further analysis.
The main difficulty that arises for the most general Hamiltonian is the non-adiabaticity of the electric field
near the Dirac point. Fortunately the adiabatic restriction was first removed by Aharonov and Anadan in
their pioneering work [49] and then new ways of working out non-adiabatic Berry phases were developed by
Page [50] and later on by Moore [51, 52]. Even though we have performed the calculation of the
non-adiabatic Berry phases using the approaches by Moore and Page obtaining identical results, here we only
present the one corresponding to [50] because it is not restricted to Floquet states. According to this
standpoint, the non-adiabatic Berry and dynamical phases can be computed through

γB(T) =
i

2

˛
C

w∗dw−wdw∗

1+ |w|2
, (53)

γD(T) =−
ˆ T

0
Ψ†(t)Ĥ(t)Ψ(t)dt, (54)

where w=ΨB(t)/ΨA(t) and C is the closed contour of w and w∗ described through one period T of time
evolution. The wave function componentsΨA(t) andΨB(t) where worked back from the solution of the Ince
equation through the transformations (11) and (14). Figure 4 shows the quasienergy phase γk(T) (a), the
dynamical phase γD(T) (b) and the non-adiabatic Berry phase γB(T) (c) as a functions of the momentum
k̃/ℏΩ along a line at 45◦ with respect to the k̃x axis. The straight (red) lines in figure 4(a) correspond to the
free electron energy spectrum. The positive (negative) quasienergie phases were shifted to higher (lower)
Floquet zones in order to demonstrate that far from the Dirac point the free electron energy spectrum is
recovered. The dynamical (figure 4(b)) and Berry (figure 4(c)) phases where shifted accordingly. In this way,
these figures one can readily verify equation (46) by adding an extra phase of 4π to the quasienergy γk(T).
We must first note that the limiting cases of the Berry phase where k̃y = 0, k̃ and k̃≫ evxEx/Ω coincide with
the above obtained analytical results. The truly interesting Berry phases arise in the non-adiabatic region
0< k̃< evxEx/Ω where γB smoothly varies between 0 and±4π.

The question of why γB ̸= π remains to be answered. Though a more thorough analysis is needed in
order to fully answer this question we can venture two possible scenarios that lead to more complicated Berry
phases. First, in the vicinity of the Dirac point the wave function is heavily distorted as figure 1 suggests.
Additionally, in this region the adiabatic condition does not hold. Therefore we cannot expect the Berry
phase to be equal to π. Moreover, one could argue that far from the Dirac point where the adiabatic
condition holds we should recover γB = π. However, since close to the Dirac point the wave function is
strongly modified by the oscillating electric field, we can expect that the phase singularity that yields γB = π
is either lifted or canceled by the appearance of new ones. In the second scenario, the integration path of the
Berry phase could even avoid the Dirac point. For non-adiabatic time-dependent fields the path followed by
the wave function is determined by the dynamics of the system as equation (53) states. Even though under
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these conditions the Berry phase is still geometrical in nature, it is difficult to tell which path is taken by the
wave function components during the evolution of the system. Therefore, a deeper analysis of the Berry
phase should include the determination of the shapes of the paths followed by the wave function in k-space
as well as the alterations of the features of the phase singularities, if any, of the modified wave function close
to the Dirac point.

5. Conclusions

The time evolution of an electron in a 2D Dirac material driven by linear polarized electromagnetic fields
was found using Floquet theory. In particular, the bispinor wave function time evolution was reduced to an
ordinary Whittaker–Hill differential equation by using several transformations. The resulting trajectories for
the phases were obtained numerically and in some cases, it was possible to compare with the analytical
results.

Then we described the phase of the electron wave function as a classical charged particles in a time-driven
electromagnetic field. This is particularly clear if a transformation is made into the Ince equation. Circular
trajectories were thus identified as trivial topological phases. This occurs when the electron momentum is
aligned with the photon momentum and transitions are forbidden. When this is not the case, non-trivial
topological phases were identified as trajectories with orbital precession. They are described by a Mathieu
equation and the precession is due to a phase leaking into the conduction band states. In the non-adiabatic
regime, the trajectories are complicated except for the case in which electrons and photons have parallel
momentum. Such result is due to the role played by a frequency component that doubles the original driving
frequency. Finally, the Berry phase was obtained from the dynamical evolution of the system.
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