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A study of the dynamical formation of networks of friends and enemies in social media, in this
case Twitter, is presented. We characterise the single node properties of such networks, as the
clustering coefficient and the degree, to investigate the structure of links. The results indicate that
the network is made from three kinds of nodes: one with high clustering coefficient but very small
degree, a second group has zero clustering coefficient with variable degree, and finally, a third group
in which the clustering coefficient as a function of the degree decays as a power law. This third
group represents ∼ 2% of the nodes and is characteristic of dynamical networks with feedback. This
part of the lattice seemingly represents strongly interacting friends in a real social network.

I. INTRODUCTION

In principle, social media were designed to allow its
members to express opinions about different topics, make
new friends and conections. An interesting feature of
social media is the vast amount of data collection [1].
There is considerable research that takes advantage of
such possibility as it brings a way to perform quantitative
analysis of social relationships. For example, this has
been made with weighted links in mobile phone calls [2].
However, in spite of these well investigated aspects of
making friends and links, there is another side of the
coin when dealing with human networks: enemies and
conflicts [3, 4].

When opinions are expressed, and particularly about
polemic topics, such as politics, sports, religion, etc.,
there is a tendency for opinions to polarize [5] (a fact
soon recognized by British clubs by asking its members
to avoid such dividing topics). This leads to interesting
features such as the echo chamber effect [5] and the zealot
effect [6, 7].

Also, economical and geopolitical interests, historical
affinities and so on, play an important vital role in this
polarization effect. Moreover, this could lead to conflict
escalation and it is not unusual to observe “arms races”
in which social media members appeal to astroturfing [8],
disinformation [9], collusive behavior [10], payed haters,
bots, bots farms and hybrid human-bots farms [11]. An
interesting feature of social media is the possibility of
studying the time-evolving network topology, which is a
factor that only recently has been taken into account in
models [13? ].

Several efforts have been made in order to distinguish
such behaviors, yet it is very difficult to determine if an
enemy in Twitter is human [11, 14]. Artificial intelli-
gence strategies have been implemented to perform such

task [15], but in fact, its efficiencies are limited and low.
Eventually, the task requires human intervention as it
is highly context-dependent and requires to mange sub-
tleties such as sarcasm, irony, and black humor [14]. Oth-
ers try to perform the same task by taking into account
the frequency of emission or number of tweets [11].

From a different perspective, in a previous paper we
performed an analysis of friends and foes in several
schools in Mexico City [16]. This allowed to get a glimpse
of the main differences between social media networks
and a small scale social network in which non-human
intervention is absent. One of the striking results of
such study was the different friend and foe networks
topologies[16]. Enemy networks tend to be much more
heterogeneous resulting in a kind of public enemy effect.
Also, below certain age, genders tend to be dissociated,
a fact explained by the Heider balance theory [16]. Such
effects have been confirmed in other studies [3, 4]. More-
over, three body effects are crucial for conflicts in social
networks [17, 18] and thus it is worthwhile to test whether
such effects are present in social media.

In this article, we explore the question of how social
based human networks are contained within social media
networks. In particular, we focus on Twitter.

The layout of this paper is the following. In Sec. II
we present the network analysis performed in a one year
study of the Twitter generated network topology. Then
in Sec. III we analyze the network while in Sec. IV we
discuss the retweet network topology. Finally, we provide
a section with the conclusions and perspectives of the
work. Details of our methods are included in Sec. VI.
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II. DATA MINING

During the COVID–19 pandemic, many political deci-
sions were implemented aiming to mitigate the effects of
the virus SARS-CoV-2, producing a strong polarization
in discussions about this health emergency. In this study
we used this subject as an example of strong polarization
of opinions in Mexico that has been present during the
last year. Main actors from both sides (pro and anti-
government) were selected according to the press and to
the number of tweets. We collected tweets for 3 weeks
of the month of May 2020 (6th − 21st) (see details in
Sec. VI). The chosen actors related to the COVID–19
health emergency in Mexico were:

1. amlo, lopezobrador: López Obrador current presi-
dent of Mexico (2018-2024).

2. morena: current governing and majority party in
Mexico.

3. 4t: the “fourth transformation”, refers to changes pro-
moted by current government.

4. gatell: Hugo López-Gatell Ramírez, current Under-
secretary for Prevention and Health Promotion at
the Mexican Ministry of Health, in charge of Mex-
ico’s COVID–19 strategy and response.

5. FelipeCalderon: Felipe Calderón’s Twitter account.
President of Mexico from 2006 to 2012 and out-
spoken critic of the new government through social
media.

6. SSalud_mx: Official Twitter account of Mexico’s
Ministry of Health.

7. insabi: Institute of Health for Wellbeing.

In order to investigate the network produced by these
actors when tweeting about the COVID–19 health emer-
gency, we chose the following keywords:

1: encasa (at home) , sanitaria (sanitary), saram-
pion (measles), cuarentena (quarantine) ,
salud (health), fase3 (phase 3) Words related
to messages issued by the secretary of health and
emerging issues such as measles. We consider these
to be “health labels” (see below).

2: covid, coronavirus, corona, pulmonia, neumo-
nia, sarscov2, respir We consider these to be
“COVID–19 labels” (see below).

We generated our core set with all those tweets that
match two criteria: any aforementioned actor 1-7 and
at least one of the two types of labels. In this way, we
ensure that the tweet in question talks about health and
is related to Mexico. In total, we collected 2,950,080
tweets.

In Fig. 1 we plot the discussion network including
quotes and mentions to other users. As we can see, the
graph looks very dense and shapeless. Trying to distin-
guish groups within this network, we identified users who
connected with other users more than 8 times in this pe-
riod (in blue), and users with more than 5 edges (in yel-
low). However, since quotes and mentions are difficult to
classify as supporting or attacking tweets, we concluded
that in order to identify separate political groups, quotes
and mentions should be excluded.

FIG. 1. Snapshot of a twitter discussion. Edges between
nodes represent retweets or mentions to another user. We
pay particular attention to the blue color subset which shows
those users who connect with other users more than 8 times.
Yellow nodes have more than 5 edges.

To obtain a directed network, we took advantage of
the fact that retweets (Rt) contain information about the
source and the target user, making it possible to gener-
ate directional links from user to user. In the context of
retweets, the in-degree (kin), can be interpreted as the
popularity of the user, and the out-degree (kout), as re-
flecting the support that a user gives to others. Groups
in this network are formed by homophily so that different
political ideologies will segregate.

Fig. 2 shows the resulting network. Different col-
ors indicate the communities detected using the Louvain
method [19], which is a modularity algorithm based on
optimization, by measuring the relative density of edges
inside communities with respect to edges outside commu-
nities. Now two polarized groups, with opposing political
points of view are clearly distinguished (pro-government
in red, anti-government in blue). However, the division of
these two main groups is somewhat fuzzy. We attribute
it to the fact that many intermediate nodes publish top-
ics closely related to news, notes on the advance of the
pandemic and others. Tweets linking to press notes are
represented by the green nodes. The little nodes repre-
sented in the exterior circumference are tweets with no
impact in the discussion going on in the giant component.



3

FIG. 2. (A) Communities identified in political discussions
shown with different colors. The communities detected using
the Louvain method [19]. Observe that most of the nodes
at the periphery have degree one, and that the network is
polarized into groups with opposite points of view about the
subject, in this case COVID related issues. The links are
curved and if they go clockwise they are links that come out
and vice versa. (B) A zoom of the network showing the two
main groups.

III. ANALYSIS OF THE NETWORK

To obatain the parameters of the network structure, we
calculated the distributions P (kin + 1) and P (kout + 1).
Notice that here we displaced k by 1 in order to plot
nodes with kin = kout = 0; they form part of the net-
work because a tweet was emitted (or received) by them
although they do not have incoming or outgoing links.
98% of the nodes are of this kind. In Fig. 3 we show
that these distributions follow a power law behavior:
P (kin) ∼ (kin + 1)−2.0 and P (kout) ∼ (kout + 1)−4.4,
respectively.

It is important to notice in Fig. 3 that most users
retweet to no more than 20 different users, which implies
that they are very selective when it comes to supporting
an opinion. However, this is enough to generate nodes
receiving thousands of retweets. Furthermore, a clear
crossover is seen around k ∼ 10, suggesting that in com-

parison, very popular users do not support as many users,
and this behavior is reversed for the not so popular ones.
When analyzing the amount of in-degrees vs. out-degrees
for the same user (data not shown), we noticed that very
popular users, receiving more than 500 retweets, sent 4
or less retweets, while users with kin <= 10 sent 99.5%
of all retweets.

FIG. 3. Log-log plot of the user popularity (blue) and num-
ber of users they support (red) distributions. The data sets
in light colors correspond to raw data in a linear binning,
while the points in dark colors are the results of a logarithmic
binning. The solid lines correspond to power law fits, with
exponents detailed in the inset. Observe how the support to
other users decreases less sharply and is more scattered than
the popularity. However, a crossover is seen near k = 10.
The displacement of k by one is made to plot nodes in the
logarithmic binning.

We calculated the clustering coefficient of nodes taking
into account that the network is directed [20]:

Cj =
1

ktot(j)(ktot(j)− 1)− 2k↔(j)
A3
jj (1)

where A is the adjacency matrix, i.e., its elements are
Aji = 1 if j has a link towards i and zero otherwise.
Notice that here we consider a directed graph and thus
A is not symmetric. In fact, ktot(j) is the sum of the
in-degree and out-degree at node j,

ktot(j) = kin(j) + kout(j) = (A)j1+ (AT )j1 (2)

where AT is the transpose of A, (A)j stands for the j-
th row of A, and 1 is the N-dimensional column vector
(1, 1, ..., 1)T . Also, we use the definition [21],

k↔(j) = A2
jj (3)

This last term is a correction needed to avoid over-
counting by revisiting loops at site j.

The clustering coefficient reflects the extent to which
friends of j are also friends of each other; and thus
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Cj measures the cliquishness of a typical friendship cir-
cle [20]. In this particular case, it captures users that
supported someone by retweeting any of their messages
(or vice versa) or by retweeting each other. This in some
way reflects the degree of communication between users
who support a message. It is natural to calculate Cj as
one can suspect that the larger the network, the more
difficult it would be for the members of a group to have
communication with the rest of the group.

In Fig. 4 we plot the retweet (Rt) network, with color
based on the Cj , and size determined by kin. A con-
stant pattern is observed: if a node has many surround-
ing nodes, then this tends to retweet messages from one
or more users, forming the well-known echo chambers [5].
The majority of these have a brown color, which repre-
sents Cj = 0. Most of the members of the two main
opposing groups are supported by many users (high in-
degree), but they do not form clusters. Some nodes have
Cj = 0.5 (in blue) but are not easily seen since they have
lower in-degrees compared with the ones already men-
tioned.

FIG. 4. Snapshot of a retweet network over a period of ap-
proximately 3 weeks in the year 2020, with a focus on the
clustering coefficient. We associate a color with the cluster-
ing value of each node. Links are colored according to the
color of the origin node. Red was assigned for clustering 0.0,
blue for clustering 0.5. For this network, approximately 77%
of users have a clustering coefficient of 0.0. The size is deter-
mined by the indegree. The clockwise links are outgoing and
vice versa.

To gain a better understanding of the structure of
the Rt network, we analyzed the relationship between
clustering coefficient and in-degree. Fig. 5 shows the
clustering coefficient versus the in-degree normalized to
one, for data obtained from daily retweets. Users having
Cj > 0.25 have very low in-degrees, indicating that the
clicks observed here are made up by 3 or 4 users, and
even less connected groups also have few users. Users

FIG. 5. Clustering coefficient versus the in-degree of the node
in the retweet network. We normalized kin and eliminated
all nodes with clustering equal to zero because these nodes
mostly represent the simplest dynamics in the network: users
generating a retweet without some kind of prior coordination.
These users represent 99.7% of accounts. We show in red
the users that we have detected have coincided at least three
times by placing a hashtag or retweeting the same message
with other users, these users represent 1.6% and in blue the
rest. The inset shows a zoom of the data, indicating how
the network is separated into three kinds of nodes: the ones
that almost fall on each axis, and a third class that does not
follow such tendency and are similar to lattices obtained with
dynamical feedback.

with kin > 0.25 have clustering coefficients very close to
zero, supporting the observation that users receiving a
large number of retweets do not have a reciprocal behav-
ior upon other users. We identified all users coinciding
(see below) at least three times in placing a hashtag or
retweeting the same message during a day (red points);
in general, they are indistinguishable from the rest of the
users, none of them have big kin. From kin ∼ 10 on Cj
decays as a power-law with respect to kin+1 (see Fig. 6,
blue points), i.e.,

Cj ∼
C0

kγ(j)
(4)

where γ = 1.297 ± 13.9e−4 and C0± 0.255 for the kin
(popularity). Users coinciding three times or more send-
ing the same message (red points) do have a similar be-
havior (same slope), but for the same values of kin, they
have higher Cj .

Such variation of the clustering with the degree of a
network is characteristic of networks with a feedback,
usually when there is a dynamical imbalance between
excitatory and inhibitory connections, as is indeed ob-
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FIG. 6. Log-log plot of the average clustering coefficient ver-
sus the node’s in-degree kin seen in Fig. 5. The raw data is
presented in light colors, while data points presented in dark
colors are obtained using a logarithmic binning. The power
law spans nearly four decades. The red color denotes the
subset of users which participated with some degree of orga-
nization to place a hashtag or retweet. For both sets of users
a power law is detected with exponents written in the inset,
although for small in-degree, a clear departure is seen from
the power law.

served in many real networks [22]. In fact, the high clus-
tering coefficient for small kin(j) can be explained by the
transitive advantage of nodes with a common first neigh-
bor making similar nodes to accumulate common links,
and these links contribute to the similarity between the
nodes [22]. Thus, Fig. 5 hints for a more real social in-
teraction in the network.

IV. CO-RETWEET NETWORK

Exploring the possibility of the existence of another or-
ganization level, a co-retweet network was generated [1]
by adding weight links between users who retweeted
the same message in a given period. Weight corre-
sponds to the number of coincidences in this time in-
terval. The obtained network is illustrated in Fig. 7.
Three groups are separated, one comprising different pro-
government communities (lower right), another including
anti-government communities (upper center), and a third
one containing COVID–19 groups (pink nodes). The
three groups form a giant component, since the network
is fully connected. Links with weight 1 were eliminated in
this figure since a single coincidence may occur by chance
and does not imply an underlying organization.

The weight degree (kw) distribution of this co-retweet
network is shown in Fig. 8. Note that 3 users have an
atypical behavior. When conducting a direct search on
their profiles, we found that the first one — @CoronaUp-
dateBot — is dedicated to retweeting everything it finds
on coronavirus. The second @worldnewseng retweets vir-

FIG. 7. Co-retweet network obtained using time windows of
one hour. The color was given by the community to which
the user belongs. The three clusters from left to right are pro
government, anti-government, and COVID–19 groups. The
size is determined by the in degree

tually any news. The third one is not accessible anymore
@BillEsteem. All these three nodes meet the definition
of superspreaders.

FIG. 8. Degree distribution for the co-retweet network for
periods of one hour. We used linear binning in this figure
to highlight the outliers behavior. There are three hubs, in-
dicated with pink stars, with a clear outlier behavior. The
three hubs with highest number of retweets generate the pink-
cluster community seen in Fig. 7.

Trying to uncover the social network contained in the
social media network, links were removed to study how
the biggest component decreases as the weight of the
filtered edges is progressively increased. When links
weighted 1 to 3 were removed, the major giant compo-
nent size decreased abruptly (see Fig. 7). When elim-
inating the links from kw = 3 to kw = 48, the size of
the biggest component has a power-law decrease. In this
range, the maximum giant component is much bigger
than the rest of the components obtained. Filtering edges
from kw = 48 onwards leads to a much slower decrease
in the maximum component size. In this range, compo-
nents obtained for each filter are more homogeneous in
size. More than 48 coincidences with another user must
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reflect either some type of organization, or the fact that
there is a social link between users.

FIG. 9. Giant Component size decrease as a function of the
weight filter (edges being removed). The relative size of the
giant component for each case is obtained by the ratio be-
tween the number of nodes in the biggest component and
total number of nodes in the original co-retweet network. It
is important to note that we find a region (kw between 3-
40) approximately that appears to follow a power law. The
co-retweet network used in this figure was obtained using win-
dows of 1 hour.

V. CONCLUSIONS

Data availability has allowed only recently to study
with great detail social interactions. Twitter has the pe-
culiarity of allowing human and automatic users to par-
ticipate with different purposes. Different methods have
been proposed for detecting “bots”: accounts that try to
manipulate opinions through a variety of interventions.
Given the impact that social networks are having on col-
lective decision making, in issues related to elections, cli-
mate change, the COVID–19 pandemic, and many more,
it is desirable to have a better understanding of the dy-
namics and mechanisms at play in social media. From
our analysis, it can be seen that statistical methods can
be useful to detect different behaviors and clearly classify
most users according to them.

Summarizing, our data analysis shows that the RT net-
work is mostly made from nodes which are very differ-
ent from other social networks. In particular, we found
that only 1.4% of the nodes present a clustering versus
in-degree with a power-law behavior, typical for a social
network driven a feedback interaction process. More-
over, a time-window analysis of the co-retweet network
confirmed that the network is dominated by several non-
human superusers. Therefore, in this work we found a
relatively simple way to separate real social interactions
from other components of the lattice.

VI. METHODS

A. Data Mining Methodology

We used the tweepy [23] library for data collection due
to the ease of accessing the Twitter application program-
ming interface (API) and thus obtain the data in a simple
way. We collected tweets for about 3 weeks of the month
of May 2020 (6th− 21st). For tweet filtering, we decided
not to use the filter by geolocation because it is disabled
by default, and only about 1% of the collected users have
this option activated.

Subsequently, we apply a filter by pattern matching
words in the text of the tweets. Once the filter is gener-
ated, we extracted the names of all the users who issued
these messages, and used them as the basis for all subse-
quent analyzes. The filter helped us to identify the users
who participated in the discussion about the COVID–19
health-emergency in Mexico. We also kept the rest of the
messages to identify more general patterns of behavior.

We analyzed the data in two different ways: For Fig. 2,
we accumulate the connections obtained during the com-
plete period observed. For data in Fig. 5 we generate the
network of retweets for each day, in such a way that each
day the network is restarted and therefore each user be-
gins their clustering coefficient, in-degree and out-degree
from zero and in the end we simply collect the measure-
ments obtained from each day without carrying out any
operation on it.

B. Co-retweet network

The co-retweet network is generated by creating a bi-
partite network between the user and the message that
he retweets in a given period, we used periods of one
hour. Given this bipartite network, we generate a pro-
jection with weights towards users, in such a way that the
weight of the link gives us information on the number of
matches that relate both users.

To generate the co-retweet network we must generate a
two-party network, which is built from users who retweet
the same message in a defined time window. So on the
one hand, we have the user who makes the retweet and on
the other hand, the retweeted message. We generate the
link as long as they enter during the same time window.
Later on, we generate a weighted projection towards the
users. In this way, we obtain a weighted network that
shows us in the links which users coincided in retweeting
the same message in the same period of time and how
many times did they coincide in it.
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