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Abstract
In order to elucidate the presence of non-localized states in doped graphene, a scaling analysis
of the wavefunction moments, known as inverse participation ratios, is performed. The model
used is a tight-binding Hamiltonian considering nearest and next-nearest neighbors with
random substitutional impurities. Our findings indicate the presence of non-normalizable
wavefunctions that follow a critical (power-law) decay, which show a behavior intermediate
between those of metals and insulators. The power-law exponent distribution is robust against
the inclusion of next-nearest neighbors and growing the system size.

(Some figures may appear in colour only in the online journal)

Graphene is a two-dimensional atomic crystal [1] with
the highest known charge carrier mobility [2] and thermal
conductivity [3] at room temperature. Both properties indicate
graphene as a raw material for transistor use; however, the
‘graphenium inside’ era is quite far off [4]. Keeping in
mind the design of transistors, the problem turns out to
be how to alchemize it into a semiconductor [5–7]. One
alternative is to dope graphene. This leads immediately to the
question of quantum percolation in two dimensions, which
has been the subject of debate for many years [8, 9]. In the
literature, usually it is found that ‘there is no true metallic
behavior in two dimensions’ as a consequence of the fact
that all eigenstates are localized even when the disorder is
weak [10]. For graphene, there has been a debate about
this point [11–13]. Recently, disordered graphene has been
classified using arguments of symmetry around the Dirac
point [14]; this classification allows a minimal conductivity
behavior. Experimentally, the minimal conductivity was
measured for graphene doped with potassium [15, 16].
Furthermore, it has been found that a metal transition can
be observed when graphene is doped with H [17]. Also,
using a non-interacting electron model enriched with first-
principles calculation, a metal–insulator transition has been
found [18–20]. In this paper, we present numerical evidence
that shows a very interesting scenario. We have characterized
the probability distribution of the moments associated with

the wavefunction using the inverse participation ratios. The
scaling of this quantity is frequently used to discriminate
between an eigenstate being extended or localized. We
found states in doped graphene which do not follow the
usual exponential localization; instead, these are critical,
i.e., the wavefunction decays spatially as a non-normalizable
power law. This behavior evidenced the multifractality of the
wavefunction [21, 22]. Notice that in the original development
of the scaling theory, critical states were not considered [10].

As a model we use the tight-binding Hamiltonian,

H = −t
∑
〈i,j〉

c†
i cj − t′

∑
〈〈i,j〉〉

c†
i cj + ε

∑
`

c†
`c`, (1)

where the nearest neighbor, t = 2.79 eV, and next-nearest
neighbor (NNN), t′ = 0.68 eV, hopping parameters are
included; these values have been taken from [23]. The
impurity sites, `, have been distributed randomly in the lattice
with a concentration C, and ε is the impurity self-energy.

In order to investigate localization, we introduce the
inverse p-participation ratios (IPRs),

‖9k‖2p =

N∑
i

|9k(ri)|
2p, (2)

where 9k is the wavefunction associated with the eigenstate
k with energy Ek, which solves the Schrödinger equation
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Figure 1. The p = 2 IPR behavior as a function of N for several selected energies, using different impurity self-energies (from top to
bottom) and without and with NNN interaction (left and right columns, respectively). The selected energies are the Dirac point energy (ED,
(dark blue online) circles), the maximal localized state (EIM, (red online) triangles) and Ee = ED − 0.4t ((blue online) squares) for doped
graphene(d). In all cases, doped graphene has a 5% impurity concentration. For the state with energy Ee, we present in all cases the scaling
exponent that results from the fitting, shown in the figures with (blue online) lines. For comparison proposes, we include the case of pure
graphene for the energy E(p)e ((green online) diamonds). Each data point is obtained from an average over 95 disordered configurations.

H9k = Ek9k. The index i belongs to the sum over sites,
N is the total number of sites and p is an integer. When
p = 1, ‖9k‖2 = 1 because of the normalization condition.
If the wavefunction of the eigenstate follows the power law,
9(r)k ∼ |r|−α , the p-IPRs are scaled as [24],

‖9k‖2p '


N−(p−1)

(
0 ≤ α <

1
p

)
N−p(1−α)

(
1
p
≤ α < 1

)
,

N0 (1 ≤ α)

(3)

when p > 1. The N−1 behavior corresponds to a metal, while
N0 corresponds to an insulator. Notice that here N ∝ L2,
where L it is the length of the sample.

To evaluate equation (2), we calculated all the eigenvalues
and eigenvectors of H by numerical diagonalization. In order
to take the disorder into account in a proper way, for each
combination of self-energy, concentration, and sample size
without and with NNN interaction, we performed averages
over 95 disordered realizations. Since for any given disordered
realization and for a finite-size lattice, the spectrum is discrete,
the energy eigenvalues are never equal to the chosen value of
the energy (more precisely, the probability of coincidence is
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Figure 2. Integrated distribution of exponents for different impurity configurations using lattices with N = 16 928 sites. Extended states are
at γ = −3 and localized ones at γ = 0. We observe that for pure graphene ((green online) diamonds), the distribution is a step function at
γ = −3; meanwhile for doped graphene the distribution is shifted and it is no longer a step function. Each data point is obtained from an
average over 35 disordered realizations.

almost zero). Thus, we compute ‖9k‖2p by averaging over
an energy window around the chosen energy, by counting the
number of states which fall into the window [21, 25]. We
verified that the final results do not change much with the
width of the window. In this work, we used an energy window
of 0.02t. To test the convergence of the data, we performed
arithmetic and geometric averages. The two approaches gave
us similar results, but here we only present the arithmetic
averages. Thus, the number of samples used can be considered
as reasonably reliable. The p = 2 IPR behavior is shown
in figure 1 as a function of N for several selected energies,
using different impurity self-energies without and with NNN
interaction. For the energy Ee = ED − 0.4t, far from the
Dirac energy, we compare the behavior for pure graphene
((green online) diamonds) with doped graphene ((blue online)
squares). For pure graphene, the state is extended since the
p = 2 IPR goes like N−1, as shown in figure 1. For doped
graphene, is clear that the p = 2 IPR can be fitted with a line,
which suggests a non-localized, power-law behavior, which
is the main result of this work. Near the Dirac energy, it is
known that resonant states can appear at an energy Er obtained
by solving the corresponding Lifshitz equation, using the pure
graphene Green’s function [26, 27]. These resonant states are
well characterized when ε is bigger than the bandwidth, and
leads to a tendency for increased localization at the band
center due to frustration effects [28]. To test this point, in
this work we took an energy window around Er. Then we

selected the energy value EIM for which p = 2 IPR is at the
maximum in the window, and we performed an averaging
over disordered realizations. This allows following the most
localized state. For these states, EIM, shown in figure 1 as (red
online) triangles, the p = 2 IPR scales as ∝ N0, suggesting
localized states (notice that for ε = −2t, the solution of the
Lifshitz equation is not necessarily a resonant state; however,
here we treat this case like the others). From this scaling
analysis is clear that doped graphene, even in the absence of
NNN interaction, presents a rich localization behavior, as has
been suggested in [29], due to frustration effects [28], as well
as in experiments [17].

In order to obtain the exponent distribution of the
power-law behavior, we introduce the integrated distribution
of exponents [24],

I(γ ) =
1
N

∑
k

2(γ − logN[‖9k‖8]), (4)

where 2 is the step function. It is worth mentioning that one
can also define I(γ ) using any p value. However, it is better
to use a high p to obtain a better approximation for α in
equation (3). In this work, we use p = 4 since it narrows the
interval for the possible values of α, and at the same time, it
is numerically more stable than higher values. Since we are
dealing with disorder, to compute I(γ ) we used two methods
which give very similar results: first ‖9k‖8 was obtained after

3



J. Phys.: Condens. Matter 24 (2012) 255305 J E Barrios-Vargas and G G Naumis

Figure 3. Example of the integrated distribution of exponents for different sample sizes using a fixed concentration of impurities (5%) with
self-energy ε = −6t. The left panel corresponds to the model without NNN interaction, and the right panel, that with NNN. Pure graphene
is also shown, corresponding to the jump at γ = −3.

averaging over disordered realizations, and then I(γ ) was
computed; in the second method, I(γ )was computed by using
all the ‖9k‖8 resulting from the realizations. The exponent
distribution is plotted in figure 2, averaging over 35 disordered
configurations for several impurity types and two different
concentrations, 1% and 5%. For pure graphene, all the states
have the same scaling behavior, and a step is observed at
γ = −3. This means that all states have the same scaling,
and thus all are extended, as expected from Bloch’s theorem.
However, for doped graphene, we observe two main effects.
First there is a shift to higher values of γ and, second, the
jump is no longer a discontinuity. Instead, we observe states
that have a distribution of γ values. In all cases, we observed
that the minimal value of γ is approximately −5/2, which
means that the most extended states follow a power law that
goes as r−3/8. States with γ ≈ 0 are exponentially localized.
Since no clear jump is observed in the values of γ , it seems
that there is a range of values for the exponents of the critical
wavefunctions. Also, it is worth mentioning that the presence
of the NNN interaction preserves this behavior, which allows
its experimental verification since the NNN is always present.

To verify that such behavior is preserved as the system
grows, in figure 3 we present the distribution I(γ ) for different
sample sizes. We can observe that the behaviors are similar
at all sizes, although I(γ ) moves slightly to the left as N
grows, i.e., towards low values of gamma instead of to higher
values as a function of the lattice sizes, indicating that we are
moving away from having localized states, in clear contrast
to what we expect for a generic disordered 2D electron gas.
From this analysis, we can conclude that there are many
non-exponentially localized states, and that the power-law
behavior is not a finite-size lattice effect. From the values of
γ , we see that these states are critical and non-normalizable.
Finally, a careful check of such states reveals that localized
states are near the Dirac point and at the band edges, while the
power-law non-normalizable states are near the middle part of
the valence and conduction bands, in agreement with previous
theoretical arguments [28, 29].

In conclusion, using a scaling analysis of the participation
ratio, we have shown that the presence of disorder in graphene
does not exponentially localize all states; instead, some states
are critical with a distribution of exponents. This result is
robust against the inclusion of NNN interactions, in which the
chirality is not preserved. Although it is quite surprising that
the localization behavior presented is qualitatively different
from the usual 2D case, that is exponential localization in
contrast to the power law found, the honeycomb lattice
has some specific symmetries which makes the problem
essentially different from that of a generic disordered 2D
electron gas [22, 28]. This result is not only important for
graphene, but also leads to a revival of an old discussion
concerning the possibility of having anomalous quantum
percolation in two-dimensional systems [8, 9].
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