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The appearance of a pseudo-gap and the build up of states around the Dirac point for doped graphene
can be elucidated by an analysis of the density of states spectral moments. Such moments are calculated
by using the Cyrot-Lackmann theorem, which highlights the importance of the network local topology.
Using this approach, we sum over all disorder realizations up to a certain radius to show how the spectral

at the Dirac point. Such states are important for the magnetic properties of graphene, and are calculated
as a function of the doping concentration. By removing these states in the count of the spectral moments,
it is finally seen that the density of states increases its bimodal character and the tendency for a pseudo-
gap opening. This result is important to understand the trends in the magnetic and electronic properties
of doped graphene. In graphene with vacancies, the same ideas can also be useful to isolate in a rough
way which effects are due solely to topology.

& 2013 Elsevier Ltd. All rights reserved.
Graphene is currently a ‘rising star’ in condensed-matter
physics [1]. Mainly, because it is the first truly two-dimensional
crystal [2], and has a high electrical [3] and thermal conductivity
[4]. These properties place graphene as an ideal candidate for a
new electronic, based in carbon, to replace silicon. The problem is
that graphene is not a semiconductor. However, it has been shown
that graphene can present a change from metal to insulator when
it is doped by adsorbed H [5], as was also predicted by using
arguments on frustration due to the graphene's underlying trian-
gular symmetry [6,7]. It is important to remark that such theore-
tical results, were performed under the supposition that hydrogen
is bonded to graphene covalently with the 2pz orbital, and very
roughly, it confines the wave function spatially like a vacancy [8,9].
Although this approach may seems too simplistic, it has been
useful to predict localization tendencies and the size of a pseudo-
gap [6], in good agreement with experimental data [5]. More
recent detailed calculations show that in fact, vacancies and
impurities are different, both requiring a fine tuning of the tight-
binding Hamiltonian [10,11], instead of using an infinite self-
energy at impurity sites. For example, nitrogen and boron have a
scattering potential with a extension larger than 10 shells of
neighbors [10]. However, the exercise of considering impurity
sites with infinite self-energy is interesting because it allows to
understand which effects are due solely to the honeycomb lattice
topology. For low concentration of impurities, this procedure leads
to resonant states near the Dirac energy [12], ED, which coincides
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with the Fermi energy for a zero bias potential. For higher
concentrations, a region of localized and critical states appears
[6,13]. Such critical states are believed to be multifractal [13].
Numerical simulations suggest that a pseudo-gap is open at the
Dirac point [6]. On the other hand, in the middle of the pseudo-
gap, states appears as the impurity concentration raises. Such
states are important to understand the diamagnetic properties of
graphene [14]. Some of these features are robust against the
specific parameters of disorder since they only depend on general
symmetry arguments [15]. So for example, more detailed calcula-
tions will shift the pseudo-gap or its size, but the basic mechanism
is provided by topology [6,7]. More refined results can be obtained
by performing a systematic series expansion for finite impurity
self-energy. Here we present only the first and dominant term of
such serie, others are corrections to it. Also, renormalization
techniques can be used to treat local disorder in non-diagonal
elements [6,13].

In the same spirit, here we show that the appearance of the
pseudo-gap and the build up of states around ED can be elucidated
by an analysis of the spectral moments [16] which highlights the
importance of the network local topology. Furthermore, this
method allows to count the number of states at ED as a function
of the concentration, and explain them, above the percolation
threshold, as strictly confined states in local clusters.

As a model, consider the graphene's honeycomb lattice with
substitutional impurities placed at random with a uniform dis-
tribution. The corresponding tight-binding Hamiltonian for the
electron in the π orbital is given by [17],

H¼ −t∑
〈i,j〉

ji〉〈jjþε∑
l

jl〉〈lj, ð1Þ
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where the first sum is over nearest neighbors, t¼2.79 eV is the
hopping energy [18], and the second is over every impurity sites
with self-energy ε. The number of impurities sites, Nimp, is
determined by the concentration C ¼Nimp=N, where N is the total
sites on the honeycomb lattice. It is well known that for pure
graphene (ε¼ 0), the density of states (DOS) is bimodal, i.e., the
two Van Hove singularities dominate in the DOS. We will show
that the bimodal behavior tends to increase when the concentra-
tion is increased, although one must be careful since states at the
middle of the spectrum (at ED) have a weight that needs to be
removed first.

To prove this, we will consider here the moments of the DOS
function ρðEÞ. The spectral moments are defined as

μðnÞi ¼
Z ∞

−∞
ðE−HiiÞnρiðEÞ dE: ð2Þ

These moments can be calculated by counting closed paths that
start and return at the same lattice site i, as was shown by Cyrot-
Lackman [19],

μðnÞi ¼ 〈ijðH−HiiÞnji〉, ð3Þ

since the right hand term of the equation corresponds to the
number of paths with n steps that return to the original site i.

There is a dimensionless parameter to measure the tendency of
the local DOS (LDOS) to open a pseudo-gap at its center [19],

si ¼
μð4Þi μð2Þi −ðμð2Þi Þ3−ðμð3Þi Þ2

ðμð2Þi Þ3
ð4Þ

If si≥1 the LDOS is unimodal; meanwhile, if sio1 the LDOS is
bimodal, and has a tendency for a pseudo-gap opening at the
center [19].

Also, it is important to remark that here, no self-energy Hii was
considered for carbon atoms in the unperturbed Hamiltonian.
Thus, the zero energy has been chosen to coincide with the
vertices of the Dirac cone at ED. As a result, the spectrum is
symmetric around E¼0. The real spectrum can be readily obtained
by an energy shifting, as usually done in all works concerning
graphene.

Let us now consider first the case of pure graphene. The sites
are undistinguished, i.e. DOS¼LDOS, and therefore we can toggle
off the site index i and calculate the moments. It is easy to see that
•

Fig
pan
are
site
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com
μð0Þ ¼ 1 due to the normalization condition.

•
 μð1Þ ¼ 0.

•
 μð2Þ ¼ 3t2 and is proportional to the coordination of each site,
Z¼3 (Fig. 1).
•
 μð3Þ ¼ 0, because the electron can not return to the original site
with 3 steps. The same holds for any odd spectral moment.
Thus, any bipartite lattice always has a symmetric spectrum, as
for example, in the Penrose lattice (vertex model) [20].
. 1. (Color online) Sketch of the path counting for the honeycomb lattice. Left
el, a two step path that returns to the original site. Right panel, four step paths
divided in revisiting (red and orange), and no revisiting (green) to the original
. The red paths go from the origin to a neighboring site and come back and visit
same site neighbor. The orange paths go from the origin to a neighboring site,
e back and visit another neighbor.
•
 μð4Þ ¼ 15t4 after counting the four steps paths (Fig. 1), that
revisit and not revisit the original site.

From the previous considerations, s¼2/3 for pure graphene,
and this value corresponds to a bimodal DOS.

If there is a concentration of impurities, C, the problem is much
more difficult. However, here we are interested in impurities
which take one electron from the π orbital leaving almost a hole.
We will model this case assuming t=ε51. It is important to remark
that more detailed calculations show that impurities or vacancies
present a more complex behavior. For example, nitrogen and
boron involve a significant modification of the diagonal elements
of the matrix only, while a vacancy can be modeled [10] using
ε¼ 10 eV and tı; ¼ 1:9 eV (compared with t¼2.7 eV for pristine
graphene). Here we will consider the case t=ε51. In spite of this,
one can include in a natural way a smaller ε by performing a series
expansion in powers of t=ε using the same techniques [21]. Thus,
here we are computing the lowest order term of the serie. This
case corresponds to the split band limit, and bands are suitable to
be studied in a separate way [21]. The reason is that the
wavefunctions of the graphene band do not have amplitude on
impurities, while for the impurity band the opposite is true. This
can be proved in general, and corrections are easy to find using a
t=ε expansion of the wavefunction [21]. Here, we will restrict our
calculations to the graphene band, using a restricted Hamitonian,

Hcc ¼ −t ∑
〈i,j〉∈cc

ji〉〈jj, ð5Þ

where the sum over i and j is carried only over carbon sites
(indicated by the subindex cc), with DOS ρccðEÞ. A similar Hamil-
tonian can be written for the impurity band, Hib with DOS given
by ρibðEÞ. The total DOS is ρðEÞ ¼ ρccðEÞþρibðEÞ. In what follows, we
will consider only the DOS and spectral moments of Hcc, so for
simplicity, we drop any subindex cc. The impurity band can be
easily obtained from Hcc by considering the behavior for concen-
trations 1−C and a shift of the spectrum by ε.

Now we define the moments averages over all disorder
realizations, i.e., for all the possible combinations of impurities
sites (l) and carbon sites as

〈μðnÞ〉¼ ∑
j1 ,…,jn−1≠l

Pði,j1,…,jn−1Þ

�Hi,j1Hj1,j2…Hjn−1 ,i ð6Þ

where Pði,j1,…,jn−1Þ is the probability of each path made only from
carbon atoms.

In order to obtain 〈s〉, we need to calculate 〈μð2Þ〉 and 〈μð4Þ〉. Again
〈μð3Þ〉¼ 0 since the lattice defined on pure carbon sites is bipartite.
Notice that this property only holds for t=ε51. Now we perform
the calculation of the first moments by summing over all statistical
realizations of disorder.

The second moment, 〈μð2Þ〉, can be counted by noting that there
are four possible configurations with impurities and non-
impurities for nearest neighbors (Fig. 2). Following the diagram
in the figure, it is easy to see that the statistical distribution of
configurations is a binomial. It follows that the second moment is
just the average coordination of the network (〈Z〉), obtained from
the binomial distribution:

〈μð2Þ〉¼ t2 ∑
3

Z ¼ 0

3
Z

� �
C3−Z ð1−CÞZZ ¼ 3t2ð1−CÞ: ð7Þ

where Z denote the coordination of a site. This value gives an
excellent approximation to the graphene band width.

For the fourth moment, we chose a Carbon site and again we
divide our count on paths which revisit the original site and those
which do not revisit. Fig. 3 shows schematically the possible



Fig. 2. (Color online) Outline of the count of two step paths. P is the probability of
the configuration and Paths denotes the number of paths for each configuration
with the same statistical weight. The open circles denote carbon sites, and the
crosses, impurity sites which have zero amplitude for energies in the Carbon band.
The starting site is the filled circle.

Fig. 3. (Color online) Outline of the path counting that revisit the original site using
four steps. P is the probability of the configuration and Paths denotes the number of
paths for each configuration. The red paths go from the origin to a neighboring site
and come back and visit the same site neighbor. The orange paths go from the
origin to a neighboring site and come back and visit another neighbor site. The
open circles correspond to carbon sites while impurity sites are denoted by crosses.

Fig. 4. (Color online) The dimensionless parameter 〈s〉 and 〈s*〉 as a function of C.
The lines correspond to the analytical calculation using Eqs. (11) and (15). The
symbols are obtained from the numerical calculation, showing an excellent
agreement with the analytical results. If 〈s〉≥1 the DOS is unimodal, meanwhile if
〈s〉o1 the DOS is bimodal. Once the zero energy states are removed, 〈s*〉 shows a
decreasing bimodality indicating a pseudo-gap opening.
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configurations and paths that revisit the original site, hence,

Revisit¼ t4 ∑
3

Z ¼ 0

3
Z

� �
C3−Z ð1−CÞZZ2 ¼ 3t4ð1−CÞð3−2CÞ: ð8Þ

The paths which do not revisit the original site can be
calculated noting that those are classified into two basic config-
urations, one with a maximum possible coordination Z¼3 and a
second with Z¼2. Therefore,

No revisit¼ 3t2ð1−CÞ � 2t2ð1−CÞ ¼ 6t4ð1−CÞ2: ð9Þ
Thus, 〈μð4Þ〉 is given by

〈μð4Þ〉¼ RevisitþNo revisit¼ 3t4ð1−CÞð5−4CÞ: ð10Þ
Finally, the averaged dimensionless parameter is

〈s〉¼ 1
3

2−C
1−C

� �
: ð11Þ

which is plotted in Fig. 4 as a function of the impurity concentra-
tion. Also, in the same figure we show the dimensionless para-
meter 〈s〉num, calculated numerically from a direct diagonalization
of the Hamiltonian. Such diagonalization was performed using
periodic boundary conditions in all directions. The results were
done in an ensemble of 100 disorder realizations, for lattices of
20,000 sites using ε¼ 104. To perform the diagonalization, the
Intel Math Kernel Library was used. Finally, the moments were
calculated using that

〈μðnÞ〉¼ 1
N
∑
N

m
Enm, ð12Þ

where the index m is such that Em belongs to the cc band, i.e.
Em∈ð−3t,3tÞ. As can be seen, the match between the numerical
results and our local topology analytical computation is excellent.

Paradoxically, we have found that the DOS becomes unimodal
when the impurity concentration is greater than 0.5, a fact which
seems to suggest that the DOS around the center of the spectrum
is rising. To solve this conflict, we observe that impurities lead to a
peak at zero energy, i.e., at the Dirac energy. Notice that only when
the impurity self-energy is infinite, one gets strictly a peak at zero,
since the solution of the Lifshitz equation for resonant states [7]
goes to zero as 1=ε. Thus, in the case of big but finite ε, the solution
can be slightly shifted from zero. We have verified this point by
using different values of ε, and the shifting of the DOS to higher
frequencies is reduced systematically. It is known that states at
zero frequency are due to an imbalance between impurity sites on
each of the sublattices [22]. In general, their number is just given
by NA−NB where NA and NB is the number of impurities on each of
the graphene's bipartite sublattices, usually denoted by A and B.
For these states, the amplitude is zero on each sublattice, as
required from a simple renormalization of the Hamiltonian [6,7].
Such states are known to occur in other bipartite lattices, like in
random binary alloys [21,23] or in the Penrose lattices [20]. Here
we calculate the number of such states, and at the same time, we
will consider a modified density of states, DOS*, which does not
take into account these states. In such a way, we can separate the
behavior of the DOS depending whether one includes or not the
weight of confined states. The moments of the DOS* can be
calculated by excluding zero energy states

〈μðnÞ*〉¼ 1

N*
∑
N*

m
Enm: ð13Þ

where N* is the total number of sites with energy different from
zero. This moment can be related to the previous

〈μðnÞ*〉¼ N

N*
〈μðnÞ〉¼ 1

1−f 0
〈μðnÞ〉, ð14Þ

where f 0≡ðN−N*Þ=N is the density of states for energy zero. f0 is
function of the concentration, C. Hence, we can evaluate the
parameter 〈s*〉 as

〈s*〉¼ ð1−f 0Þ〈s〉−f 0: ð15Þ

〈s*〉 also is plotted in Fig. 4 as a function of the impurity
concentration using two ways of computing f0, one using a direct
count form diagonalization and the other using an approximation
detailed below. Note that 〈s*〉→0 when C→1. This indicates that the
DOS* tends to increase its bimodality, and results in a pseudo-gap
in the DOS. Numerically, the evolution of the DOS can be shown in
Fig. 5, where it is clear how the central peak of confined states
grows with the number of impurities, while a pseudo-gap appears.
From a physical point of view, the pseudo-gap, the Van Hove
singularity and the central peak are due to the underlying
triangular symmetry of the lattice, which leads to frustration,
and as usual, there is a pushing of states while degeneration
increases [7].



Fig. 5. (Color online) DOS of the carbon band for different concentration of
impurities, as obtained from diagonalization averaging over 100 realizations of
disorder for a network of N¼20,000 sites, using ε¼ 104.

Fig. 6. (Color online) Sketch of the clusters with confined states and its contribu-
tion to the fraction of states at energy zero as a function of C. Carbon sites are
denoted by circles, and impurities by crosses. Around any carbon site, the sum of
the neighbors amplitudes is zero.

Fig. 7. (Color online) Fraction of states at zero energy, f0 as a function of the
impurity concentration obtained from numerical diagonalization of the Hamilto-
nian, compared with the one atom cluster (f ð1Þ0 ) approximation, and the inclusion of
three atoms clusters (f ð3Þ0 ) and six atoms clusters (f ð6Þ0 ). The Pereira et al. formula
[22] given by Eq. (16) and the interpolation given by Eq. (17) are also shown for
comparison.
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Finally, in order to estimate the number of states at energy
zero, we observe that their number depends on NA−NB as has been
previously explained. However, the problem is how to compute
NA−NB as a function of the concentration. For the very low
concentration range, Pereira et al. [22] gave the following
expression:

PðCÞ ¼ C2

ð1−CÞ ð16Þ

Notice that we modified the original expression found by
Pereira et al. [22] by a C, since our results are normalized only to
one of the subbands. In Fig. 7 we compare Eq. (16) with our
numerical results, showing a good agreement only for Co0:2. For
higher values, the formula does not fit at all the numerical results.
The disagreement is due to the fact that near the percolation
threshold, zero states are dominated by clusters delimited by
impurities, as shown in Fig. 6. These states are confined and occur
in pure carbon atom clusters with the property that the wave
function is zero in the boundary of the cluster. Thus, it is natural to
start looking for these clusters in the limit C→1. Zero energy states
in clusters have three properties: (1) the amplitude in one of the
bipartite sublattices is zero, (2) the sum of the amplitude of all
neighbors for any site is always zero, and (3) impurities act as
zeros. We can calculate the contribution of the smallest atoms
clusters, which are the most probable as C→1, and compare with
the numerical result. Schematically, the few atoms clusters are
shown in Fig. 6, together with its contribution as a function of the
impurity concentration.

The fraction of states at zero energy taking into account the
smallest clusters are specifically:
•
 for one atom f ð1Þ0 ¼ C3,

•
 up to three atoms f ð3Þ0 ¼ C3þ3C5ð1−CÞ2,

•
 up to six atoms f ð6Þ0 ¼ C3þ3C5ð1−CÞ2þC6ð1−CÞ3þ6C7ð1−CÞ4
þ15C8ð1−CÞ5.
These contributions of few atoms clusters are compared in
Fig. 7 with the fraction obtained from diagonalization. As
expected, for C close to one, the one atom cluster (f ð1Þ0 ) gives an
excellent approximation, while the inclusion of three atoms
clusters (f ð3Þ0 ) and six atoms clusters (f ð6Þ0 ) allows to obtain a better
approximation as C goes to zero. It is clear that this analysis
requires bigger and bigger clusters, making the calculation much
more difficult as C→0. However, since we have the solution found
by Pereira et al., it is better to perform an interpolation in between
both limits. By using the Levenberg-Marquardt algorithm [24],
we obtain

FðCÞ ¼ C2ð1−CÞα−1þ f ð6Þ0 Cα ð17Þ
with α¼ 1:73. The comparison between Eq. (17) and the numerical
results appears in Fig. 7, showing a very good agreement in the
whole concentration range.

In conclusion, we have obtained analytically the first spectral
moments of doped graphene, and the approximate number of
states at the Dirac energy. By removing these states, it is possible
to see a tendency to open a pseudo-gap as a function of an
increased concentration of impurities. The states at the Dirac point
and the pseudo-gap are important to determine the magnetic and
electronic properties of doped graphene.
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