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The next-nearest neighbor interaction (NNN) is included in a tight-binding
Kubo formula calculation of the electronic spectrum and conductivity of
doped graphene. As a result, we observe a wide variation of the behavior of
the conductivity, as happens in carbon nanotubes, since the Fermi energy
and the resonance peak are not shifted by the same amount when the NNN
interaction is included. This finding may have a profound effect on the idea
of explaining the minimal conductivity of graphene as a consequence of
impurities or defects. Finally, we also estimate the mean free path and
relaxation time due to resonant impurity scattering.

Keywords: graphene; disorder in graphene; electrical conductivity in
graphene; electronic conduction; electronic density of states; electronic
transport; mobility; tight-binding Hamiltonians; carbon nanostructures;
carbon thin films; carbon-based materials

1. Introduction

Graphene has attracted a lot of interest since its experimental discovery in 2004 [1].
The interest in this carbon allotrope [2] is partly due to its room-temperature
transport properties [3], as for example the high electronic mobility [4] and thermal
conductivity [5], profiling nano-devices based on graphene [6]. From the theoretical
viewpoint, charge carriers are described by massless Dirac fermions [4,7] as a
consequence of the crystal symmetry. However, in the construction of electronic
nano-devices, the use of pure graphene presents difficulties. For example, the
conductivity is difficult to manipulate by means of an external gate voltage, which is
a desirable feature required to build a FET transistor. This performance is related to
the Klein paradox in relativistic quantum mechanics [7], or from a more standard
outlook, as a consequence of the zero band gap. There are many proposals to solve
this problem; for instance, by using quantum dots [8], a graphene nanomesh [9], an
external electromagnetic radiation source [10,11] or by doping using impurities [12].
In fact, in a previous paper we showed that impurities lead to a metal–insulator
transition since a mobility edge appears near the Fermi energy [12]. This prediction
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has been confirmed in doped graphene with H [13], which opens the possibility to
build graphene-based narrow gap semiconductors [12]. Other groups have shown

that graphene exhibits n-type semiconductor behavior when doped with N, Bi or
Sb atoms; and p-type semiconductor behavior using B or Au atoms [14,15].
Still, there is much debate regarding the nature of the mobility transition, since in

two-dimensional (2D) scaling theory, it is predicted that all states are localized in the
presence of a finite amount of disorder [16,17].

The appearance of a mobility edge has its origins in the presence of resonant
states when low impurity concentrations are considered [12]. Both type of states,

localized and resonant, have an enhanced amplitude in the neighborhood of the

impurity. Nevertheless, resonant states only trap electrons during a short time. Using

a nearest neighbor (NN) tight-binding model, resonant states have been reported

near the Fermi energy [18]. Furthermore, an approximate analytical expression was

found for the resonant energy as a function of the impurity energy using the Lifshitz

equation [19,20]. Pereira et al. [18] also noted that there is a slight difference between

the resonance energy obtained from the Lifshitz equation, and the actual localization

of the sharp resonance in the density of states (DOS) when the impurity energy is not

so strong [18]. It is necessary to remark that only impurities with a self-energy greater

than the band width are able to produce resonant states [21]. The presence of next-

nearest neighbor interaction (NNN) shifts the Fermi energy and breaks the electron–

hole symmetry [22]. Including NNN interaction, the DOS displays a sharp peak

when a vacancy is considered like an impurity in the lattice [23]. Moreover, this peak

is smeared by the NNN.
The central topic of this work is to emphasize the different kinds of behavior in

the electrical conductivity due to resonances when NNN interactions are included, as

happens in carbon nanotubes [24]. Usually, the NNN interaction is not taken into
account in graphene tight-binding calculations [25], so here we propose a systematic
study of the subject. This study is important because there is a debate concerning

which mechanisms determine the charge carrier mobility [26,27], as well as the nature
of the minimal conductivity [3]. As we will see, an impurity can produce a sharp peak
or a smoothing effect in the electrical conductivity, depending on the charge doping,

temperature, strength of the impurity scattering and the value of the NNN
interaction. The interplay between such factors is subtle since, for example, the Fermi
level and the resonance energy are not shifted by the same amount when the NNN
interaction is included. It is worthwhile mentioning that the electrical conductivity at

high temperatures is determined basically by the electron–phonon interaction [28],
while here we discuss only scattering by impurities. Thus, our results are relevant for
basically low temperatures. However, this case is important to explain the weak

temperature dependence of the conductivity, which is proportional to the carrier
concentration [4,29].

The layout of this work is the following. In Section 2, we describe the model and
the perturbative approach used to calculate the Green’s function for a NNN tight-
binding Hamiltonian of doped graphene. Section 3 describes the calculation of

Green’s function of pure graphene, which is used in Section 4 to calculate the
resonant energies. Section 5 contains the electrical conductivity calculations using the
Kubo–Greenwood formula. Finally, in Section 6 we present the conclusions.
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2. Model

As a model, we consider a pure graphene tight-binding Hamiltonian with
substitutional impurities at very low concentrations. Since there are no correlations
between impurities and the impurity concentration is very low, we can reduce the
problem to a single localized impurity in a graphene lattice. The behavior for a given
low concentration can be found by a simple implementation of the virtual crystal
approximation (VCA) [30]. Also, we will use the fact that the graphene’s honeycomb
lattice is formed by two triangular interpenetrating sublattices, denoted A and B [22].
The corresponding tight-binding Hamiltonian is

H ¼ H0 þH1 ð1Þ

H0 ¼ �t
X
hij ji,�

ay�,ib�,j þ by�,ja�,i

� �

� t 0
X
hhij jii,�

ay�,ia�,j þ by�,ib�,j þ ay�,ja�,i þ by�, jb�, i

� �
ð2Þ

H1 ¼ " ay�, la�, l

� �
or H1 ¼ " by�, lb�, l

� �
, ð3Þ

where a�, i (ay�, i) annihilates (creates) an electron with spin � (�¼",#) on
site i at position Ri on the A sublattice (an equivalent definition is used for the B
sublattice), t(�2.79 eV) is the NN hopping energy, and t0(�0.68 eV) is the NNN
hopping energy [31]. " is the energy difference between a carbon atom and a foreign
atom, and l is the impurity position.

Usually, the resonances are characterized by looking at the Green’s functions (G)
of H. Expressing G as a perturbation series in terms of G0 (which is the Green’s
function corresponding to the unperturbed Hamiltonian H0), a closed expression is
obtained for the local density of states (LDOS) in the impurity site l [30],

�ðl;EÞ ¼
�0ðl;EÞ

j1� "G0ðl, l;EÞj
2
, ð4Þ

where G0(l, l;E ) and �0(l;E ) are, respectively, the Green’s function and the LDOS on
site l with H0.

The term j1� "G0(l, l;E )j2 cannot become zero for E within the band. However,
for certain values of ", this term is near to zero for a given E�Er. Then, a sharp peak
in the LDOS will emerge around Er. This Er is associated with a resonant state
inasmuch as there is a different impurity energy level. If Im{G0(l, l;E)} is a slowly
varying function of E (for E around Er), then the resonant energy will be given as a
solution of the Lifshitz equation,

1� "Re G0ðl, l;EÞ
� �

� 0: ð5Þ

Furthermore, if the derivative of Re{G0(l, l; E)} does not have a strong dependence
on E near Er, then [30],

1

j1� "G0ðl, l;EÞj
2
�

�2

ðE� ErÞ
2
þ �2

, ð6Þ
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where � corresponds to the width of the impurity resonance,

� ¼
jIm G0ðl, l;ErÞ

� �
j

jRe G00ðl, l;ErÞ
� �

j
: ð7Þ

Thus, the resonant state effect is sketched by its location, Er, in Equation (5), and
its width, �, in Equation (7). These characteristics of the resonant state are inherited
from the behavior of the Green’s function, which is presented in the next section.

3. Green’s function of pure Graphene with NNN interaction

To solve the Lifshitz Equation (5), we need to obtain the Green’s function for
graphene with NNN interaction. Notice that analytical expressions are only
available for the NN interaction [32], and not for the NNN interaction. The
Green’s function can be obtained from,

G0ðEÞ ¼
1

N

X
k21BZ

1

Eþ is� EðkÞ

" #
, ð8Þ

where s� 1 and EðkÞ is the dispersion relationship of Equation (2), and is given
by [22],

E�ðkÞ ¼ �t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ f ðkÞ

p
� t0f ðkÞ , ð9Þ

f ðkÞ ¼ 2 cos
ffiffiffi
3
p

kya
� �

þ 4 cos

ffiffiffi
3
p

2
kya

� �
cos

3

2
kxa

� �
, ð10Þ

where the minus sign applies to the valence band and the plus sign to the
conduction band. Around the Dirac point (K or K0), the momentum can be written
as k ¼ Kþ q, where q is a small vector. Then, Equation (9) up to second order is
given by [22],

E�ðKþ qÞ � 3t0 �
3ta

2
jqj

�
9t0a2

4
�
3ta2

8
sin 3 arctan

qx
qy

� �	 
� �
jqj2 , ð11Þ

where a is the carbon–carbon distance (a� 1.42 Å).
To compute Equation (8), we used a square mesh in the first Brillouin zone of the

reciprocal space to evaluate the sum over states. The results are presented in

Figure 1. In Figure 1a, we show the result when the NNN behavior is absent (t0 ¼ 0).
For the case of pure NN interaction, the obtained Green’s function is in excellent
agreement with the analytical formula [32], while for the NNN interaction, our
results are similar to those obtained by other groups [18]. Notice how at zero energy
(corresponding to the Fermi energy for pure graphene, E 0

F), the imaginary and real
parts of the Green’s function cross at zero energy, resulting in a symmetrical
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behavior for " around E¼ 0, Equation (5). This symmetry is broken when t0 6¼ 0, as

seen in Figure 1b. This is due to the fact that the real part of the Green’s function no

longer crosses the zero at E0
F ¼ 3t0; this energy value matches with the zero value of

the imaginary part.

4. Green’s function of a single impurity in graphene

Once the Green’s function G0 for pure graphene is known, we can compute G in

order to describe the resonant states. In the following subsections, we present the

corresponding results.

4.1. Local density of states

The LDOS can be calculated from Equation (4), since

�0ðl;EÞ ¼ �
1

�
Im G0ðl, l;EÞ
� �

: ð12Þ

Using the calculated G0, and considering strong impurities, i.e. "/t4 3, in Figure 2

we can see that the LDOS exhibits a peak at certain resonant energies for two

combinations of impurity self-energies " and different NNN interaction t0. An

evident characteristic is that the resonant energy has a shift depending on the t0

parameter. This is a consequence of the shift in the ordinate axis of Re {G0(l, l; E)},

as observed in Figure 1. Another characteristic that corresponds to the sharpest

LDOS behavior emerges when Er is near E
0
F. From Figure 2, it is clear that the NNN

interaction radically changes the resonance properties when compared with the NN

case. Therefore, the NN interaction is not enough to describe the behavior of the

doped system. To see this, in the following section we calculate the position of the

resonant energy and the resonance width.

–0.4

–0.2

0

0.2

G
0(

E
)

E/t

t = 0t

(a)

–0.4 –0.2 0 0.2 0.4 0.4 0.6 0.8 1
E/t

t = 0.2437t

(b)

Re{G0(E)}
Im{G0(E)}

Figure 1. (a) Green’s functions with nearest neighbor interaction and (b) with next-nearest
neighbor interaction. (The square mesh in the first Brillouin zone that was used to calculate
G0(l, l; E) is uniform and contains N¼ 7.5� 107 points, and s¼ 2� 10�3.)
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4.2. Resonant energy

In order to obtain Er, we need to solve the Lifshitz Equation (5). As a result, in

Figure 3 we present the energies Er that satisfy Equation (5) as a function of " for

different sets of t0. The main effect of the NNN interaction is a shift proportional to

t0, as expected from the first correction to the NN interaction in Equation (11).

However, the curvature of Er(") in Figure 3 exhibits a slight difference as the NNN

hopping energy varies. Additionally, in the same figure we plot the Fermi energy EF
0

for pure graphene including the NNN interaction for a certain " at which the

Fermi energy lies exactly at the resonance LDOS peak. In other words, the circles in

Figure 3 are the values of the parameters " and t0 where the electronic properties are

most affected, since electrons at the Fermi level have the exact energy of a resonant

–0.4

0

0.4

0.8

1.2

–0.4 0 0.4 0.8

E
r/

t

t/ε

t„ = 0.00t
t„ = 0.10t

t„ = 0.2437t
E0

F/t

Figure 3. The Er¼Er(") curve defined by the Lifshitz Equation (5), for different values of the
NNN interaction t0. The Fermi energy for pure graphene including NNN interaction, E0

F, is
identified by a circle. (The parameters used to generate the graphs are the same as those used
in Figure 1.)

0

0.1

0.2(a) (b)

–0.4 –0.2 0 0.2 0.4 –0.4 –0.2 0 0.2 0.4
LD

O
S

(E − EF)/t

ε/t = 10

(E − EF)/t

ε/t = −10

t„ = 0.2437t
t„ = 0.10

t„ = 0.00t

Figure 2. LDOS calculated using Equation (4) for different values of " and t0. (The parameters
used to generate the graphs are the same as those used in Figure 1.)
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state and can thus be easily trapped for a certain amount of time around the
impurity.

For the NN interaction, Skrypnyk found that the position of the resonant state
near E0

F in the asymptotic limit "!�1 is given by [19],

t

"
/

Er

t
ln

Er

t


: ð13Þ

The previous formula is in perfect agreement with our numerical simulations in
the same limit for t0 ¼ 0, as well as with another independent simulation [18]. Thus,
this is another successful limiting test case for the software. Using the idea of a rigid
translation of the spectrum, we can modify the previous expression to include the
NNN interaction as follows,

t

"
�

5

2
ffiffiffi
3
p
�

Er � 3t0

t

� �
ln

Er � 3t0

t


: ð14Þ

(Notice that the numerical factor in the above expression was not reported by
Skrypnykv and Loktev [19] since their dispersion relation was not normalized.) This
modified formula is in excellent agreement with our simulations.

Although the previous expressions follow the form of a rigid translation of the
spectrum with t0, the more realistic cases are those of small ", in which the effects of t0

are important, since the resonance peak is not shifted by the same amount. As we will
see, this is important when one considers the effects on the electronic conductivity.

4.3. Resonant width

In Figure 4, we present the influence of the NNN interaction t0 on the resonance
width � as a function of "�1. The influence of the NNN due to the asymmetry in the
curves for t0 6¼ 0 is evident. Observe that the asymmetry leads to a reduced resonance
width for "5 0 when the NNN interaction increases. This means that the peak is
sharper and thus the lifetime of the resonance is increased.

On the contrary, the opposite is observed for "4 0; i.e. the lifetime of the electron
near the impurity is decreased by the NNN interaction. In the asymptotic case of
pure NN interaction, the observed behavior in our work is consistent with an
independent calculation of � [33].

As was previously mentioned, the most important peak in the LDOS is located
near the Fermi energy. The " value corresponding to that energy is clearly observed
in Figure 4, which is the graph corresponding to Equation (7).

5. DC conductivity

In this section, we evaluate the electrical conductivity (�xx) taking into account
resonant states and the NNN interaction. To do so, we use the Kubo–Greenwood
formula expressed as [30],

�xx ¼
e2�h

�m2

N

�0

Z 1
�1

dE T ðEÞ
@f

@E

� �
Eþ�

, ð15Þ
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where,

T ðEÞ ¼ Tr pxIm GðEÞ
� �

pxIm GðEÞ
� �� �

, ð16Þ

and �0¼ 3a2 is the area of the primitive cell, f is the Fermi–Dirac distribution and �
is the chemical potential, which can be tuned by the external field (for example, with

a voltage applied in the lattice). px is the momentum operator, given by the following

commutator,

px ¼
im

�h
½H, x�: ð17Þ

It is necessary to remark that here the Hamiltonian operator includes the next-

nearest neighbor interaction. Therefore, px inherits this interaction and px can be

written in terms of the momentum operator associated with the NN interaction as

follows. Consider first the momentum px for NN,

pNN
x ¼

imt

�h
½x,W� , ¼

imt

�h

XN
l¼1

X
m2NN

ðRl � RmÞxW, ð18Þ

where we introduced the connectivity matrix defined as,

Wðm, nÞ ¼
1 if m and n are NN
0 otherwise.

�
ð19Þ

Using this connectivity matrix, the Hamiltonian without perturbation including the

NNN interaction can be rewritten as,

H0 ¼ �tW � t0ðW2 � 3IÞ , ð20Þ

0

0.2

0.4

0.6

0.8

–1.2 –0.8 –0.4 0 0.4

Γ(
ε)

/t

t/ε

t′ = 0.00t

t′ = 0.10t

t′ = 0.2437t

Figure 4. Resonant width, �, given by Equation (7) as a function of the impurity
self-energy, "�1. The figure shows asymmetric curves due to the NNN interaction.
(The parameters used to generate the graphs are the same as those used in Figure 1.)
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where I is the identity matrix. Taking the previous expression and using (18), we

obtain the corresponding operator for the NNN case,

pNNN
x ¼

im

�h
½�tW � t0ðW2 � 3IÞ, x� ,

¼ pNN
x þ

t0

t

�
pNN
x W þWpNN

x

�
: ð21Þ

The previous expressions were written into a computer program, in which we

considered a low concentration of impurities, C, introduced by adding the

perturbation H1 at different sites taken at random with a uniform distribution.

In Figure 5, we show the conductivity calculated using the Kubo–Greenwood

formula (15) for different values of t0, and as a function of the charge doping. Figure

5 was computed at a fixed representative temperature, in this case kBT¼ 0.025 eV, to

highlight the main effects of the NNN interaction. Clearly, Figure 5 exhibits the

radical difference in the behavior of the conductivity due to the NNN interaction,

since a smearing effect, as seen in Figure 5a, can appear, or as in Figure 5b, a sharp

peak can be observed. In fact, if we look at the temperature behavior, we can also get

very different kinds of behavior of �xx. These changes are due to a subtle interplay

between the chemical doping, temperature, the NNN interaction and the impurity

type.
To understand the diverse behavior of �xx, in Figure 6 we show a sketch of the

‘‘building blocks’’ that appear in the Kubo–Greenwood formula, and how such

blocks are modified by the considered parameters. In each panel of the graph, on the

left we show the shape of the term @f/@E, which corresponds to the ‘‘thermal

selector’’. At T¼ 0, it becomes a delta function centered on the chemical potential

(�), while for T 6¼ 0 it has a width of the order of kBT. The position of @f/@E on the

energy axis can be externally modified by doping with charge carriers, resulting in

different positions of the Fermi energy (EF��) when compared with the equilibrium

value of such energy, denoted by EF. The second building block is T (E), which can

1

2

3

4

σ
x
x
 [e

2 /
h

]

(μ − EF) /t (μ − EF) /t

ε/t = 10 ε/t = – 10

(a)

–0.4 –0.2 0 0.2 0.4 –0.4 –0.2 0 0.2 0.4

(b)

t„ = 0.2437t
t„ = 0.10t
t„ = 0.00t

Figure 5. Electrical conductivity calculated using the Kubo–Greenwood formula at low
concentration of impurities, C¼ 0.01: (a) "/t¼ 10; (b) "/t¼�10. (All lattices have N� 104.)

Philosophical Magazine 9

D
ow

nl
oa

de
d 

by
 [

U
N

A
M

 C
iu

da
d 

U
ni

ve
rs

ita
ri

a]
 a

t 0
9:

05
 0

1 
Se

pt
em

be
r 

20
11

 



be thought of as a quantum transmittance of the transport channels. Since the

Green’s function of doped graphene can be written as,

G � G0 þ
X
l

G0jli"hl jG0

1� "G0ðl, l Þ
ð22Þ

(where the sum is carried over impurity sites), T (E) has two types of behavior. Near

the resonant energies, G is dominated by the second term in Equation (22), and G0

can be neglected. As a consequence, a peak appears in the conductivity at the

resonant energy, as shown in Figure 6. Far from the resonance, G�G0. Then we

recover the transmittance of pure graphene.
Now we can study how the two building blocks interact to produce many

different kinds of behavior. First, it is clear that variations in � and T can produce

peaks in the conductivity if the thermal selector coincides with the resonance peak.

The conductivity can be enhanced if, for example, at a certain temperature the

thermal selector begins to have an overlap over the peak of T (E). The effect of the

NNN interaction is very subtle since in principle one can expect a simple translation

in energy of the spectrum. However, as stated in the previous sections, the rigid

translation of the spectrum is only valid at high ". According to our results,

(a)

(b)

Figure 6. Schematic diagram of the Kubo–Greenwood formula which explains the effect of
the NNN interaction. The behavior of the two building blocks, the thermal selector of states
@f/@E and the trace T (E), are shown on each panel. The position of the resonance energy and
Fermi energy are also shown. The following cases are considered: (a) "/t¼ 10 and
(b) "/t¼�10. Both graphs assume the case t0/t¼ 0.1.
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for realistic impurities there are deviations from such behavior, and thus EF and Er

are not rigidly translated, i.e. the distance jEF�Erj depends on the NNN interaction.

Since the conductivity depends a lot on this factor due to the position of the thermal

selector, the resulting effect of the NNN happens to be very important. Also, the

resonant peak energy is changed depending on the kind of impurity. As a result of all

these factors, we can expect wide variations in the conductivity when disorder is

present, as has been observed experimentally in carbon nanotubes [24], and very

recently in graphene [34,35]. Furthermore, the present work gives clues about the

nature of the minimal conductivity in pristine graphene, since two kinds of

mechanism have been proposed to explain the phenomena: the presence of disorder

or the tunneling of evanescent waves [3]. Here, we show that the conductivity is very

sensitive to disorder and does not produce a universal value for such conductivity, in

agreement with the results of Ziegler [36].
Finally, the scattering term in Equation (22) allows us to define a relaxation time,

�s, measured in seconds, as follows,

1

�s
¼

Nimp

N
P , ð23Þ

where Nimp is the total number of impurities and P is the total transition rate due to

scattering. Notice that P has units of inverse seconds and is given by summing over

all transition rates (the probabilities per unit time) [30],

P ¼
X
I ,F

%IF , ð24Þ

from an initial state jIi to a final state jFi,

%IF ¼ fI ð1� fF ÞWIF : ð25Þ

Using the Fermi golden rule,

WIF ¼
2�

�h
jhF jQjIij2�ðEF � EI Þ , ð26Þ

where

jhF jQjIij2 ¼
"2

j1� "G0ðl, l;EÞj
2

�
1

�2�20ðl;ErÞ

�2

ðE� ErÞ
2
þ �2

: ð27Þ

After steps similar to those used to get the Kubo–Greenwood formula [30], we

obtain,

P ¼
2�kBT

�h

Z 1
�1

dE QðEÞ
@f

@E

� �
, ð28Þ
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where,

QðEÞ �
�2ðEÞ

�20ðl;ErÞ

�2

ðE� ErÞ
2
þ �2

: ð29Þ

Far from the resonance peak, Er, and near E0
F,

�ðEÞ �
1ffiffiffi
3
p
�

jE� E0
Fj

t2
, ð30Þ

then the scattering term Q(E) is given by,

QðEÞ �
1

3�2
1

�20ðl;ErÞ

�2

ðE0
F � ErÞ

2
þ �2

jE� E0
Fj

2

t4
: ð31Þ

At T¼ 0, for the resulting relaxation time obtained from a straightforward

evaluation of Equation (28) using (31) and remembering that E0
F ¼ 3t0, we obtain

��1s �
4C

3h

kBT

�20ðl;ErÞ

�2

ð3t0 � ErÞ
2
þ �2

jEF � 3t0j2

t4
: ð32Þ

Thus, the mean free path (‘) is ‘� vF�s, which goes as E�2F .

6. Conclusions

We have studied the effects on the spectrum and electronic conductivity of

low concentrations of impurities in graphene when the next-nearest neighbor

interaction is considered in a tight-binding approximation. Although the electronic

spectrum is basically similar to the case of pure nearest neighbor interaction, the

conductivity is much more affected since the Fermi level and the resonance peak are

not shifted by the same amount, resulting in a wide variability of the conductivity, as

happens with carbon nanotubes [24]. As a consequence, the minimal electrical

conductivity for graphene with disorder depends on the particular kind of

impurity scattering. This assertion has been confirmed very recently by using

different kinds of samples [37]. For pristine graphene, our results suggest that the

universal value of the minimal conductivity cannot be explained by disorder, in

agreement with the ideas of Ziegler [36]. An alternative explanation is the tunneling

of evanescent modes through the Dirac point [3,37] . Finally, we obtained the

relaxation time in graphene due to impurity scattering, which leads to a large

electronic mean free path.
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