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Boroxol rings and the stochastic matrix method
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A statistical model based on the stochastic matrix method is developed and used to find the fraction of boron atoms belonging to boroxolrings in a boron oxide (Bzos) glass These results are compared with recent experimental data f¡om inelastic neutron scattering estimates.The method also ailows to evaluate the energies related to the formation of a single B-o-B unit in an oxygen bridge or in a boroxol ring. Thequalitative behavior of the heat capacity co (7) during the glass transition is reproduced, with the inflexion point at the temperature given bythe experiment The model gives a reasonable qualitative prediction for the growth of micro-clusters.
Keywords: Glass transition; glasses; boron oxide

se desarrolla un modelo estadístico basado en el método de la matriz estocástica y se usa para encontrar la fracción de átomos de bo¡opertenecientes a anillos boroxol en un vidrio cle óxido de boro (Bzos). Estos resurtado, ,. .üpurun .on ouro, experimentales recientes deestimaciones de dispersión inelástica de neut¡ones. El método permite también evaruar ras .n.rgiu, ¡eracionadas a ra formación una unidadsimple B-o-B en un puente cie oxígeno o en un anillo boroxol. El comportamiento cualirativo del calor específico co (z) durante la transición

;lT:in:i#:::;Tflr::ljlde 
rnflección a la temperatura dada por el experimenro. El modelo da una predicción cualitariva razonable

Descriptores: Transición vítrea; vidrios; óxido de boro

PACS: 64.70.Pf; 6 1.43.Fs; 61.43.Bn

1. Introduction

Bol'oxol rings are particular structures that have been sug-
gested to exist in great numbers in vitreous 8203. They rei-
resent the best example of intermediate range order, as de_
fined by Galeener [1] and are six-membered planar and reg_
ular rings B3-O3 in which there should be a-substantial r!_
duction of the oxygen-bridge angle, since the average O_B-O
angle in the network is I 30o. The abundance of boráxol rings
in the network should be substantial to explain the experi-
ments, particularly the extremely sharp peaks fbund in vibra_
tional spectroscopic studies, as Infrared and Raman scaiter_
ing [2,3]. However, the existence of boroxol rings in the cor_
rect concentrations has been questioned, due to the fact that
recent molecular dynamics calculations have fbund it difncult
to produce boroxol rings, claiming that they are not needed
to explain most of the experimental data. One should mention
that there is not yet a model of a structure containing many
boroxol rings able to predict the density of the material.

There are various kinds of theoretical calculations, rang_
ing from effective medium models [4]; to more detailed
ones [5], which are able to explain all the experimental fea_
tures only if one assumes large quantities of boroxol rings
in the disorder network. A more definite argument in favour
of the existence of boroxol rings comes from recent neutron
scattering experiments [6], which can be explained coher-
ently only lf - 80% of the Boron atoms belong to rings.

. Thls paper has the purpose of settling this question about
the existence and abundance of boroxol rings in the amor_
phous network of boron oxide. Evidentty, tñe fbrmation of
rings should be a consequence of the way the solid is grown,
since they are not present in any of the crystalline forms of
B2O3, and some kinetic models are needed to explain their
formation. Molecular dynamics is unlikely to give def,nite
answers, since, the main reason for the formatlon of rings
should be a peculiar three body force that allows to moclifv
the bridge angle. Therefore, we have developed a theoreticá
model for the solid growth, based on the original ideas given
in Ref-s. 7-10, and applying the stochastic m]rtrix method for
solid growth, f,rst pur forward by Kerner [11]. The complere
and detailed description of the method can be found in a for_
mer paper [12].

2. Stochastic matrix method description of the
growth of a solid

Let us start by assuming that while cooling down the ntelt,
some clusters of atoms are formed through an agglomera_
tion pr"ocess. During the solid growth through agglomerarion,
many complicated and competing processes take place, but
gradually, bigger clusters and parts ofthe network appear ev_
erywhere. Whatever their shape, they can be divided in two
parts: the riru, (or the border), composed of all the entities
that offer a potential possibility for a new entity to stick and



ISOTOPE EFFECT IN ANHARMONIC DOUBLE-WELL POTENTIALS

TABLE I. Calculated values of the isotopic coefficient (o) for the

first few excited states, for the @a double-well and the quadratic

double-well symmetric (QDW-s) and asymmetric (QDW-a) poten-

tials.

State (n) QDw-s QDW-a

1

2

3

4

5

6

7

0.7436

0.7083

0.7288

0.6925

0.6964

0.6873

0.6876

0.8'19'7

0.65',13

0.649s

0.6246

0.ór90

0.6093

0.5979

0.8832

0.7036

0.6524

0.6225

0.6099

0.6050

0.5979

amplitudes, and the quartic potential for the @a double-well
potential. From a dimensional analysis of the Schódinger

equation it is easy to show thaf the isotopic coeficient of the

quartic potential is o : 213. The asymmetry of 6Vo in the

QDW potential produces a small change in the isotopic co-

efflcient values (see figure 2), however this change is not the

same for all excited states. The largest change found was for
the second excited state - 7% with respect to the symme-

tric case, therefore the asymmetry in the potential has not an

important effect on the isotopic coefficient.
In Table II we present the calculated value of the isotope

frequency shift (Ao/u) for the states 2 and 3 when the isoto-

pic mass of oxygen is changed from 016 to O18, these modes

correspond to the Raman and infrared active modes observed

experimentally at - 500 cm-1 and - 570 cm-1 respectively.

The experimental value of the isotope frequency shift and the

result from the shell model (harmonic) for these two modes

are also presented [6-8]. We can see that the calculations

of the isotope shifts using rigid double-well potentials dif-
fer from the experimental values even more than those found

using the shell model (harmonic potentials). Therefore, both

anharmonic potentials Qa and QDW are unable to reproduce

TABLE IL Optical shift frequencies in YBa2Cu3O7. Experimental
and calculated values of Aulw(%) for the Raman (n = 2) and

Infrared (n : 3) modes.

Mode Exp. Shell model ón QDW-s QDW-a
ón Raman (n = 2) 4.'70"

Infrared (r.r, : 3) 3.ó0b

6.37 5.96 5.95

6.30 5.93 5.92

5.60"

4.33"

" Ref. 7. b Ref. 6. 'Ref. 8.

the experimental values of the isotopic coefficient (frequency

shift) despite that these potentials reproduce the local struc-
ture observed with EXAFS [1]. This result suggests the pre-

sence of a different kind of anharmonicity in the dynamic of
the axial oxygen, possibly polaronic behavior [12].

4. Summary

We have calculated the isotopic coefficient fbr the first l-ew

excited states of two anharmonic potential, the d4 double-
well potential and the QDW potential, when the isotopic mass

of oxygen is varied fiom 14-20 uma. For all excited states the
isotopic coefficient differs from the harmonic value as is ex-
pected in anharmonic potentials, however it approaches the

limiting value of 213 in the case of the @a potential and to the

value of 1/2 in the case of the QDW potential for high energy
states. Both anharmonic potentials Qa and QDW are unable
to leproduce the experimental values of the isotopic coeffi-
cient (frequency shift), suggesting the presence of a diff'erent
kind of anhalmonicity like polaronic behavior.
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agglomerate, and the bulk, (or the interior), that is, all the
units that have satisfied all their bonds already.

The elementary entities composing the rim are found in a
f,nite (usually quite small) number of local geometrical situ_
ations offering one, two or more possibilities for another en_
tity to stick to. We shall call them sll¿s, and we shall assume
that the probability of a simultaneous agglomeration of two
or more atoms at a single site is negligible.

While the temperature slowly decreases, thc average size
of ciusters grows due to the progressive agglorneration of new
atoms that stick to the rim. After a characteristic time a new
layer of atoms is created, thus transforming the probabilities
of observing valious sites on the rim.

This process of growth at the rim can be described by
a linear transformation, represented by a rnatrix acting on
a vector, whose components a1.e the probabilities of fincling
a given site on the rim of a cluster. The matrix transforms
this vector into a new one, because the rim is changed af'-
ter adding one atom to the cluster. The transformation of the
rim depends on the site on which the new atom sticks. Now,
each sticking process has a certain probability to occur, thus,
the matrix elements contain the probabilities of transforming
each kind of site into others. The probabiiity factors should
include two contributions: ( I ) the statistical weight 1br each
process, that is, the number of ways leading to the same final
result, and (2) the Boltzmann lactor taking into account the
energy barrier of forming a certain kind of bond.

Let us apply these ideas to the 82 03 continuous netwol.k.
The elementary unit, dictated by the bond chemistry is a tr.i_
angle B(Or )s [9]), which we shall call a "singlet". Two sin-
glets can be connected only using one bond to fbrm a ,,dou-

blet", since other ways of'connecting two units would pro-
duce a two-foid ring which is not seen in the real network.
Let us assume that the energy cost to fbrm this bonding is
E1 . After a doublet is produced, two situations can occur if
a new singlet is added: the newly arriving singlet lbrms a
longer chain (a "triplet") or it can close a r.ing, with a diff'er-
ent energetic cost (E:), since one has to deform the bridge
angles in a ring. The agglomeration process occurs at a given
temperature Z, at which the individual bonds reach equilib-
rium. Therefore, we shall use the notation:

,-e * 
"EI/I:T 

.

and

,-r¡ _ ,Ez/hT.

where k is the Boltzmann constant.
The possible configurations, or sites are shown in Fi-e. l.

We shall denote these conf,gural.ions by ,,11, z, t, t-¿, and,¿¿).

In principle one could have also consiclered longer chains of
singlets, but this would lead to the multiplication of sites and
transitions not expected in a real glass, since the creation of
ionger chains in covalent glasses is negligible, because one
should avoid the formation of local voids.

BOROXOL RINGS AND THE STOCHASTIC MATRIX METHOD

FIGURE 1. A typical cluster in vitreous BzOg showing the six types
ol'sites considered on the rim.

The transition probability for each elementary step can be
given in the f'ollowing wuyl

¿'+ A : P(*,y') 3e-,.

A => z : P(A,t) 6e-,,

y : P(",a) 2x3e-u.
t : P(z,t) 6e-,,
w : P(z,w) l2e-,1 ,

'y+z : P1(t,g) and P(t,z) -3e-.,
r -l2y : P1(t,r) and Pz(t,y) - 3e-,,
lt I u : P3(.t,9) and P(t,u) - l2e-,1 ,

'r:+u : P2(t,r) ancl P(t,'w) -I2e-n,

000P(t,r)0
P (:,:, y) 0 P (2.,s) P (t, a) p (u, a)0 P(71. z) 0 P(t. z) 0

0 '0 P(z,t) 0 0
u00P(t,rl 0
0 0 P(2,,w) P(t.w) 0

u, + Í '. P(u,r) 3e-,,

¿¿r * 'A + u : P(w,y) and p(w,u) 6e-,.

Here we took into account the purely statistical factors
according to the number of liee bonds and the multiplicity
available fbr each transition, which can be quite easily found
out from purely geometricai considerations, and the Boltz_
mann factors according to the new bonds lbrmed.

The factors P(r,r), p(r,y),.. . erc., that define statis_
tical weights of transitions resulting in the coresponding
Íransformatiotts of sites can be displayed as a 6 x 6 matrix:

. * f.,.
l.",

,_fo,'- lnt
Io.

',{ ,)

"{,,l
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/ o 0 0 3e-'+l2e-n 0 o \
I l.-' o 6e- ( gc-L * 6e-n 3e '' 6.-' I

l: 6¿'u,o-. 3c' 3 3l ,',
I o o o oe-n o 6e'l
\; ó tt,-' t2e-q o o)

Note that the zeros correspond to the absence of many

transitions, e.g. n ) r, y ) r, etc. In this matrix each entry

symbolizes the sum of all partial probabilities whenever there

ii more than one pathway leading to the given configuration,

e.g. P(t,r) = Pt(t,r) + P2(t,r), etc'

The explicit form of the matrix is

e1, then, in the limit of large j, vy converges to this eigen-

vector, independently of the initial conditions.
As a consequence, the evolution of the rim attains a stable

statistical regirne after successive steps of growth; this regime

is governed solely by the statistics represented by the eigen-

vector with eigenvaiue one. This eigenvector determines the

distribution (p,py,P",Pt,Pu,Pu)a to which the averaged

statistics tends asymptotically. This is also the statistics ol
the bulk if the clusters are really large. For clusters of inter-

mediate size, one should rather average over the sum of manr

layers.

3. The statistical analysis of boroxol rings

In our statistical model for the 8203 glass, the only free pa-

rameter is {, or the excess free energy when closing a ring

(Ez - Et) = k?In ({) : .F. To fix this parameter, ue shsl-

study the behavior of the internal energy U , and the specifi;

heat cr, near the glass transition temperature, and then fit the

result with available experimental data.

The internal energy involved in a process of growins in

the z-th layer is,

ry-E,pb(r)-núr-ph(r\,2"
where the first term is the kinetic contribution, and P| 1-

is the probability of forming a ring from the i-th rim to tht

z + 1, sirnply obtained by counting the proportion of rings üa
were formed during this process. This information is encode¡

in the matrix as the probability of the processes'. z4 -) 1t'¡-'-

and f¿ -+ ltli+riwi+1,. Then,

PbQ) : p", (I,|ffi) * Ptn (Ms+ + Maq) .

Now, the internal energy is an extensive parameter, the to

tal energy after lV steps of growing is the sum of the energie

in each layer of the growth:

3¡/A.r N

u(T) = '2 
,__,

The specific heat is obtained by taking the derivative c

L¡ with respect to the temperature,

. tT\ - 3¡\rk + (E, - E,, $ ¿e{ri. (j(P\l ,--2 -r"t' "t,? dT

and if we calculate co(?) for a big number of steps of grov

ing, then Phg) can be replaced by its limit value on tL

stationary regime,

^ (T\ - 
3¡'Ik -r (tr^ - tr,)A¡dP;9(") (-c?\t ) - -n- -,", LItrl 

dT

In glasses, it is generatly observed that there is an infle'

ion point and a precipitous decrease in the heat capacity [1

at the glass transition temperature (?r)' Therefore, we d

The above matrix is supposed to act. on a column vec-

tor representing the probab llities p. , p, , p 
" 

, p¡, pu, p* ' which

add up to one. After applying the matrix we want to obtain

another distribution of probabilities, satisfying the same nor-

malization condition. Therefore the sum of the entries in each

column of the above matrix must be set to one' After nor-

malization, we get a stochastic rratrix (,¡14) that transforms

the probabilities of finding one configuration on the rirr of a

ciusier, (p,,Ps,P",Pt,Pu,P-) into a new set of probabilities

(p'r, P'a , P'r, P't, P'u, P'.) after an entire new layer of atoms has

ü"én {.o*n, with one new atom at each available site:

2+2t 5+12(-1
n-" 5+12€
1

U

qc
a(

5+12{
At

5+12€

Using the above matrix, the growth of clusters is mod-

elled by á successive application of the matrix on an arbitrary

initial vector ve. Thus, the evolution of the probabilities on

the lim after i stePs is given bY

v j: Mjvo. Q)

The final configuration depends only on the eigenvectors

of the stochastic matrix. It is easy to prove that a matrix with

all the columns normalized to one has at least one eigenvalue

equal to one, while the others can be real, complex or imagi-

nary, depending on the values ofthe parameters involved' The

conrplei eigenvalues indicate the presence of an oscillatory

regime of growth, usually damped by the norm of the eigen-

value, if ii is less than 1' Due to this exponential damping'

only eigenvectors with norm one remain after many succes-

sive apptlcatlons of the stochastic matrix' If we suppose that

M has only one such eigenvalue (A1 : 1)' with eigenvector

M-

00
10
01
00
00
00

1+4€ 
o

5+12{
t r OC¿T L\

I

0

1

0

1

t
0

0

1

t
0

I -LrÉ

0

o r O¿
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Ftcuns 2. Exampre of the evorution of F(i) as a function of the.agglomeration step j

F(i)

20
j

mand that

a2

ualcoe\r=?, :0,
and by using (4) we ger,

d3

&rlPtrQ)Jr=r":0. (5)

The latter condition fixes the parameter ( at Tn, and this
quantity is well known from various experiments to vary from
Tg : 470 K to b30 K (see Ref. 1a). Foi Ts : 470K, we have
found that condition (5) is satisfied for two values:

1) Ez - Et = 0.214 eY : 4.92T Kcal/mol.
and

2) Ez -.Er = 0.068 eV : 1.b66 Kcal/mol.

. However, only the first one corresponds to the real glass,
since only this energy diffe'ence leads to the correct behavior
of cr(T). Another firting is possible when e = 530K, which
gives,

Ez - Et = 0.242 eV = 5.572 Kcal/mol.

These values are very close to other estimates found in the lit_
erature. Walrafen and co-workers [14] have found 6.4 + 0.04
Kcal/mol, obtained from experimental data. Snyder [1b] es_
tirnated 6.0 Kcal/mol, obtained from ab initio quanfum me_
chanical calculations.

- 
O,nce the energy difference (Ez _ E) is fixed, we can

calculate the fraction of boron atoms in the glass that are in
boroxol rings (F : l,{n lNil.At this point, Je musr remem_
be¡ that, in principle, the evolution of the vector v¡ gives only
information on the evolution of the probabilities on the rim,while the fraction F is a property of the bulk. However, thisbulk is formed by the addition oi consecutive layers. There-fore, by adding the number of atoms that are trapped into
boroxol rings in each step of growing we can find.A,6. An_
other problem remains to be solved:-The creation of a rlng
needs three steps of agglomeration, thus, to be able to decicieif an atom is inside a boroxol ring, we must consider more
than one step of agglomeration.

This counting can be achieved in the following way: The
number of boron atoms in boroxol rings expected in the j_th
step is

NL : u¡ + wj + 2z¡ (M6) + 2tj(M54 + I,t64),

and the fraction -P is obrained by dividing this number by the
total number of atoms on the rim. that is

F(i) = (6)lt; * tt; :-'u¡i-2w¡

In Fig. 2 we show the evolution of F, as a function of the
number of elementary steps of growth (j), with the energy

Ret'. Mex. Fk.4453 (t998) 80-84
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difference fixed at: Ez - Et : 0.214 eV for a completely
arbitrarily chosen initial conditions. As discussed previously,
the damped oscillations are clearly visible at the initiai stages,

but they rapidly disappear as the system reaches the station-
ary regime. We can infer that the final configuration of the
glass is determined only by few local configurations. Notice
that the oscillations exhibit a period of roughly three steps,

due to the fact that for completing one boroxol ring, at least

three steps ofgrowth are necessary.

The stationary value is near 80% of boron atoms trapped
in boroxol rings. This number can be obtained more exactly
if we use the eigenvector e1 , which is the only one that re-
mains after many steps of agglomeration. Then the value of
F is given by the asymptotic expression F = F*, where

-F- is obtained by substituting the components of the eigen-
vector with eigenvalue one intb Eq. (6). In this model, the

eigenvector is,

4. Conclusions

In this paper we have shown that a simple model of statistical
agglomeration can give very valuable and sensitive informa-
tion about the overall structure of a glass, or a solid in gen-
eral. This fact has far reaching consequences, since one can
explain how the existence ofonly very short correiations can
produce intermediate range order in a glass. This gives valid-
ity to calculations done in small clusters and opposes to the
widely spread idea of a glass being a trapped metastable state
in a phase-space landscape.

We have also shown that with this model one can con-
nect to experimentai data through the calcuiation of thermo-
dynamically averaged quantities, as the internal energy, or
the specific heat, that can be readily obtained. The main re-
sult of this paper is that our model forces us to conclude that
in the structure of vitreous 8203 roughly 80% of the boron
atoms ai'e forming boroxol rings, a question unsolved fbr a

long time. There remains some important features to be ex-
piained, in particular, one should calculate the density of the
glass, since there is no a structural model that is able to pre-
dict the measured value. Many similar problems in other ma-
terials can also be investigated with this simple technique, as

quasicrystals, covaient glasses and nanostructured mater.ials.
We shall address these problems in the future.
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Inserting the appropriate energy values for T!) : 470 K
into the last expression we get that ,t'ñ : 81.3%.

This result is in very good agreement with other theoret-
ical and experimental results like the 83% proposed by Jelli-
son et al. t161, 80% by Hannon et al. 177) and 84% by Mi-
coulaut et al. [91.
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