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Boson peak as a consequence of rigidity: A perturbation theory approach
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Some evidence is provided that the boson peak and floppy modes share a common origin. In the particular
case of periodic systems, we show how a boson peak occurs as a consequence of a reduction of constraints in
an overconstrained lattice, in contrast to floppy modes, which occur for a reduction of constraints in a flexible
or isostatic lattice. In fact, the present approach allows us to follow the transformation of the boson peak into a
floppy mode when a system goes from rigid to flexible. We use perturbation theory and Green’s functions to see
how resonances appear in the low-frequency region of the local vibrational density of states. For overconstrained
lattices, we found that the boson peak frequency depends on the square root of the coordination of the lattice,
and is at most 0.3 of the Debye frequency, a value close to the observed experimental ratio of 0.1. We also
obtain the expected Rayleigh scattering for overconstrained networks, while we predict a different scattering for
isostatic networks due to their critical nature. As an example, the effects of removing constraints are analyzed
in a face-center-cubic lattice, and the same consequences are observed in a square network with and without
diagonal links.
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I. INTRODUCTION

Our conceptual understanding of the microscopic nature
of low-frequency vibrational modes (LFVMs) in glasses is not
complete when compared with those in crystalline materials.1,2

For example, the vibrational density of states (VDOS) in
glasses displays an anomalous excess of LFVM.3 Such modes
are important not only for the related physical properties, like
specific heat, heat conduction, etc., but also for the poorly
understood process of glass transition.4–6

In fact, it is possible to estimate the glass transition
temperature, fragility, entropy, etc., by using such modes.7–9

Thus, the understanding of LFVMs is a subject of paramount
importance. However, in the literature usually two kinds of
anomalies are recognized in glasses. One is the excess of
states due to floppy modes.10,11 This type arises from a
low coordination of the atomic network,12–15 and has been
successfully explained by the rigidity theory (RT) proposed
by Phillips and Thorpe.10,11 In essence, it says that each
covalent bond can be treated as a mechanical constraint.10

As a result, one can classify the rigidity properties into three
classes: overconstrained, isostatic, and floppy, depending on
the number of constraints and available degrees of freedom.11

If the number of constraints is less than the dimensionality
of the configurational space, then there is a fraction of modes
that have nearly zero frequency and the system is flexible. Let
us be more precise, if a system has N atoms, then there are
DN degrees of freedom, where D is the space dimensionality.
Suppose that there are Nc constrictions due to bonding, and
D(D + 1)/2 trivial modes (translations and rotations). The
difference between them, Nf = DN − Nc − D(D + 1)/2, is
the number of floppy modes. When Nf = 0 such a system is
isostatic and has the minimal number of constraints required
to make the system rigid. When Nc > DN , the system is
overconstrained and thus rigid. Many physical properties of
glasses are dependent on such rigidity classification, including
a self-organized stress-free intermediate phase.16–19 The other
important kind of low-frequency anomaly is a feature dubbed
the “boson peak”.3 At low frequencies in crystals, the VDOS

goes like g(ω) ∝ ωD−1, where ω is the frequency. The VDOS
normalized by ωD−1 is a quantity g(ω)/ωD−1 called the
reduced vibrational density of states (RVDOS). The boson
peak is a broad maximum in the RVDOS observed in glasses.
The origin of the boson peak is not totally clear. For instance,
some people claim that it is due to vibrations of clusters
of atoms at typical sizes;20,21 Elliot22 suggests that it may
arise from phonon scattering caused by density fluctuations
at the medium length scale. Others say that such a peak
is a consequence of the interaction between quasi-localized
harmonic modes in glasses,23 controlled by anharmonicity.
Furthermore, it has been said through an assumption of
randomly fluctuating transverse elastic constant, that the boson
peak can emerge as a result of frozen disorder.24 More recently,
there have been arguments that, in fact, the boson peak is
essentially due to the same mechanism that works for floppy
modes, i.e., a weak connectivity of the solid.26 A strong
support for this point of view is that some crystals, like SiO2,
present a boson peak.25,26 This means that disorder is not an
essential feature to sustain a boson peak.25 Concerning this
point, in a previous recent work we showed,27 using molecular
dynamics, that, for Lennard–Jones binary glass, the boson peak
is related to the rigidity properties. During the simulations it
was observed that, in fact, it was possible to produce a similar
peak in a face-center-cubic (FCC) lattice.27 This led us to the
possibility of finding the analytic relationship between rigidity
and low-frequency anomalies by modifying periodic systems,
as has been done for the elastic constants.28,29

The aim of this paper is to study, by using perturbation
theory and Green’s functions, the consequences on the LFVM
of a progressive weakening connectivity in a lattice, done by
cutting bonds on a overconstrained or isostatic network. As a
starting point, we will consider two- and three- dimensional
lattices. Notice that such a study was made by Thorpe and co-
workers28 many years ago. However, in such works the main
focus was the scaling of the elastic modulus in the transition
for the rigid to flexible lattice. Here we will concentrate our
efforts in the effect on the VDOS of reducing the connectivity
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of a rigid lattice. As we will see, resonances arise in the local
vibrational density of states (LVDOS) in the low-frequency
region, with a scattering proportional to q4 (where q is the wave
vector inversely proportional to the mean free path, as happens
in the boson peak), which is known as a kind of Rayleigh
scattering.30 In that sense, the present work indicates that the
boson peak is mainly composed of quasi-local vibrations.31

However, here we will give evidence that the boson peak occurs
as a consequence of a weakening connectivity in a rigid lattice,
which is akin to how floppy modes occur for a weakening
connectivity when a system is already flexible. This work is
organized as follows, in Sec. II we present the analytical results
of cutting bonds in rigid lattices. In Sec. III, we show the
numerical results of the same process, including a FCC, a two-
dimensional network with diagonal bond and a linear chain.
The latter is a representative example of an isostatic system.
Finally, the conclusions are given in Sec. IV the conclusions
are given.

II. CUTTING BONDS IN RIGID LATTICES

To see the consequences of reducing the connectivity on
the LVDOS of a rigid lattice, here we will consider disorder
by cutting bonds in periodic systems. We start with the most
simple idea: to cut a link between two particles and then
check what occurs in the LVDOS/ω2 by using perturbation
theory. Then we will generalize the results for a weak
concentration of diluted bonds. It is worthwhile mentioning
that this perturbation approach is exact if only one bond is
broken. The result is valid in any lattice or dimension, since
all terms (or diagrams) of the series can be summed. For a
finite concentration of broken bonds, the following approach
is a good approximation for low concentrations of broken
bonds, say less than 5%. However, for a higher concentration
of disorder, the perturbation approach can be used considering
some modifications that are essentially similar,28 as we discuss
below. In a real system, the rigidity of the nonperturbed system
can be determined from the average coordination number
and some elastic properties.16 Broken bonds are obtained
by radiation damage, thermal processes, or chemical doping.
Consider a rigid lattice with an harmonic Hamiltonian H0. If
few bonds are changed on this network, the new Hamiltonian
H can be written as,32

H = H0 + V,

where the matrix V contains the changes made. The well
known Green’s functions formalism and perturbation theory
can be used to obtain the new frequency spectrum.34 The
Green’s function G is defined as,

Gνβ(l,j ) = lim
η→0

1

M

∑
q

χ∗
ν,q(l)χβ,q(j )

ω2 + iη − ω2(q)
, (1)

where the sum is carried over the eigenvectors q with
eigenvalues ω2(q) of H. M is the particle mass, and χβ,q(j ) is
the β component of the eigenmode q displacement at site j .
G can be written in terms of the unperturbed Green’s function
G0 of H0 as follows:34

G = G0

I − VG0
= G0 + G0TG0, (2)

(a) (b)

FIG. 1. (Color online) Examples of two kinds of rigid lattices;
(a) isostatic (using cyclic boundary conditions), and (b) overcon-
strained. The diluted bond constraint k ≡ k0 − αk0 is also shown.
When α = 1, the bond is removed. M is the particles’ mass.

where I and T = V(I − VG0)−1 are the identity and scattering
matrices respectively. Equation (2), is rewritten as

G = G0adj(I − VG0)

det(I − VG0)
. (3)

The total VDOS (ρ(ω)) of the whole system G is

ρ(ω) = 2ωρ(ω2) = −2ω

π
Im{TrG}. (4)

As was mentioned before, we are interested in a diluted bond.
In this case, two sites are involved. Then we just keep a 2D ×
2D matrix V of the whole V. V can be written as32

V =
(


(1,1) 
(1,2)

(2,1) 
(2,2)

)
. (5)

In essence, 
 is related to the spring’s constant (in the harmonic
approach) on sites 1 and 2. Following this idea, we take a small
2D × 2D matrix G0 of the whole matrix G0,

G0 =
(

G0(1,1) G0(1,2)
G0(2,1) G0(2,2)

)
. (6)

Here G0(1,1) refers to the Green’s function on site 1 (which is
a D × D matrix), G0(2,2) on site 2, and G0(1,2) or G0(2,1) are
related with the interaction between them. In fact, G0(1,1) =
G0(2,2) and G0(1,2) = G0(2,1).32,33 It follows that in such a
reduced scheme, G = G0 + G0TG0 and the scattering matrix
is T = V (1 − VG0)−1.

To show in an explicit way how perturbation theory works
when a bond is cut, we define the link perturbation as k ≡ k0 −
αk0. α is a dimensionless parameter between 0 and 1. α = 0
means that the bond is nonperturbed, while for α = 1, the bond
between sites 1 and 2 is removed. This fact is explained in
Fig. 1, where we show how a bond is diluted in over-
constrained and isostatic lattices. Under that consideration,
define28 
(l,j ) = (k − k0)r̂12r̂12mlj , where r̂12 is the vector
in the direction of the vector that joins site 1 with 2, and
mlj = δ1lδ1j + δ2lδ2j − δ1lδ2j − δ2lδ1j .

It is possible to show that the scattering matrix is given by28

T (l,j ) = −αk0

[1 + 2αk0r̂12 · (G0(1,1) − G0(1,2)) · r̂12)]
r̂12r̂12mlj .

(7)
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The denominator, which eventually leads to resonant states,
can be simplified using the following trick. The pure system
Green’s function follows the equation of motion,

Mω2G0(1) = 1 + Z

D
k0r̂12 · (G0(1,1) − G0(1,2)) · r̂12, (8)

where G0(1) is the magnitude of the isotropic site’s diagonal
Green’s function G0(1,1) and Z is the coordination of the
lattice. Inserting Eq. (8) into Eq. (7), we get,

T (l,j ) = −αk0[
1 + 2αD

Z
(Mω2G0(1) − 1)

] r̂12r̂12mlj . (9)

The resulting LVDOS at sites 1 and 2 (ρd (ω)) is calculated
from34

ρd (ω; α) = 2ωρd (ω2; α) = −2ω

π
Im{TrG}. (10)

The resonance condition is obtained when the denominator in
Eq. (7) is nearly zero, which allows us to find the frequency of
the resonant peak (ωR) as a solution of

1 + 2αD

Z
(Mω2ReG0(1) − 1) ≈ 0, (11)

2αD

Z
Mω2ImG0(1) ≈ 0. (12)

The equation concerning the real part locates the resonance,
while the other determines the decay time. Since ImG0(1) ∼
−πρ(ω2)/M , the unperturbed density of states at such resonant
frequency needs to be small, a condition that holds in the lower
part of the vibrational spectrum. Such a condition is akin to
the one obtained for an impurity mass.35

From the previous equation, we can also obtain the transi-
tion probability per unit time of the state qi to qf , Wqiqf

=
|〈qf |T (1,1)|qi〉|2δ(Mω2

i − Mω2
f ). For states that follow the

resonance condition, Eq. (11), |〈qf |T (1,1)|qi〉|2 can be written
as

|〈qf |T (1,1)|qi〉|2 = A2(
ω2 − ω2

R

)2 + �2
, (13)

where the resonance width �, related to the decay time, and A

are given by

� = ω2ImG0(1)
d

dω2 (ω2ReG0(1))

∣∣∣∣∣
ω2=ω2

R

,

A−1 = 2DM

Zk0

d

dω2
(ω2ReG0(1))

∣∣∣∣
ω2=ω2

R

. (14)

Although all of the previous results are valid for only
one diluted bond, the arguments are easily extended for low
concentrations (n) of sites with diluted bonds. Since the
probability of having pure diluted bonds through a distance r

is e(r/a) ln n, where a is the lattice parameter, most of the diluted
bonds are surrounded by undisturbed bonds. As a consequence,
one can safely use the virtual crystal approximation32 (VCA).
Under such a approximation, the VDOS is simply a weighted
combination of the LVDOS at the diluted (ρd (ω)) and undiluted
bond sites (ρud (ω)),

ρ(ω) = (1 − n)ρud (ω) + nρd (ω). (15)

Thus, a local resonant state is able to produce a peak of spectral
weight n. When n is increased, there is more interaction
between diluted bonds, and the resonant peak splits into many
levels. In such case, the coherent potential approximation
(CPA) method32 can be used as an excellent approximation.
Now we can build the connection with RT, since from Eqs.(11)
and (12) we can discuss the case of overconstrained and
isostatic systems.

A. Overconstrained systems

The usual Goldstone acoustic modes are present and
ω = c ‖q‖, where c is the average speed of sound. Thus,
in D dimensions ρ(ω) ∼ D2ωD−1/ωD

D and ImG0(1) ≈
−πD2ωD−2/2MωD

D , where ωD is the Debye frequency. From
this result and using D = 3, we can obtain ReG0(1) from the
Kramers–Kröning relations,

ReG0(1) = 32

Mω3
D

[
−ωD + ω

2
ln

(
ωD + ω

ωD − ω

)]
. (16)

Using ReG0(1) in Eq. (11), the resonant frequency (ωR) is
located at

ωR ≈ ωD

3

√
Z

6α
− 1, (17)

and the width (�) is

� ≈ 27ω4
R[

11 − Z
3α

] √
Z
6α

− 1ω2
D

. (18)

Notice that, for a maximal packing corresponding to a
FCC lattice, Z = 12 and for α = 1, ωR ≈ 0.3ωD and � ≈
ω2

D/21. For smaller coordinated systems, the fraction ωR/ωD

is smaller, and thus here we provided a maximal bound for
the resonance. This very rough value is in such qualitative
agreement with the experimental fact that usually the boson
peak frequency (b) is given by31 b ≈ 0.1ωD . A more
detailed computation can be done, taking into account the
different speeds of sounds for each branch and a lesser degree
of approximation in the Green’s function. Finally, to check if
a resonant state appears, it is necessary to verify that at least
several oscillations are performed during the decay time, i.e.,
the real part needs to be higher than the imaginary part. In this
case, from Eq. (16) is clear that for ω � ωD , the real part ω

ReG0(1) ≈ 9

M

[
− 1

ω2
D

+ ω2

ω4
D

]
, (19)

while the imaginary part is

ImG0(1) ≈ −9πω/2Mω3
D, (20)

from which it follows that

ImG0(1)

ReG0(1)
≈ π

2

(
ωR

ωD

)
. (21)

In the worst-case scenario, this ratio is around 0.47 and
decreases with the coordination of the lattice, which indicates
that the states are always resonant. It is worthwhile mentioning
that, in the following section, we show how an exact calculation
in FCC lattice, which corresponds to the worst-case scenario,
presents clearly a resonant state.
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Also, we can analyze the behavior of the relaxation time τ

and mean free path l of the scattering at low frequencies due
to the lack of constraints. The time can be written as,

τ−1 = cσn, (22)

where c is the sound velocity, σ is the total scattering cross
section and n is the number of scatters per molecular volume
V . σ is proportional to the sum over initial (qi) and final states
(qf ) of the transition probability per unit time Wqiqf

, divided
by the flux j = c/V of the incoming particles.34 Since we are
dealing with elastic collisions, the sum over initial and final
states is replaced by the density of initial and final states37,38

σ = V |〈qf |T (1,1)|qi〉|2ρi(ω)ρf (ω)c−1.
At low frequencies and far from the resonance, Eq. (13)

gives |〈qf |T (1,1)|qi〉|2 ≈ A2/ω2
R . Using a Debye density

of states as well as the concentration of scatter centers, the
relaxation time is written as

τ−1 ≈ nV
D4A2

ω2
Rω2D

D

ω2(D−1). (23)

In three dimensions, τ−1 follows an ω4 Rayleigh type of
scattering, a feature that is well known to be associated with
the boson peak.30 Notice that here n is given by the number
of diluted bonds, which turns out to be given by the change in
the average coordination of the system (δ 〈Z〉). The fragility
of the system is related to15 〈Z〉, and thus here we provide a
link between mean free path and fragility.

B. Isostatic systems

This is a delicate and interesting case, which appears
in hyperstatic networks (linear, square, and cubic lattices).
From constraint theory, is clear that if we cut a bond, a
floppy mode appears.26 However, it is instructive to learn how
such mode is viewed from perturbation theory. In fact, the
linear, square and cubic lattices, all have the same dispersion
relationship for phonons, since the springs have projections
only in perpendicular directions between themselves,29 as
can be seen in Fig. 1(a). Thus, for small ω, ρ(ω) ∼ ω0 as
happens in general for other isostatic networks26 (although it
is worthwhile mentioning that for disordered isostatic systems,
the Green’s function displays very interesting properties due
to multiplicative random processes).36

Let us work this case with more detail. Using the Green’s
function for a linear chain inside the spectrum, we have34

ImG0(1) ≈ −2

Mω2
m(1 − x2)1/2

, ReG0(1) = 0, (24)

where

x = 2(ω/ωm)2 − 1, (25)

ωm is the band edge, and

ImG0(1,2) = cos φ(ω)ImG0(1), (26)

ReG0(1,2) = − sin φ(ω)ImG0(1),

with the phase angle φ(ω) defined as

φ(ω) = tan−1

[√
1 − x2

−x

]
. (27)

The conditions for resonance, given by the poles of Eq. (9),
are now written as

Im(G0(1) − G0(1,2)) = [1 − cos φ(ω)]ImG0(1) ≈ 0,

ImG0(1) ≈ −[α2k0 sin φ(ω)]−1.

Also, from Eq. (24), it is easy to see that ImG0(1) =
−[2k0 sin φ(ω)]−1. Thus, only for α = 1, one of the condi-
tions for resonance is satisfied and in fact, it holds for all
frequencies. However, [1 − cos φ(ω)]ImG0(1) is zero only at
zero frequency, while it is nearly zero at low frequencies.
Thus, the effect of cutting a bond is a tendency to smooth the
whole LVDOS, as it will be corroborated numerically in the
next section. The floppy mode appears at zero frequency as a
resonance, but there is an additional softening of the spectrum
at all frequencies. In fact, the nature of the mode is simple to
understand. If one cuts a linear chain, the resulting lattice is
made by two chains with free boundary conditions. Instead of
having one center-of-mass mode, two center-of-mass modes
appear, one for each piece of chain. Clearly, such a new mode
cannot be the result of a localized mode due to the extended
nature of the state. The softening of the LVDOS at the broken
bond is just the vibrational spectrum at the free end.

As in the overconstrained case, we are interested in the
scaling of τ−1. We take Eq. (23), but in the present case
ρ(ω) ∼ ω0; thus in the isostatic case the relaxation time due
to scattering is

τ−1 ∼ constant. (28)

We can say that isostatic systems present a uniform scattering
throughout the spectrum, a feature that is anomalous when
compared with overconstrained systems, but that is akin to the
phenomena of critical opalescence. In that sense, this seems
to be an exciting prediction concerning the critical nature of
isostatic networks.36

III. SOME EXAMPLES OF CUTTING BONDS IN RIGID
LATTICES

In this section, we give some examples that show how a
resonance similar to the boson peak arises when we cut bonds
in overconstrained networks and as well as in isostatic systems.

A. Overconstrained network: A FCC

We start by looking at the consequences of cutting bonds
in a FCC structure. To achieve this goal, we diagonalize
numerically the corresponding 3 × 3 dynamical matrix (D).
Its components can be written as (in units where the lattice
parameter a is equal to one),

Dxx = 4k0[2 − cos(qx/2) cos(qz/2) − cos(qx/2) cos(qy/2)],

Dyy = 4k0[2 − cos(qx/2) cos(qy/2) − cos(qy/2) cos(qz/2)],

Dzz = 4k0[2 − cos(qx/2) cos(qz/2) − cos(qy/2) cos(qz/2)],

Dxy = Dyx = 4k0 sin(qx/2) sin(qy/2),

Dxz = Dzx = 4k0 sin(qx/2) sin(qz/2),

Dyz = Dyx = 4k0 sin(qy/2) sin(qz/2).

Then we take points (qx,qy,qz) from the first Brillouin zone
to diagonalize D, and we use Eq. (1) with the corresponding
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FIG. 2. (Color online) Evolution of the reduced vibrational
density of sates [ρd (ω; α)/ω2] with respect to the perfect FCC
(α = 0). When a bond is cut, α = 1(circles, green on line), a peak
arises in ρd (ω; α = 1)/ω2 on a minimal frequency.

eigenvectors and eigenfrequencies. In this way, we are able
to obtain ρd (ω;α)/ω2 and the resonance condition, Eq. (11),
which can be written for this case as

ReG0(1) ≈
(

1 − 2

α

)
1

ω2
. (29)

Figure 2 shows the evolution of ρd (ω ;α)/ω2 as a function
of frequency. We see a peak at the lowest frequency when the
bond is cut (α = 1) in contrast to the perfect FCC lattice (α =
0). We notice that ωR decreases as α −→ 1, producing a peak
near the expected position. In Fig. 3, the real and imaginary
parts of G0(1) are shown, as well as the resonance condition,
Eq. (29), versus frequency.
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FIG. 3. (Color online) Real and Imaginary parts of G0(1) (blue
and green lines, respectively) for the FCC lattice, and the function
f (ω; α) = [1 − 2/α]/ω2. The resonant frequencies (ωR) are found
at the intersection of the curves ReG0(1) and f (ω; α), over different
alpha values. Notice how ImG0 goes to zero as the frequency is
reduced.
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FIG. 4. (Color online) RVDOS [ρd (ω/ωm; α)/(ω/ωm)] for a
square lattice with crossed diagonals. The case α = 0 corresponds
to the pure network, and then gradually a bond is removed up to
α = 1.

B. Overconstrained network: square lattice with diagonals

Now we want to test the same ideas in a different rigid
network: a square lattice with diagonal bonds, as seen in Fig.
1(b). This time we do not have the Green’s functions explicitly,
but we can diagonalize the Hamiltonian. In this way, the eigen-
values are used to calculate ρd (ω/ωm; α), using a network with
N = 1600 sites, where ωm is the spectrum edge frequency. In
Fig. 4, we present the corresponding ρd (ω/ωm; α)/(ω/ωm).
Here a resonance arises inside the band as a bond is diluted.
As α goes from 1 to 0, we can observe how an excess of modes
is built for low frequencies. Notice that the small oscillations
near zero frequency are due to finite-size effects.
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FIG. 5. (Color online) RVDOS [ρd (ω/ωm; α)] of a large chain
versus the normalized frequency for different α values of a diluted
bond. The points and lines represent the numerical and theoretical
results from perturbation theory, denoted by NR and PT, respectively.
We can see an increase of low, frequency modes and a smoothing
of the spectrum. The differences between PT and NR at very low
frequencies are due to finite size effects.
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C. Isostatic networks: Linear, square, and cubic lattices

Finally, to see what happens when a link is cut in isostatic
systems, we study a linear chain with periodic boundary
conditions. Actually, this chain is equivalent to the square and
cubic lattices29 with periodic boundary conditions. The case of
the isostatic square lattice is shown in Fig. 1(a), from where it
is easy to figure out why the dispersion relationship is the same
as in the linear chain case. It is worthwhile mentioning that the
periodic boundary conditions are crucial, since if a chain has
N sites, N bonds are required to have as many constraints as
degrees of freedom. Such periodic isostatic lattices are known
as hyperstatic. The analysis of this linear lattice is made by

using the Green’s functions at sites34 h and l;

G0(h,l) = 1

2k0i
√

1 − x2
[−x + i

√
1 − x2]|h−l|, (30)

where x = 2(ω/ωm)2 − 1 and ω2
m = 4k0/M is the maximum

frequency. As in the previous cases, we are interested in a bond
perturbation between sites 1 and 2. From Eq. (30),

G0(1,1) = −i

2k0

√
1 − x2

, G0(1,2) = −xG0(1,1) + 1

2k0
.

(31)
Using Eqs. (31) and (10), we obtain the LVDOS at sites 1 and
2 ρd (ω) as

ρd (ω/ωm; α) = −2ω/ωmImG0(1,1)

π

[(
1 − α + 2α

(
ω
ωm

)2)
(1 − α) + 4α2(2k0ImG0(1,1))2

(
ω
ωm

)4(
1 − (

ω
ωm

)2)]
[1 − α]2 + [

2α
(

ω
ωm

)2
(2k0ImG0(1,1))

]2 . (32)

When α = 0, we have the unperturbed ρ(ω) as

ρ(ω/ωm;α = 0) = −2

π

ω

ωm

ImG0(1,1), (33)

and when the bond is totally removed, α = 1, the LVDOS is
written as,

ρd (ω/ωm;α = 1) = 2

(
1 −

(
ω

ωm

)2
)

ρ(ω/ωm;α = 0).

(34)
In Fig. 5, the behavior of Eqs. (33) and (34) is displayed for

such isostatic systems. These equations are compared with
the numerical calculation in a chain with N = 1000 sites.
The frequencies are obtained when the dynamical matrix is
diagonalized. The agreement between the formal solution
and the numerical result is excellent, except at very low
frequencies, where there is a small difference due to finite-size
effects. We can see an increase in ρd (ω/ωm; α = 1) at ω = 0
and a tendency to smooth the spectrum. This feature could be
interpreted as a resonance at ω = 0 but with a large width.

IV. CONCLUSIONS

We have made an analogy between the boson peak and the
resonances that emerge when bonds are cut in rigid lattices.

As an example, the cases of the FCC and the square lattice
with diagonal bonds are worked in detail. A similar analysis
is made on isostatic structures. We gave some evidence that
the boson peak arises as an extension of the concept of floppy
modes but for overconstrained networks, i.e., if the number
of constraints is reduced in an overconstrained system, a
boson peak appears at a finite frequency, while in a flexible
system, the reduction leads to a peak at zero frequency.
The ratio between the Debye frequency and the boson peak
position is given by ωR/ωD ≈ √

(Z/6) − 1/3, where Z is the
coordination of the network. This produces a bound around 0.3
for high coordination lattices, which is well compared with the
empirical observation that gives 0.1. In the case of hyperstatic
networks, we have shown how the process of appearance of a
floppy mode can be seen as a resonance at zero frequency,
while the spectrum is very sensitive to perturbations. The
usual Rayleigh scattering was found for the boson peak,
while a kind of critical scattering could occur in isostatic
networks.
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