
PHYSICAL REVIEW B 1 JUNE 1999-IIVOLUME 59, NUMBER 22
Coherency of phason dynamics in Fibonacci chains
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The effects of phason disorder on the dynamical structure factor of Fibonacci chains are studied, and the
existence of a coherent phason field in real quasicrystals is addressed. The neutron-scattering response is
modeled for coherent and random phasons. The results show that coherent and random phasons can be
distinguished for high values of the momentum transfer. However, for both sorts of phasons the response in the
acoustic-mode region is quite similar, since the only important quantity is the average length between atoms.
In particular, it is shown that a random phason produced in the quasicrystal’s hyperspace leads to a coherent
phason field in real space.@S0163-1829~99!00622-0#
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I. INTRODUCTION

Quasicrystals~QC’s! ~see, for instance Refs. 1 and!
present a peculiar kind of order. Despite lacking translatio
order, the positions of the atoms are not arbitrary, as in
amorphous solid, but are precisely determined, and spo
the diffraction patterns are observed. The issue of determ
ing the positions of the atoms in real QC’s is not resolv
yet, although there are currently some structural models
certain alloys that are able to reproduce the available d
from x rays and electron-diffraction experiments.3,4

Some simple theoretical models retaining the basic f
tures of quasicrystalline order have been proposed, suc
the one-dimensional Fibonacci chain~FC!, or the family of
Penrose lattices in two and three dimensions.5–7 These mod-
els are useful to study the peculiarities of QC’s and to pre
the effects of the quasicrystalline order on their physi
properties. In particular, an exclusive kind of local defe
called phason, could be investigated in detail by means
these theoretical models.

A phason can be obtained from the cut-and-project
method for QC’s,8 which consists in projecting a
D-dimensional hyperspace periodic lattice onto
d-dimensional space where a quasiperiodic lattice is
tained. The Fourier transform~FT! of a QC is made by linea
combinations of theD reciprocal basis vectors, which proje
onto the real space. This explains why the diffraction patt
of a QC is made of sharp diffraction spots, since the squ
modulus of the Fourier transform is proportional to the d
fraction pattern.

In a crystal, a uniform change of the phases on the
induces a uniform displacement of the atomic positions
real space. The hydrodynamic modes associated with su
perturbation in a crystal are called acoustic phonons. I
PRB 590163-1829/99/59~22!/14302~11!/$15.00
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quasicrystal there areD degrees of freedom for changing th
phases of the FT. A change ind of them produces a transla
tion in real space, or phonons. A change in the otherD
2d) phases produces local rearrangements of some ato
sites.9 The hydrodynamic modes associated with chang
(D2d) phases are the phasons.

According to Lubenskyet al.,10 the phason modes in
QC are diffusive, with very large diffusion times. Obser
that, as hydrodynamic modes, phasons are low-energy e
tations. On the other hand, a phason corresponds to a
rangement of sites that requires atoms to jump over lo
energy barriers,9 which can be large~this energy is nearly the
energy for creating a vacancy in the lattice!. Then, the pic-
ture depends upon the scale; at macroscopic scales, sym
tries and conservation laws determine the dynamics of
phasons.11

During solidification of a QC, phason and phonon stra
could be present, but phonon strain relaxes quickly leav
only phason strain. This strain produces a widening of
characteristic peaks in experimental diffraction patterns
QC’s by x rays, electrons, or neutrons.12 In particular, the
time of jump of atomic species in QC’s with phason disord
was recently obtained using time-of-flight quasielastic n
tron scattering.13

However, it is not clear yet if phasons should be coher
modes in real space, as the hydrodynamic picture impl
From the atomic point of view, phasons should be cons
ered as local defects with only short-distance correlations
this is the case, then the use of a hyperlattice descriptio
phasons is controversial.

In this paper we examine both points of view and stu
the peculiarities of phasons produced in either a coheren
an incoherent way. In order to do so, we concentrate
attention on the simplest QC, the Fibonacci chain, with
14 302 ©1999 The American Physical Society
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simplest possible dynamical Hamiltonian, a harmonic o
with nearest-neighbor springs of constant strength and e
masses. This choice allows us to investigate the role of
atomic positions exclusively, which can be probed w
neutron-scattering experiments, leaving aside all the com
cations due to other dynamical details of the problem. In r
experiments it is difficult to disentangle the effects due
phason disorder or substitutional disorder,14 or other kinds of
imperfections~see, for instance, Refs. 15 and 16!; therefore,
models that treat separately these effects should be usefu
a full understanding of experimental data. Our simple mo
could be criticized because only one type of these site
considered. However, these sites could be thought of as
ecules following a quasicrystalline array, or something m
complicated. In any case, the possibility of having real o
component quasicrystals has been put forward.17 The quan-
tity to obtain is the dynamical structure factorS(q,v2) as a
function of the variables that define phason disorder in
chains.

In Sec. II we define the dynamical structure fact
S(q,v2) for the model used and find general expressions
calculate it. In Sec. III we describe in detail the procedure
calculateS(q,v2) in a Fibonacci chain. In Sec. IV we ex
plain how to obtain expressions for different kinds of phas
disorder, and calculate the dynamical structure factor for
herent phasons~CP’s!, phasons generated by randomly d
turbing the hyperspace, or random window phasons~RWP’s!
and phasons regarded as local defects produced random
exchanging neighbor bonds in a FC, or real-space rand
phasons~RP’s!. Finally, in Sec. V we discuss the results
the model and point out the peculiarities of the spectra
tained with the various sorts of phasons, and we draw so
general conclusions from this work and also comment
possible extensions of this theory to more realistic situatio

II. DYNAMICAL STRUCTURE FACTOR

In an inelastic neutron-scattering experiment, most m
surable quantities are related to the response of the syste
frequency (v) and momentum ~q! space, which is
characterized18 by the dynamical structure factor
@S(q,v2)#.19 For a chain ofN sites, this is written as,20

S~q,v2!52
1

N (
x,x8

eiq(x2x8)Im Gx,x8~v2!, ~1!

whereGx,x8(v
2) is the retarded Green’s function,20 describ-

ing the excitations that couple to the neutrons, as phonon
magnons. In this work we discuss only the phonon ca
since structural defects modify mainly the vibrational mod
Therefore, Gx,x8(v

2) represents the displacemen
displacement (u,u8) correlations between sitesx andx8.

We shall consider a simple Hamiltonian of springs
equal strength~J! in a chain of equal unitary masses,

H5(
x

F1

2 S dux

dt D 2

1
J

2 (
x8

~ux2ux8!
2G ,

since we are interested on the effects of structural diso
more than in the specific dynamics.

This model is particularly suitable to isolate the effects
the quasiperiodicity from the dynamics, since the vibratio
e
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density of states@h(v2)# is insensitive to changes in th
bond lengths, and it is the same as for a perfect linear ch
but the neutron response should sense bond-length diso
In a linear chain,x5m in units of the lattice parameter
where m is any integer. The Green’s function correlatin
sitesm andm8 can be written21

Gm,m8~v2!52 i
1

A~2J!22~v222J!2
eiu(v2)um2m8u

52 iph~v2!eiu(v2)um2m8u, ~2!

whereu(v2) satisfies

u~v2!5arctanS 2
A~2J!22~v222J!2

v222J
D , ~3!

or, v2(u)52J(12cosu), which is the well-known disper-
sion relation of a linear chain. A useful expression f
S(q,v2) is obtained by plugging Eq.~2! into Eq.~1!, that is,

S~q,v2!5
ph~v2!

N (
m,m8

N

exp„i @q~xm2xm8!

2u~v2!~m2m8!#…. ~4!

This is the basic result of the model and shall be used
all the chains with disorder. The only ingredient needed is
expression forxm . Once one has an expression for the co
dinates, one could in principle calculate Eq.~4! in a com-
puter. However, as in all interference phenomena, the con
bution from distant sites in the summations do not conve
rapidly, and one has to spend large amounts of effort
approximate the result. Therefore, it is more than conven
to derive more analytical expressions.

In particular, the response of the linear chain is

S~q,v2!5ph~v2!d@q2u~v2!#5d@v22v2~q!#,

which is the correct limit. In the next section we shall exa
ine the perfect FC.

III. THE FIBONACCI CHAIN

For the FC it is convenient to use the cut and project
method.8,11 One uses a two-dimensional~2D! rectangular lat-
tice, and projects on a straight line with incommensur
slope, tan(f)5b/ta, where t5(A511)/2 is the Golden
mean, anda (b) is the lattice parameter in thex (y) direc-
tion.

The points (m,n) of the 2D lattice are projected into th
straight line, giving a position (macosf1nbsinf). Then,
the coordinate of themth point in the FC is expressed as

xm5(
n

~macosf1nb sinf!W~m,n!, ~5!

where the window functionW(m,n) selects the points in the
hyperspace to be projected.

The form of this window function can be obtaine
analytically,22 by defining a band of constant width, parall
to the straight line given byy5x tanf1y0. The ordinate at
the origin y0 determines a unique point of the lattice th
precisely intersects the straight line. In particular, ify050,
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this point is the origin. The distance from any other point
the lattice to this line is different from zero, since tanf is
irrational. For a given widthW0<b cos(f) only one pointn
is chosen for eachm. The slightest change in the slope caus
another point to intersect, defining a period, and con
quently a crystal, which is known as a rational approxim
of a FC. Consideringy0Þ0 can be regarded as a horizon
translation of the origin.

If W05b cos(f) andy050, it is clear that

W~m,n!5dS n2 b ma tanf

b c D , ~6!

where bzc denotes the integer part ofz, and d is the Kro-
necker function. Then, by using Eq.~5! one obtains

xm5mS1 b m

t c~L2S!. ~7!

Therefore, the distance between two consecutive point
the FC can be eitherS5a cosf or L5b sinf1S. Observe
that a and b give the lengths of the short~S! and long~L!
distances that alternate following the Fibonacci sequenc11

Using the identityz5 bzc1$z%, where$z% is the fractional part
of z, Eq. ~7! can be recasted as

xm5ml̄2H m

t J ~L2S!, ~8!

where l̄5L/t1S/t2 is the average lattice parameter, sin
in a FC the ratio between the number ofL andS intervals is
t. As it will be shown later, this quantity dominates th
behavior of the dynamic structure factor for long-wavelen
modes. The other term in Eq.~8! gives the fluctuations
aroundl̄.

The corresponding dynamical structure factor for the
is obtained by substituting Eq.~8! into Eq. ~4!. The double
sum over sites can be performed separately. One of th
summations can be written as

(
m52`

`

eimge2 iq(L2S)$m/t%, ~9!

whereg5ql̄2u(v2). This can be calculated exactly by u
ing the convolution theorem for Fourier transforms (f̃ ),
which reads

f 1f 2̃~g!5
1

2pE2`

`

f 1̃~V! f 2̃~g2V!dV. ~10!

Let us definef 15e2 iq(L2S)$m/t% and f 251. Using the fact
that $z% is periodic, with period one, and that$z%5z in the
interval @0,1!, the Fourier expansion off 1 is23

eiC$z/t%5 (
n52`

`
~eiC21!

i ~C22pn!
expF i2pzn

t G , ~11!

where C52q(L2S). One can easily identify thatV
52pn/t. Therefore, Eq.~9! becomes

(
n52`

`
e2 iq(L2S)21

i @2q~L2S!22pn#
d~g22pn/t!. ~12!
s
e-
t

l

in

.

h

se
The same procedure can be done for the summation

m8 in Eq. ~4!, and the final result is

S~q,v2!54sin2S q~L2S!

2 D (
n52`

`
d@v22v2~ql̄12pn/t!#

@q~L2S!22pn#2
.

~13!

This equation shows thatS(q,v2) covers densely the
(q,v2) plane with a set of functions of the form 2J@1
2cos(ql̄12pn/t)#. The main contributions arise whenn
;(L2S)q/2p, since in Eq.~13! the denominator become
small. Therefore, only a few of then branches should hav
appreciable amplitude in a given region ofq.

Equation~13! satisfies two important limits, whenL5S
the response is that of a linear chain, as expected. WhenL/S
is a rational number,S(q,v2) is periodic. WhenL5t and
S51, and knowing that$t%51/t, we recover the expressio
found by Ashraff and Stinchcombe.23

In order to test the validity of computer simulation
against the results of Eq.~13!, we calculatedS(q,v2) for the
FC by a direct simulation using the fundamental definition
it @Eq. ~4!#. In Fig. 1~a! we show the result for a chain of 20
sites, withS51 andL5t, and for a mesh of 2003400 in the
(q,v2) space. Notice that in spite of the huge calculati
('1010 steps), the amplitudes of the different branches

FIG. 1. ~a! Dynamical structure factorS(q,v2) for a perfect
Fibonacci chain of 200 atoms, calculated with Eq.~4!. ~b! The same
calculated with Eq.~13! and up to 20 branchesn.
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completely wrong, and the shape given by theh(v2) factor
is not removed, due to the finite summation. In Fig. 1~b! we
show the result from Eq.~13! with only 20 terms in the
single summation. Considering more terms does not cha
the results noticeably.

Observe that in the intervalqP@0,2p#, although there is a
dense spectrum, only few branches of smalln are visible and
indicated in the figure. All branches have a period of 4.
which agrees with the value 2p/l̄54.546, calculated from
Eq. ~8!. The amplitudes of the branches are modulated by
condition q(L2S);2pn, and the phase between branch
n50 andn51 is 2.8, as predicted by 2p/tl̄52.8099.

An interesting question is the behavior of the FC in t
acoustic region (q→0). If one calculates the second mome
of S(q,v2),

^v2~q!&5E v2S~q,v2!dv2, ~14!

by using Eq.~A8! in Appendix A, one finds that the secon
moment in the limitq→0 is given by

^v2~q!&5Jq2S L2

t
1

S2

t2D 5Jq2l 2̄. ~15!

This number is always higher than the square of the
locity of soundJ(l̄)2, which is the same for the FC as for
periodic or random chain with an average lattice parame
provided that the proportion ofL andS bonds remains con
stant. This is due to the model, which separates the dyna
of vibrations from the scattering processes. The velocity
sound is dictated only by the dynamics, while the seco
moment of the scattering response has contributions of
various branches for a singleq in the dynamical spectra.

Another distinctive feature of the spectrum is the fin
width of the spectrum atq50. The width is given by

D5
^v4&2^v2&2

^v2&
,

which depends only on the distribution of pairs of bon
with different length. In Appendix A we show that for a FC
D is always finite, and only in the limitq50 the result is the
same as the one obtained for a chain with a random di
bution of bondsL andS.

IV. DYNAMICAL STRUCTURE FACTOR
FOR PHASON DISORDER

In this section we examine the effects of having structu
disorder, in the form of phasons, as deviations from the p
fect FC. As mentioned before, it is not clear yet if phaso
are coherent modes in real space, or if they should be c
sidered as local random defects, with only short-distance
relations. Let us consider first the case of a coherent pha
field.

Coherent phasons can be produced in various ways u
the cut and projection method. One needs fluctuations in
window of acceptance that result in a rearrangement of
atomic positions in real space. In a FC, a local phason
responds to changing the sequenceLS→SL ~or SL→LS).
This operation of interchanging contiguous intervals is cal
ge
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a flip-flop. For example, the sequence LSL can be conve
into LLS by making a flip-flop.

The simplest coherent phason field that can be produ
is a periodic fluctuation of the window in they direction. We
shall consider a sinusoidal modulation of the accepta
window of the formW5W01bA sin(Qpx1a) whereW0 and
A are constants.Qp is the wave vector of the phason anda is
a phase that fixes the point in the chain that coincides exa
with the origin of the hyperspace. This results in a kind
coherent modulation in the perpendicular space. If in Eq.~7!
one substitutesm/t by m/t1A sin(mQpa1a), the Fibonacci
sequence is converted into

xm~A!5mS1 b m

t
1A sin~mQpa1a!c~L2S!. ~16!

The chain generated by Eq.~16! is an example of a FC
with coherent phasons. The effect of the oscillating term is
the introduction of flips-flops in the original chain. The de
sity of flips-flops (r) with respect to the perfect FC as
function of A, Qp , and a is calculated in Appendix B. A
flip-flop is introduced for a givenm if the differenceD(m)
between the chains defined by Eqs.~7! and ~16! is not null,

D~m!5xm~A!2xm~0!5~L2S!

3S b m

t
1A sin~mQpa1a!c2 b m

t c D , ~17!

so the positions in the chain with CP’s are given by

xm5ml̄2H m

t J ~L2S!1D~m!. ~18!

When one considers phasons as a random process,
can be done by altering the window function at random,
directly choosing sites in real space to make flip-flops. W
shall obtain RWP’s in the former case and real-space RP’
the latter.

These three cases can be treated with the same forma
once the quantityD(m), which gives the deviations with
respect to the perfect FC, is specified.

A. Coherent phasons

We substitute in Eq.~4! the positions of the sites in th
chain, which now are given by Eqs.~18! and ~17!. For the
sake of clarity, we shall seta50, since this only means a
uniform translation of all coordinates, and its effect is on
important when comparing a disordered chain with a perf
chain in order to count the number of defects, or calculat
the density of phasons, that we shall treat below. If we
a51, we need to perform the following summation:

(
m52`

`

eimg1 iq(L2S)[A sin(Qpm)2$m/t1A sin(Qpm)%] . ~19!

As with Eq. ~10!, we use the convolution theorem, b
this time we definef 1 as

f 15eiq(L2S)[A sin(Qpm)2$(m/t)1A sin(Qpm)%] . ~20!

Again, the decimal part of$m/t1A sin(Qpm)% is periodic,
and we use the following Fourier series:
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eiC$m/t1A sin(Qpm)%5 (
n52`

`
eiC21

i ~C22pn!
ei2pn[ ~m/t!1A sin(Qpm)] .

~21!

In order to perform the summation overm, we observe
again that the functioneiB sin(Qpm) is also periodic, and write
the following Fourier expansion:24

eiB sin(Qpm)5 (
s52`

`

Js~B!eiQpsm, ~22!

whereB5Auq(L2S)22pnu andJs(B) is its corresponding
Bessel function.

Therefore, using Eq.~10!, and f 251, Eq. ~19! becomes

(
n,s52`

`
e2 iq(L2S)21

i @2q~L2S!22pn#
Js~B!d@ql̄2u~v2!

22pn/t2Qps#. ~23!

The final expression for the dynamical structure factor

S~q,v2!54 sin2S q~L2S!

2 D
3 (

n,s52`

` Js
2~B!d@v22v2~ql̄12pn/t1Qps!#

@q~L2S!22pn#2
.

~24!

Thus,S(q,v2) conserves the structure of the FC, exce
that the intensity of each peak of the FC (s50), given by the
condition n'q(L2S)/2p, is diminished by the factor
J0

2(q)<1. Furthermore, there are satellites around each p
given by the termssÞ0, all of which are less intense, th
peaks withs561 being the most pronounced ones.

Figure 2 shows the dynamical structure factor calculat
with Eq. ~24! for Qp50.05p, A50.5, L5t, and S51,
which results in a density of CPr525%. Notice that the first
two branches of the perfect FC are still present but with l
intensity, giving a modified overall appearance of the str
ture factor, as compared with the perfect case of Fig. 1~b!.
Furthermore, new satellite branches, due tos561 and62,

FIG. 2. Dynamical structure factorS(q,v2) for a FC with co-
herent phasons, produced usingA/b50.5, a50, andQp50.05p,
giving r'25%.
s

t

k,

d,

s
-

appear as predicted. Observe that the separation of the s
lite peaks is constant and equal toQp /l̄50.1137. WhenQp
is of the order ofp, the appearance of the spectrum is n
like the FC anymore, since satellites from different branch
may overlap. When the wavelength of the phason is co
mensurate with the period of the FC branches, the respo
is identical to the FC spectrum, except that the amplitude
the branches are changed by the satellites, whose respo
always coincide with some branch. Equation~24! also shows
that there is coupling between the neutron momentum (q),
and the wave vector of the phason (Qp). Equation~23! gives
the following condition for generalized momentum cons
vation:

ql̄5u~v2!1
2pn

t
1Qps, ~25!

which shows that this coupling is mediated by phonons.

B. Random window phasons

The second way of producing phasons is to move
acceptance window in a random fashion in each sitem. For
this RWP, the deduction is similar to the CP case, except
instead of having a sine function inside the window functio
we must consider a random one. Therefore,

D~m!5xm~A!2xm~0!5~L2S!S b m

t
1Rmc2 b m

t c D ,

~26!

whereRm is a random variable with a flat distribution be
tween 0 and some amplitudeA, related to the phason densit
r in a complicated way. For simplicity, from now on w
shall takeA51.

We need to evaluate the average response over an
semble of realizations of disorder. Thus, the analog of
~19! is

^S~q,v2!&5
ph~v2!

N (
m,m8

N

eig(m2m8)F1~m,m8!

3^F2~m,m8!&, ~27!

where

F1~m,m8!5e2 iq(L2S)($m/t%2$m8/t%)

and

^F2~m,m8!&5 (
D(m)2D(m8)

eiq$[D(m)2D(m8)] %P„D~m!,D~m8!….

where^•••& denotes the average using a two-particle pro
ability distribution functionP„D(m),D(m8)…. If the density
of phasons is small, the statistical fluctuations are boun
and uncorrelated, sinceD(m) represents a local flip-flop~see
Appendix B!. In that case, P„D(m),D(m8)…
5P„D(m)…P„D(m8)…, and thus the two summations in E
~27! can be performed separately.

The manner in which disorder is produced in the hyp
space window can be written as

D~m!5~L2S!@Rm1$m/t%2$m/t1Rm%#. ~28!
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Observe that $m/t1Rm% is $m/t%1Rm if Rm,1
2$m/t%, and it is$m/t%1Rm21 otherwise. Therefore,

f 2~m!5eiqD(m)5H 1 if Rm,12$m/t%

e2 iC if Rm>12$m/t%.
~29!

This can be written aŝ f 2&5P(m)1e2 iC@12P(m)#.
SinceRm obeys a flat distribution,P(m)512$m/t% is the
probability that on sitem the random number does not e
ceed 12$m/t%. Then,

^ f 2~m!&511@e2 iC21#$m/t%. ~30!

In Eq. ~30!, the first term will give a response similar t
Fibonacci and the second term is periodic and can be Fou
expanded. The summation overm turns out to be
i
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co
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3

i
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th
n

th

b
ex

b

ier

(
n52`

` F 1

C22pnGF ~sinC!d~g22pn/t!1~12cosC!

3(
s51

`
d@g22p~n1s!/t#2d@g12p~n2s!/t#

ps G .

~31!

The summation overm8 reads exactly the same, wit
proper conjugated factors. Finally,

^S~q,v2!&5cos2S C

2 DSFib~q,v2!1sin2S C

2 DSSat~q,v2!,

~32!

whereSFib(q,v2) is the response of the FC, given by E
~13!, and the rest of the oscillator strength is added to sa
lites whose response is
SSat~q,v2!5(
s51

`

4 sin2S C

2 D d@v22v2
„ql̄22p~n1s!/t…#1d@v22v2

„ql̄22p~n2s!/t…#

@ps~C22pn!#2
. ~33!
ose
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This result shows that the effect of disorder in the RWP
to modify the intensity of different branches without an
broadening. Observe that the satellites correspond to
structive interference of coherent phasons withQp52ps/t.
We can conclude that if phason disorder is small, the
sponse is coherent as explained in Appendix B. Figure
the graphical representation of Eq.~33!. Observe that the FC
branches are still present, but with different intensity. This
due to the fact that the satellites of a given branch coinc
exactly with the positions of other branches. This fact has
effect of diminishing the amplitude difference between co
secutiven branches. If one compares Fig. 1~b! with Fig. 3,
one notices that the latter is the FC spectrum, but
branches with highern are more visible.

C. Real-space random phason

Finally, one can introduce phason disorder in the FC
choosing randomly a bond and exchanging it with the n

FIG. 3. Dynamical structure factorS(q,v2) for a FC with ran-
dom window phasons, when the amplitude of the random varia
is one, which corresponds to a maximum densityrmax.
s

n-

-
is

s
e
e
-

e

y
t

one ~flip-flop!. The equations to solve are the same as th
of the last section, except thatRm in Eq. ~28! can be either
zero or one, instead of having a flat distribution. For a giv
pair of sitesm andm8 the phase inF2(m,m8) could be either
0, 6(L2S), or 62(L2S), depending on the nature of th
pair of sites. These phases can be found for all the poss
situations, and are shown in Table I.

For example, there is a probability (12r)2 that none of
the extreme sitesm andm8 are chosen for a flip, wherer is
the density of phasons~see Appendix B!. The situation in
which only one of the extreme sites is chosen for a flip w
probability r(12r) could result in a phase change ofC, or
in no phase change at all, if the chosen site produces

le

TABLE I. Possible phase factors for the RP. The blanks in them
andm8 columns mean eitherLL, LS, or SL indistinctly.

Rm Rm8 m m8 D(m)2D(m8)

1 1 LL LL 0
LS LS
SL SL
LL SL 1(L2S)
LS LL
LL LS 2(L2S)
SL LL
LS SL 12(L2S)
SL LS 22(L2S)

0 1 LL 0
SL 1(L2S)
LS 2(L2S)

1 0 LL 0
SL 1(L2S)
LS 2(L2S)

0 0 0
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difference with the exchange. Following this procedure a
collecting terms, one finally gets

F2~m,m8!5~12r!212r~12r!@PLL1~PLS1PSL!cosC#

1r2@w~LS,SL!1w~SL,SL!1w~LL,LL !

12$w~LL,SL!1w~LS,LL !%cosC

12w~LS,SL!cos 2C#, ~34!

where PLL51/t2 and PSL5PLS51/t3 are the bond pair
probabilities in the FC. This expression depends onm and
m8 only via the terms multiplyingr2 through the factors
w(m5A,m85B), where A,B5LL,LS,SL. These factors
should be understood as conditioned probabilities in cha
of length l 5um2m8u.

If r is small, the fluctuations are bounded, and the p
distribution can be written asw(A,B)5PAPB . Observe that
the expression in this approximation is separable on the v
ablesm andm8, and if one continues the convolution proc
dure, as in the previous cases, one finds a Fibonacci resp
reduced by a factor (12r)2, together with satellites re
sponses with intensities depending onr, without broadening.
This is due to the fact that we have neglected correlatio
and single isolated phasons cannot modify the distances
tween sites by more than 2(L2S) at any distance.

It is certainly true, although highly improbable, that o
can obtain large sequences ofL bonds by just performing
flip-flops. This would represent a high-density problem,
which our approximation breaks down. Therefore, we sho
study the high-density limit, when the fluctuations are u
bounded.

Let us start by remembering the expression for the str
ture factor in the case when each atomic position is modi
by random variablesRm and Rm8 . For fixed values of the
random variables~a given realization of disorder!, one has

S~q,v2!5
ph~v2!

N (
m,m852`

`

eig(m2m8)e2 iC(Rm2Rm8 )

3eiC($m/t1Rm%2$m/t1Rm8 %). ~35!
id
e

o

d
th
b
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Observe that$m/t1Rm% is still periodic and that Eq.~35!
only depends onl 5m2m8 and the random variablex l

5Rm2Rm8 . Therefore, one can perform the summations
in the FC case, and perform an average over the realizat
of disorder,

S~q,v2!54ph~v2!sin2S q~L2S!

2 D
3 (

l ,n52`

` F 1

@q~L2S!22pn#2G
3ei (g22pn/t) l^e2 i [q(L2S)22pn]x l&. ~36!

In the high-density limit one should find the probabili
distribution for x l considering the probability of having
displacementx l in a random walk with two kinds of steps,L
or S, and a fixed number of stepsl. This is a binomial dis-
tribution, and the central limit theorem asserts that this te
to a Gaussian distributionV(x l) with a zero mean,

V~x l !5
1

A2p lp~12p!
E

2`

`

e2x l
2/2lp(12p)dx l . ~37!

Therefore,

^e2 i [q(L2S)22pn]x l&5E
2`

`

ei [q(L2S)22pn]x lV~x l !dx l

5e2[q(L2S)22pn] 2/2t3l . ~38!

The last step in Eq.~38! follows because the probability
of performing a step of lengthS is p51/t2.

Thus, the final result is obtained by convoluting aga
which means that each peak of the perfect FC presen
Lorentzian broadening due to disorder,
^S~q,v2!&54 sin2S q~L2S!

2 D (
n52`

` F 1

@q~L2S!22pn#2G @q~L2S!22pn#2/2t3

$@q~L2S!22pn#2/2t3%21@v22v2~ql̄12pn/t!#2
. ~39!
ened
e

The spectrum is very much broadened, since the w
depends on @q(L2S)22pn#2, as measured in som
experiments,25 and suggested theoretically before.26 Obvi-
ously, a reasonable case of random phason disorder sh
be a combination of the two limits, that is, a spectrum withd
functions centered in the FC lines, without broadening, an
small broadened part due to diffused scattering from
large fluctuations. A good model for this situation should
obtained by starting with Eq.~34!, wherer should be under-
stood as the density of phasons, and introducing express
like Eq. ~37! for the conditioned probabilities multiplying th
factor r2. The result for this combined effect is
th

uld

a
e
e

ns

^S~q,v2!&T5F ~12r!21
2r~12r!

t3
~t12 cosC!G

3SFib~q,v2!1F r

t3
~t12 cosC!G 2

3Sdi f f~q,v2!, ~40!

whereSdi f f(q,v2) is given by Eq.~39!. Figure 4 shows only
this broadened part ofS(q,v2)T , calculated from Eq.~39!.
The reason to show only this part is because the unbroad
part dominates and it would be difficult to illustrate th
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marked dependence of the broadening withq. For acoustic
modes, the response of then50 branch is similar to the FC
with an increasing broadening asq grows. However, the
other branches are faint in this region ofq, because their
centers of minimal broadening occur at very large values
q. This result could be used to compare with the spec
obtained from real quasicrystals with phason disorder, si
this is the only case in which coherency is lost. It is wor
while pointing out that the broadening is Lorentzian, desp
the fact that the disorder follows a Gaussian distribution.

V. DISCUSSION AND CONCLUSIONS

In Fig. 5 we show a comparison for fixedv252, between
the FC and the three different types of phasons. The
branchn50 crosses the axis three times in the intervaq
P@0,2p#. This feature is preserved in all cases for lowq.

FIG. 4. Diffused part of the dynamical structure factorS(q,v2)
for a FC with randomization in real space. The phason density
been taken to ber50.3'rmax51/t3.

FIG. 5. Comparison ofS(q,v2) between the FC and chains wit
the three sorts of phasons at a constant frequencyv252. ~a! Perfect
FC, ~b! FC with CP,~c! FC with RWP,~d! FC with RP.
f
a
e

-
e

C

However, for largerq there are noticeable differences. Th
coherent phasons@Fig. 5~b!# present satellites associate
with each FC peak. Their oscillator strength is taken from
main branches, for instance, in the figure it is clear that
intensity of branchn50 decreases more rapidly withq. The
RWP @Fig. 5~c!# can be considered as a special case of C
when the satellites coincide with the main branches; a
result the spectrum presents the same FC peaks, but
very much modified intensities. The RP@Fig. 5~d!# was cal-
culated with Eq.~40! for a density of phasons of;30%.
Observe that in this case, the broadening for highq washes
out all the FC branches. Of all the three cases of pha
disorder, the only one that produces new peaks is the
since one is introducing a further periodicity in the cha
Strictly speaking none of the peaks are new; because
spectrum is dense they merely become more apparent
disorder.

An important conclusion of this work is that broadening
impossible to be produced with coherent phasons. It can
said that coherent phasons do not produce broadening
cause the structure of the FC in the hyperspace is some
preserved, the changes due to a coherent phason field
only in the relative intensities of the FC lines. The only w
to produce broadening is to allow for unbounded fluctu
tions, when there is a Lorentzianq dependent broadening
Our results agree with physical intuition, since long wav
lengths are not sensitive to the microscopical quasicrystal
disorder.

By looking at all our expressions forS(q,v2) we realize
that the quantities 2p(n/t)/l̄5Qi, and q(L2S)22pn
5Q'W0 are always appearing whereq5Qi because of thed
function. These quantities are known to be the compone
of the reciprocal lattice vector for the quasicrystal.27 It is
known that the diffraction pattern in quasicrystals28 presents
peaks whose positions are given byQi and their intensities,
or oscillator strengths, depend onQ', in agreement with our
expressions.

In the case of RP disorder, the dispersion correspond
to n50 is practically the only one that survives, because
difference inQ' between then50 and then51 branches is
large for aq value between zero and 2p. We conclude that
the presence of broadening in the experiment, on top of
usual thermal broadening, is proof of the absence of a co
ent phason field in real quasicrystals. On the other hand,
presence of satellites seems to be a signature of some c
ency of phason disorder.29

Summarizing, we have found expressions forS(q,v2) for
a simple dynamical model in which all the restoring forc
and masses are the same. This allows us to isolate the e
of the defects in the structure from other complexities a
also allows us to obtain simple expressions forS(q,v2) in a
FC and a FC with phason disorder. In the perfect F
S(q,v2) consists of a dense set of cosine branches with
ferent phases, modulated by aq-dependent factor. For acous
tic modes it was predicted that the FC looks similar to
simple linear chain with an average spacing between site

The FC with phasons was produced in three differ
ways, either by varying the window acceptance functi
@W(m,n)# in the hyperspace construction, with a period
function, or with a random variable, or by randomly produ
ing exchange of sites in real space. The results show

as
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14 310 PRB 59NAUMIS, WANG, THORPE, AND BARRIO
even a random-bounded displacement of a window func
in the hyperspace produces coherency in real space.

The effect of a coherent phason is always reflected
S(q,v2) by giving well-defined satellites of the FC’s mo
prominent branches whenQp is small. The positions of the
satellites depend on the period of the coherent phason. E
in the case of randomly varying the acceptance funct
~RWP!, this coherency is preserved because mistakes
made only in certain sites of the chain. However, a RP
distinguishable from the other cases because the respon
washed out for large values ofQ'W05q(L2S)22pn.

Despite the extreme simplicity of the model, we ha
showed some fundamental features of the dynamics of a
lattice. Our results agree with physical intuition, althou
they are not expected to be quantitatively correct when
garding a real system. However, we still expect our conc
sions to be valid when considering lattices of higher dim
sion and more realistic Hamiltonians.
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APPENDIX A: THE MOMENTS OF S„q,v2
… IN A FC

The moments ofS(q,v2) for the FC can be calculated i
two ways: either by a direct application of the analytic
expression for the dynamical structure factor@cf. Eq. ~13!#,
or by obtaining the statistical distribution of bond configur
tions in the FC. In this appendix, we use both methods
order to verify the results obtained with Eq.~13!.

We start with the latter method, which consists of a dir
application of the general formula forS(q,v2) @cf. Eq. ~4!#,
and thus, is valid for any kind of chain. By definition, thenth
moment is

^v2n~q!&5
1

N (
m,m8

eiq(xm2xm8 )(
k

eik(m2m8)

3E v2nd~v22vk
2!dv2

5
1

N (
m,m8

eiq(xm2xm8 )I n , ~A1!

where the first integrals (I 0 , I 1, andI 2) are

I 05(
k

eik(xm2xm8 )5dm,m8 , ~A2!

I 152J(
k

eik(xm2xm8 )~12cosk!

52JS dm,m82
1

2
~dm,m8111dm,m821! D , ~A3!
n

in

en
n
re
s
e is

P

e-
-
-

y
d

l

-
n

t

I 254J2(
k

eik(xm2xm8 )~122 cosk1cos2k!

54J2S 3

2
dm,m82~dm,m8111dm,m821!

1
1

4
~dm,m8121dm,m822! D . ~A4!

Now, the moments are given by the statistics of each b
configuration in the lattice. The zeroth moment only giv
the correct normalization condition,

^v0~q!&51. ~A5!

The first moment depends on the statistical distribution
the distance between first neighbors, since

^v2~q!&52JS 12
1

N (
m

~12cosqLm! D
52J~12^cosqLm&!, ~A6!

whereLm is the distance between two contiguous sites in
lattice. In a FC,Lm can take the valuesL or S, with prob-
abilities 1/t and 1/t2, respectively. Thus,

^v2~q!&52JS 12
1

t
cosqL2

1

t2
cosqSD . ~A7!

In the acoustic limit (q'0), we obtain

^v2~q!&5Jq2S L2

t
1

S2

t2D . ~A8!

This value is always higher thanl̄2. As we show below, the
difference between the coefficient ofq2 and l̄2 arises from
the contribution of all the modes withn different from zero
in Eq. ~13!.

The width of the spectrum is

D5
^v4&2^v2&2

^v2&
, ~A9!

where the second moment is

^v4~q!&54J2S 3

2
22^cos~qLm!&2

1

2
^cosq~L11L2!& D ,

~A10!

andL11L2 is the distance between second neighbors. In
FC, L11L2 is eitherS1L or L1L, with probabilities 2/t2

and 1/t3, respectively. For acoustic modes,

^v4~q!&5
2J2q2

t2
~L2S!2. ~A11!

Thus, we obtain in the limitq→0,

D5
2J~L2S!2

tL21S2
, ~A12!

which is not zero, unlessL5S.
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Another method to obtain the moments is by taking
analytical expression forS(q,v2) @Eq. ~13!#. The first mo-
ment is calculated with Eq.~14!, resulting in

^v2~q!&54 sin2S q~L2S!

2 D
3 (

n52`

`
2J@12cos~ql̄22pn/t!#

@q~L2S!12pn#2
. ~A13!

Using a Taylor expansion for smallq,

^v2~q!&'Jq2S l̄21
~L2S!2

p2 (
n51

` F 1

n2
2

cos~2pn/t!

n2 G D ,

~A14!

and summing up overn, the final expression is

^v2~q!&5Jq2S l̄21
~L2S!2

t3 D 5Jq2S L2

t
1

S2

t2D ,

~A15!

which agrees with the result obtained before using the
equation. We clearly see that then50 mode contributes as
periodic lattice with a velocity of sound given byAJl̄. How-
ever, there is a finite contribution for all the other mod
with nÞ0. The sum of all these contributions is exactly (L
2S)2/t3.

APPENDIX B: DENSITY OF PHASONS

Now we discuss how to define the density of phasonsr)
in each of the cases that are treated in the paper. It coul
thought that this quantity is a measure of disorder, but i
not clear yet howr depends on the way the defects a
produced. We begin by studying the CP case, where Eq.~17!
states that the non-flip-flop condition at a given sitem
@D(m)50# implies that

H m

t
1A sin~mQpa1a!J 5H m

t J 1A sin~mQpa1a!.

~B1!

By taking the integer part of the last equation and using t
b$z% c50, the condition for not having a defect is reduced

bH m

t J 1A sin~mQpa1a!c50, ~B2!

and analogously, the condition for obtaining a flip-flop at s
m is

bH m

t J 1sin~mQpa1a!c561, ~B3!

which givesD(m)56(L2S).
The density of phasons is defined as the sum over

flip-flops, divided by the total number of sites (N),

r5
1

N (
m51

N U bH m

t J 1A sin~mQpa1a!cU. ~B4!

The flip-flops are produced in regions where$m/t%'1.
Now, since the function$z% covers the interval@0,1) in a
dense and uniform way,11 for long wavelengthsr grows lin-
e

st

s

be
s

t

ll

early withA. The phasea can change the average number
phasons, since for somea, the maximum of the sine function
can coincide with the point where$m/t%'1.

For the RWP case, the analysis developed for CP den
might be applied. Thus,

r5
1

N (
m51

N U bH m

t J 1RmcU. ~B5!

SinceRm is uniformly distributed, the maximum probabi
ity for a phason is obtained when$m/t% is nearly one, i.e., if
m is of the formz'ts, wheres is an integer. This condition
shows that the most probable sites for obtaining phasons
separated by periods proportional to Fibonacci numb
Then, the distance between flip-flops is given by FC’s
lower generations.

In the RP case, despite the fact that the defects are
duced at random, the process in the FC is not uncorrela
as we shall show below. There are sites that do not prod
a phason when interchanging sites~for instance, a pairLL).
Furthermore, the final configuration depends on the path
lowed, because a phason could be healed if a site is ch
an even number of times. Therefore, a Monte Carlo-like p
cedure is correlated and the density of phasons is not ne
sarily proportional to the number of steps in the randomi
tion process. To be specific, take the seque
(LSLLSLSLLSLLSL), and do all the possible flip-flops in
sequence from left to right. The resulting chain
(SLLSLSLLSLLSLL), which is the same as the origina
one, except for the ends.

If one repeats the same procedure for an infinite chain,
result is a translation of the original one with no chang
despite the infinite number of steps. Therefore, the numbe
flips-flops is not necessarily equal to the number of phas
produced. A possible definition for the density is obtained
comparing many times the randomized chain with a FC d
placed one site in each comparison. In each of these c
parisons, a different number of phasons is obtained. Th
fore, we define the number of phasons of a chain as
minimum of these numbers. Ifxi

R are the positions of the
atoms in the randomized chain andxi are the positions in the
perfect chain, then

r5minS (
t,i 52`

`

uxi
R2xi 2tu D , ~B6!

wherei is a site index andt is a site translation.
An estimation of the number of phasons as a function

the number of steps~n! can be obtained by calculating th
probability of making a phason on one site aftern steps of
randomization, and then multiplying it by the number of sit
in which a phason could be made. This number isN/t, if we
assume that in each step of randomization the numbe
sites in which a phason can be done does not diminish v
much. This is an approximation since in each randomizat
new configurations ofSSandLL appear in which a phaso
cannot be done.

Following this idea, we choose a site to perform a fli
flop in the chain. There are 2N/t2 sites suitable to do this
since the proportion between the total number of bonds anS
bonds ist2. EachSbond may be exchanged with either of i
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two L neighbors. The probability of choosing this site on
one time for making a phason aftern steps of randomization
is np(12p)n21, where p5t2/2N. If we choose the same
site two times, a phason is created the first time and ann
lated in the next one. This argument is true for any ev
number of times. Now, if a site is chosen three times
phason is obtained with probabilityC3

np3(12p)n23, where
Ci

n denotes the combinations ofn objects in i sites. The
process is repeated and it is seen that phasons can be cr
only if the site is chosen an odd number of times. Then,
density of phasons is

r~n!'
1

t
@np~12p!n211C3

np3~12p!n23

1C5
np5~12p!n251•••#

5
1

t2 S 12S 12
t2

N D nD . ~B7!

A computer simulation of an RP was performed using
ensemble of 100 randomized chains of 100 sites each. In
6 the calculatedr(n) is shown, the values ofr(n) obtained
using Eq. ~B6!, with the minimization process describe
above, correspond to the lower curve in the figure. With
the minimization process@ t50 in Eq. ~B6!#, the density ob-
tained is always higher, which corresponds to the up
curve in Fig. 6. These results are compared with the ana
e

st

e

s

. A

y
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i-
n
a

ated
e

n
ig.

t

r
ti-

cal prediction given by Eq.~B7!. Observe that the theoretica
prediction works fine only for smalln, because in this cas
neglecting real-space correlations is a good approximat
Notice that there is an asymptotic behavior forn→`, a situ-
ation in which the number of created phasons is equal to
number of annihilated ones, the density beingrmax51/t3.

FIG. 6. Calculation of the density (r) of real-space random
phasons~RP! as a function of the number of Monte Carlo steps in
chain of 100 sites and averaging over an ensemble of 100 ch
The upper and lower continuous lines are the results of compa
the disordered chain with the original FC and with a FC who
origin gives the minimum number of defects, respectively. T
dashed line is Eq.~B7!, which lies in between these two results,
expected.
s.
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