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Coherency of phason dynamics in Fibonacci chains
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The effects of phason disorder on the dynamical structure factor of Fibonacci chains are studied, and the
existence of a coherent phason field in real quasicrystals is addressed. The neutron-scattering response is
modeled for coherent and random phasons. The results show that coherent and random phasons can be
distinguished for high values of the momentum transfer. However, for both sorts of phasons the response in the
acoustic-mode region is quite similar, since the only important quantity is the average length between atoms.
In particular, it is shown that a random phason produced in the quasicrystal’s hyperspace leads to a coherent
phason field in real spacES0163-18289)00622-0

[. INTRODUCTION quasicrystal there aie degrees of freedom for changing the
phases of the FT. A change ¢hof them produces a transla-

Quasicrystals(QC'’s) (see, for instance Refs. 1 and 2 tion in real space, or phonons. A change in the otHer (
present a peculiar kind of order. Despite lacking translationat-d) phases produces local rearrangements of some atomic
order, the positions of the atoms are not arbitrary, as in asites® The hydrodynamic modes associated with changing
amorphous solid, but are precisely determined, and spots ifD —d) phases are the phasons.
the diffraction patterns are observed. The issue of determin- According to Lubenskyet al,'° the phason modes in a
ing the positions of the atoms in real QC’s is not resolvedQC are diffusive, with very large diffusion times. Observe
yet, although there are currently some structural models fothat, as hydrodynamic modes, phasons are low-energy exci-
certain alloys that are able to reproduce the available datttions. On the other hand, a phason corresponds to a rear-
from x rays and electron-diffraction experimefits. rangement of sites that requires atoms to jump over local

Some simple theoretical models retaining the basic feaenergy barrierSwhich can be largéhis energy is nearly the
tures of quasicrystalline order have been proposed, such amergy for creating a vacancy in the lattic&hen, the pic-
the one-dimensional Fibonacci chaiRC), or the family of  ture depends upon the scale; at macroscopic scales, symme-
Penrose lattices in two and three dimensioHsThese mod- tries and conservation laws determine the dynamics of the
els are useful to study the peculiarities of QC’s and to predicphasons?
the effects of the quasicrystalline order on their physical During solidification of a QC, phason and phonon strains
properties. In particular, an exclusive kind of local defect,could be present, but phonon strain relaxes quickly leaving
called phason, could be investigated in detail by means ofnly phason strain. This strain produces a widening of the
these theoretical models. characteristic peaks in experimental diffraction patterns of

A phason can be obtained from the cut-and-projectiorQC’s by x rays, electrons, or neutrotfsin particular, the
method for QC'€ which consists in projecting a time of jump of atomic species in QC’s with phason disorder
D-dimensional hyperspace periodic lattice onto awas recently obtained using time-of-flight quasielastic neu-
d-dimensional space where a quasiperiodic lattice is obtron scattering?
tained. The Fourier transfor(&T) of a QC is made by linear However, it is not clear yet if phasons should be coherent
combinations of th® reciprocal basis vectors, which project modes in real space, as the hydrodynamic picture implies.
onto the real space. This explains why the diffraction patterr-rom the atomic point of view, phasons should be consid-
of a QC is made of sharp diffraction spots, since the squarered as local defects with only short-distance correlations. If
modulus of the Fourier transform is proportional to the dif- this is the case, then the use of a hyperlattice description of
fraction pattern. phasons is controversial.

In a crystal, a uniform change of the phases on the FT In this paper we examine both points of view and study
induces a uniform displacement of the atomic positions irthe peculiarities of phasons produced in either a coherent or
real space. The hydrodynamic modes associated with sucham incoherent way. In order to do so, we concentrate our
perturbation in a crystal are called acoustic phonons. In attention on the simplest QC, the Fibonacci chain, with the
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simplest possible dynamical Hamiltonian, a harmonic onelensity of stateg 7(w?)] is insensitive to changes in the
with nearest-neighbor springs of constant strength and equabnd lengths, and it is the same as for a perfect linear chain,
masses. This choice allows us to investigate the role of thbut the neutron response should sense bond-length disorder.
atomic positions exclusively, which can be probed within a linear chainx=m in units of the lattice parameter,
neutron-scattering experiments, leaving aside all the compliwhere m is any integer. The Green’s function correlating
cations due to other dynamical details of the problem. In reasitesm andm’ can be writte
experiments it is difficult to disentangle the effects due to

phason disorder or substitutional disordor other kinds of G (@2)=—i 1
imperfections(see, for instance, Refs. 15 and)lterefore, mm V(23)?— (w?—23)?
models that treat separately these effects should be useful for o, )
a full understanding of experimental data. Our simple model =—imp(w?)e'’e Jm=m’| 2
could be criticized because only one type of these sites is 2 o
considered. However, these sites could be thought of as monhere 0(w?) satisfies

ecules following a quasicrystalline array, or something more V(23)°— (w?—2J)°

complicated. In any case, the possibility of having real one- f(w®)=arctan) — > , )
component quasicrystals has been put forwarthe quan- w"=2J

tity to obtain is the dynamical structure factfq,w?) as a or, w?(8)=2J3(1—cos#), which is the well-known disper-
function of the variables that define phason disorder in th&ion relation of a linear chain. A useful expression for

el O(w?)|m—m’

chains. S(qg,w?) is obtained by plugging Ed2) into Eq. (1), that is,
In Sec. Il we define the dynamical structure factor o N
S(g,w?) for the model used and find general expressions to S(q,02) = 7n(w”) 2 exp(i[ (X — Xy )
1 m ml

calculate it. In Sec. Il we describe in detail the procedure to N
calculateS(q,»?) in a Fibonacci chain. In Sec. IV we ex- ) ,
plain how to obtain expressions for different kinds of phason —6(w)(m=m")]). 4)
disorder, and calculate the dynamical structure factor for co-
?uer[)eir?; ?r:] : i?/ggsppzégh;s ? anns dgfnn\?vzﬁge:wbghgﬁg&ggd's' all the chains with disorder. The only ingredignt needed is an
and phasons regarded as local defects produced randomly E?prtessmn foKp, -lg)’.“’e one hlas ar|1 erp;regsn):r? for the coor-
exchanging neighbor bonds in a FC, or real-space rando hates, one could in principle calculate Hé, in a com-

phasongRP's). Finally, in Sec. V we discuss the results of puter. However, as in all interference phenomena, the contri-
the model and point O’ut the peculiarities of the spectra opPution from distant sites in the summations do not converge

tained with the various sorts of phasons, and we draw som%ap'dly’. and one has to spend Ia_rg_e amounts of effort_ to
general conclusions from this work and also comment o pproximate the result. Therefore, it is more than convenient

possible extensions of this theory to more realistic situations? derive more analytical EXPressions. .
In particular, the response of the linear chain is

m,m’

This is the basic result of the model and shall be used for

Il. DYNAMICAL STRUCTURE FACTOR S(9,0%) = m(w?) [ q— 6(w?)]= & w®— w?(q)],
In an inelastic neutron-scattering experiment, most meatvhich is the correct limit. In the next section we shall exam-

surable quantities are related to the response of the system i the perfect FC.
frequency @) and momentum (q) space, which is
characterizef by the dynamical structure factor lll. THE FIBONACCI CHAIN
[S(q,w?)].X° For a chain ofN sites, this is written a¥
For the FC it is convenient to use the cut and projection
S(q02)= — 1 S @A) m G, (02), 1) r_nethodf."”On_e uses a two-dimension@D) rectangular lat-
xx' ’ tice, and projects on a straight line with incommensurate

) , ) ) slope, tang)=b/ra, where r=(\5+1)/2 is the Golden
WhereGX,X/(wz) is the retarded Green’s functifdescrib- mean, anda (b) is the lattice parameter in the(y) direc-
ing the excitations that couple to the neutrons, as phonons %on.

magnons. In tlh(ijs fvvork Wed_discu§s| orr1]ly t_r;)e phonlon cdase, The points (,n) of the 2D lattice are projected into the
since structural defects modify mainly the vibrational modes gy 2o+ fine. giving a positionriacose-+nbsind). Then,

2 .
Therefore, GX’X’,(“’ ) represents the . dlsplac,ement— the coordinate of thenth point in the FC is expressed as
displacement,u’) correlations between sitesandx’.

We shall consider a simple Hamiltonian of springs of _ .
equal strengtl{J) in a chain of equal unitary masses, Xm_En: (macosé+nbsing)W(m,n), ®)
1/du\? J i i inte
H=S (22X +5S (u—uy)?|, where the window fun_ctloNV(m,n) selects the points in the
%~ |2\ dt 27 hyperspace to be projected.

The form of this window function can be obtained
since we are interested on the effects of structural disordeanalytically?? by defining a band of constant width, parallel
more than in the specific dynamics. to the straight line given by=xtan¢+y,. The ordinate at
This model is particularly suitable to isolate the effects ofthe originy, determines a unique point of the lattice that
the quasiperiodicity from the dynamics, since the vibrationalprecisely intersects the straight line. In particulary4&=0,
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this point is the origin. The distance from any other point in

the lattice to this line is different from zero, since taris
irrational. For a given widttWy<b cos(p) only one pointn

is chosen for eachn. The slightest change in the slope causes
another point to intersect, defining a period, and conse- 4°
quently a crystal, which is known as a rational approximant
of a FC. Consideringyo# 0 can be regarded as a horizontal

translation of the origin.
If Wo=Db cos(p) andy,=0, it is clear that

matand¢

it ®)

W(m,n)=5<n—

where|z] denotes the integer part af and § is the Kro-
necker function. Then, by using E¢p) one obtains

m
xm=m8+{;J(L—S). 7

Therefore, the distance between two consecutive points ir2

the FC can be eitheB=a cos¢ or L=bsin¢+S Observe
thata and b give the lengths of the shofB) and long(L)

distances that alternate following the Fibonacci sequéhce.

Using the identityz=| z| +{z}, where{z} is the fractional part
of z, Eq. (7) can be recasted as

— [m
Xm=m?\—(;](|-—5), )

wherex=L/7+S/72 is the average lattice parameter, since

in a FC the ratio between the numberlofind Sintervals is

7. As it will be shown later, this quantity dominates the
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behavior of the dynamic structure factor for long-wavelength

modes. The other term in Ed8) gives the fluctuations
around\.

The corresponding dynamical structure factor for the FC

is obtained by substituting E@8) into Eq. (4). The double

sum over sites can be performed separately. One of the%,

summations can be written as
o0

2 eimye*iq(L*S){m/T},
m=—o

9)

wherey= g\ — 6(w?). This can be calculated exactly by us-

ing the convolution theorem for Fourier transformg),(
which reads

—_ 1 (>—
f1f2(7):EJLOOfl(Q)fZ('y_Q)dQ- (10

Let us definef;=e '9(-=91M 7 andf,=1. Using the fact
that{z} is periodic, with period one, and thft}=z in the
interval [0,1), the Fourier expansion df, is?3

ecizd= 3

n=—o

(e€—1) i27zn
(C—2mn) P

where C=—-q(L—9S). One can easily identify that)
=2mn/ 7. Therefore, Eq(9) becomes

: 11

o

efiq(Lfs)_l
Y
n . i[—q(L—S)—2mn]

S(y—2mnlT1). (12

FIG. 1. (a) Dynamical structure factoB(q,?) for a perfect
Fibonacci chain of 200 atoms, calculated with E. (b) The same
calculated with Eq(13) and up to 20 branchas

The same procedure can be done for the summation over
in Eq. (4), and the final result is

q(L—9
2

[

8 w?— wz(qr+ 27/ 7)]

[q(L—S)—2mn]?
(13

S(q, w?) = 4sir?

n=—o

This equation shows tha$(q,»?) covers densely the
(q,wz)_plane with a set of functions of the formJpl

—cos@g\+2mn/7)]. The main contributions arise whem
~(L—-9)g/2m, since in Eq.(13) the denominator becomes
small. Therefore, only a few of the branches should have
appreciable amplitude in a given region af

Equation(13) satisfies two important limits, wheh=S
the response is that of a linear chain, as expected. Wh8&n
is a rational numberS(q,»?) is periodic. WhenL =7 and
S=1, and knowing thafr} = 1/7, we recover the expression
found by Ashraff and StinchcomiFa.

In order to test the validity of computer simulations
against the results of E¢13), we calculateds(q, w?) for the
FC by a direct simulation using the fundamental definition of
it [Eq. (4)]. In Fig. 1(a) we show the result for a chain of 200
sites, withS=1 andL = 7, and for a mesh of 200400 in the
(q,0%) space. Notice that in spite of the huge calculation
(=10 steps), the amplitudes of the different branches are
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completely wrong, and the shape given by th@?) factor  a flip-flop. For example, the sequence LSL can be converted
is not removed, due to the finite summation. In Figo)we  into LLS by making a flip-flop.

show the result from Eq(13) with only 20 terms in the The simplest coherent phason field that can be produced
single summation. Considering more terms does not change a periodic fluctuation of the window in thedirection. We
the results noticeably. shall consider a sinusoidal modulation of the acceptance

Observe that in the intervgle [ 0,27], although there isa window of the formW=W,+ bA sin(Qyx+ a) whereW, and
dense spectrum, only few branches of smadfe visible and A are constantQ, is the wave vector of the phason ands
indicated in the figure. All branches have a period of 4.55a phase that fixes the point in the chain that coincides exactly
which agrees with the values®\ =4.546, calculated from With the origin of the hyperspace. This results in a kind of
Eq. (8). The amplitudes of the branches are modulated by théoherent modulation in the perpendicular space. If in(&h.
condition q(L —S)~2=n, and the phase between branchesone substitutesi/7 by m/7+ A sin(nQ,a+«), the Fibonacci

n=0 andn=1 is 2.8, as predicted byﬂrf=2.8099. sequence is converted into

An interesting question is the behavior of the FC in the m _
acoustic regiond— 0). If one calculates the second moment Xm(A)=mSt| —+AsiNmQata)|(L—-S). (16
of S(q, ®?),

The chain generated by E¢L6) is an example of a FC
<w2(q)>=f ®?S(q, 0?)dw?, (14)  with coherent phasonsThe effect of the oscillating term is

the introduction of flips-flops in the original chain. The den-

by using Eq.(A8) in Appendix A, one finds that the second sity of flips-flops (p) with respect to the perfect FC as a

moment in the limitg— 0 is given by function of A, Q,, and « is calculated in Appendix B. A
L2 2 flip-flop is introduced for a givem if the differenceA (m)
(0%(q))=JP| — + - =JgP\2 (15)  between the chains defined by E¢#) and(16) is not null,
T T

A(M)=Xm(A) = Xm(0)=(L=9)
This number is always higher than the square of the ve-

locity of soundJ(\)?, which is the same for the FC as for a X

periodic or random chain with an average lattice parameter,

provided that the proportion df and S bonds remains con- so the positions in the chain with CP’s are given by

stant. This is due to the model, which separates the dynamics m

of vibrations from the scattering processes. The velocity of Xm:mf_[_}(L_S)jLA(m)_ (18)

sound is dictated only by the dynamics, while the second T

moment of the scattering response has contributions of the

various branches for a singtgin the dynamical spectra.
Another distinctive feature of the spectrum is the finite

width of the spectrum afj=0. The width is given by

. (17

m
?+Asin(mea+ a)

When one considers phasons as a random process, this
can be done by altering the window function at random, or
directly choosing sites in real space to make flip-flops. We
shall obtain RWP’s in the former case and real-space RP’s in

(0®—{(w?)? the latter.
A= (@) ' These three cases can be treated with the same formalism,
@ once the quantityA(m), which gives the deviations with

which depends only on the distribution of pairs of bondsrespect to the perfect FC, is specified.
with different length. In Appendix A we show that for a FC,

A is always finite, and only in the limj=0 the result is the A. Coherent phasons
same as the one obtained for a chain with a random distri-

bution of bondd. andS. We substitute in Eq(4) the positions of the sites in the

chain, which now are given by Eq&l8) and (17). For the

sake of clarity, we shall set=0, since this only means a

IV. DYNAMICAL STRUCTURE FACTOR uniform translation of all coordinates, and its effect is only
FOR PHASON DISORDER important when comparing a disordered chain with a perfect

In this section we examine the effects of having structurafnain in order to count the number of defects, or calculating
disorder, in the form of phasons, as deviations from the pert® density of phasons, that we shall treat below. If we set

fect FC. As mentioned before, it is not clear yet if phasons®=1, we need to perform the following summation:

are coherent modes in real space, or if they should be con- o o _ _

sidered as local random defects, with only short-distance cor- > gimrtiaL-9AsinQpm) —{m/r+AsnQym)l  (19)
relations. Let us consider first the case of a coherent phason m=—

field.

As with Eqg. (10), we use the convolution theorem, but

Coherent phasons can be produced in various ways using.” ™ ;
is time we defind; as

the cut and projection method. One needs fluctuations in th

window of acceptance that result in a rearrangement of the f = eld(L=SASnQpm) —{(m/7) +A sin(Qpm)}] (20)
atomic positions in real space. In a FC, a local phason cor-
responds to changing the sequec®—SL (or SL—LS). Again, the decimal part dfm/ 7+ A sin(Q,m)} is periodic,

This operation of interchanging contiguous intervals is calledand we use the following Fourier series:
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FIG. 2. Dynamical structure fact®(q,»?) for a FC with co-
herent phasons, produced usiap=0.5, =0, andQ,=0.05m,
giving p~25%.

)

iC_
eiC{m/T-*-A sin(Qpm)} — E e 1 ei 2mn[(m/7)+A sin(Qpm)]
n= . i(C—2mn) '

(21)

In order to perform the summation over, we observe
again that the functior'® S"®" is also periodic, and write
the following Fourier expansioff

elB sin@Qpm) — 2 JS(B)eistm,

S=—x

(22

whereB=A|q(L—S)—2wn| andJ(B) is its corresponding
Bessel function.
Therefore, using Eq10), andf,=1, Eq.(19) becomes

0

e ial-9_1

2 Ta(—§—2an] () LaA 00

—2mn/7—Q,s]. (23
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appear as predicted. Observe that the separation of the satel-

lite peaks is constant and equal@ /A =0.1137. WherQ,

is of the order ofwr, the appearance of the spectrum is not
like the FC anymore, since satellites from different branches
may overlap. When the wavelength of the phason is com-
mensurate with the period of the FC branches, the response
is identical to the FC spectrum, except that the amplitudes of
the branches are changed by the satellites, whose responses
always coincide with some branch. Equati@d) also shows

that there is coupling between the neutron momentg (
and the wave vector of the phasd@/). Equation(23) gives

the following condition for generalized momentum conser-
vation:

— 2mn
gr= 0(w?)+ — +Qps, (25)

which shows that this coupling is mediated by phonons.

B. Random window phasons

The second way of producing phasons is to move the
acceptance window in a random fashion in each ité-or
this RWP, the deduction is similar to the CP case, except that
instead of having a sine function inside the window function,
we must consider a random one. Therefore,

).

whereR,, is a random variable with a flat distribution be-
tween 0 and some amplitude related to the phason density
p in a complicated way. For simplicity, from now on we
shall takeA=1.

We need to evaluate the average response over an en-
semble of realizations of disorder. Thus, the analog of Eq.
(19 is

MM =Xyl A) - xn(0)=(L-9)| T+,

. . . . 2 77-/’7(0‘)2) N i (m_m/) ,
The final expression for the dynamical structure factor is (S(q,0%))= N > € Fi(m,m’)
m,m’
L-S /
S(q,w2)=4sir?(q( . )) X(Fy(mm)), @7
where
® 2 2_ .2 _+ +
J5(B) ol w*— w (gh+27n/ T QpS)]. Fo(mm’)— e~ 99— (m'r=)
nS= [q(L—S)—27n]?
and
(29
Thus, S(q,»?) conserves the structure of the FC, except(F,(m,m’))= >, e Ham=ampA(m),A(m’)).

that the intensity of each peak of the F&<(0), given by the
condition n=q(L—S)/2m, is diminished by the factor

A(m)—A(m’)
where(- - -) denotes the average using a two-particle prob-

JS(q)<1- Furthermore, there are satellites around each pealgjjity distribution functionP(A(m),A(m’)). If the density
given by the terms+#0, all of which are less intense, the of phasons is small, the statistical fluctuations are bounded

peaks withs= =1 being the most pronounced ones.

Figure 2 shows the dynamical structure factor calculatedappendix B. In

with Eqg. (24) for Q,=0.05m, A=0.5, L=7, and S=1,
which results in a density of CpP=25%. Notice that the first

and uncorrelated, sina&(m) represents a local flip-flofsee
that case, P(A(m),A(m"))
=P(A(m))P(A(m’)), and thus the two summations in Eq.
(27) can be performed separately.

two branches of the perfect FC are still present but with less  The manner in which disorder is produced in the hyper-
intensity, giving a modified overall appearance of the strucspace window can be written as

ture factor, as compared with the perfect case of Fig).1
Furthermore, new satellite branches, dusto+1 and=*2,

A(M)=(L=9)[Ry+{m/7}—{m/7+R}]. (28
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Observe that{m/7+R,} is {m/7}+R, if R,<1 * 1
—{m/7}, and it is{m/7}+R,,— 1 otherwise. Therefore, E [m (sinC)S8(y—2an/7)+(1—cosC)
n=-—cw
£ (m) = g9 17iC .|f Rn<l—{m/7} 29 Xi oly—2mw(n+s)/7]— 8 y+2m(n—s)/7]
e if Rp=1—{m/7}. = s :
This can be written agf,)=P(m)+e '°[1—P(m)]. (3D
SinceR;, obeys a flat distributionP(m) =1—{m/} is the The summation ovem’ reads exactly the same, with

probability that on sitem the random number does not ex- proper conjugated factors. Finally,
ceed -{m/7}. Then, c
2

C
<S(q'w2)>20032( )SFib(qiwz)"'Sinz 5

) SSaI(Q:wZ),
(32

In Eq. (30), the first term will give a response similar to where Sg;,(q,»?) is the response of the FC, given by Eq.
Fibonacci and the second term is periodic and can be Fouri€lL3), and the rest of the oscillator strength is added to satel-
expanded. The summation overturns out to be lites whose response is

(fo(m)=1+[e "C—1){m/7}. (30)

|
M 02— w2\ — 27 (n+5)/ )]+ 8 w?— w?(gq\ — 27(N—S)/ 7)]
[7s(C—2mn)]? '

Ssm(q,w2>=s§l 4 sinz(%) (33

This result shows that the effect of disorder in the RWP isone (flip-flop). The equations to solve are the same as those
to modify the intensity of different branches without any of the last section, except th&, in Eq. (28) can be either
broadening. Observe that the satellites correspond to correro or one, instead of having a flat distribution. For a given
structive interference of coherent phasons v@if=27s/ 7. pair of sitesmandm’ the phase ifF,(m,m’) could be either
We can conclude that if phason disorder is small, the reg, +(L-S), or =2(L—S), depending on the nature of the
sponse is coherent as explained in Appendix B. Figure 3 igajr of sites. These phases can be found for all the possible
the graphical representation of E§3). Observe that the FC situations, and are shown in Table I.
branches are still present, but with different intensity. Thisis g, example, there is a probability {1p)?
due to the fact that the satellites of a given branch coincidel)he extreme sitém andm’ are chosen for a flip, where is
exactly with the positions of other branches. This fact has th e density of phasongee Appendix B The s’ituation in
effect of diminishing the amplitude difference between COMwvhich only one of the extreme sites is chosen for a flip with
secutiven branches. If one compares Figbl with Fig. 3, y P

one notices that the latter is the FC spectrum, but th@robability p(1—p) could result in a phase change @f or
branches with highen are more visible. ' in no phase change at all, if the chosen site produces no

that none of

C. Real-space random phason TABLE |. Possible phase factors for the RP. The blanks imthe

. . . . andm’ columns mean eithdrlL, LS, or SL indistinctly.
Finally, one can introduce phason disorder in the FC by Y

choosing randomly a bond and exchanging it with the nexg Ry m m A(m)—A(m')
g 1 1 LL LL 0
mi=f) n=1 e LS LS
e ' SL SL
v \§\\\\\\\\\\ LL sL +(L=9)
\\\\\\\\\\\?\ | \\ \ N 7 0 1 LL X 0_
o " 1 0 LL 0
FIG. 3. Dynamical structure fact®(q,»?) for a FC with ran- fIS_ tgt:g
dom window phasons, when the amplitude of the random variabl® 0 0

is one, which corresponds to a maximum dengityy .
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difference with the exchange. Following this procedure and Observe thafm/ 7+ R,,} is still periodic and that Eq.35)

collecting terms, one finally gets only depends orl=m-m’ and the random variablg,
Fo(m,m’)=(1—p)2+2p(1—p)[P_ + (P s+ Ps,)cOSC] _=Rm— R;,. Therefore, one can perform the summat|c_>ns_as
in the FC case, and perform an average over the realizations
+p?[W(LS,SL)+w(SL,SL)+w(LL,LL) of disorder,
+2{w(LL,SL)+w(LS,LL)}cosC qL—9)
+2w(LS,SL)cos ], (34) 5(q1w2)=47”7(w2)3in2( 5 )
where P =1/7? and Pg =P s=1/7> are the bond pair » 1
probabilities in the FC. This expression dependsholand %
m’ only via the terms multiplyingo? through the factors In=-= | [q(L—S)—2wn]?

w(m=A,m’'=B), where A,B=LL,LS,SL. These factors
should be understood as conditioned probabilities in chains
of lengthl =|m—m’|.

_If p is small, the fluctuations are bounded, and the pair |n the high-density limit one should find the probability
distribution can be written as(A,B)=P,Pg. Observe that gistribution for y, considering the probability of having a
the expression in this approximation is separable on the varyjsplacemeny, in a random walk with two kinds of steps,
ablesmandm’, and if one continues the convolution proce- or 5 and a fixed number of steps This is a binomial dis-
dure, as in the previous cases, one finds a Fibonacci responggution, and the central limit theorem asserts that this tends

reduced by a factor (%p)?, together with satellites re- {5 a Gaussian distributiof) (y;) with a zero mean,
sponses with intensities dependingmrwithout broadening.

This is due to the fact that we have neglected correlations,
and single isolated phasons cannot modify the distances be- Q)= J'w ef)(|2/2lp(lfp)dX (37)
tween sites by more than R S) at any distance. ' V2mlp(1—p)J = H
It is certainly true, although highly improbable, that one
can obtain large sequences lofbonds by just performing
flip-flops. This would represent a high-density problem, in  Therefore,
which our approximation breaks down. Therefore, we should

Xei('y7277n/7')|<e7i[q(L73)7277n])(|>. (36)

study the high-density limit, when the fluctuations are un- e o

bounded. (e [alb=92mnla) = J_ e'lalt=9=2mlnay () dy,
Let us start by remembering the expression for the struc-

ture factor in the case when each atomic position is modified — e la(L-9)—2mn]?27% (38)

by random variable®R,, and R;,. For fixed values of the
random variablega given realization of disordgrone has

5 - The last step in Eq(38) follows because the probability
S(q,w?) = (@) 2 el Y(m=m") g=iC(Rp—Ry) of performing a step of lengtB is p=1/72.
' N e Thus, the final result is obtained by convoluting again,

_ ) which means that each peak of the perfect FC presents a
X @l CUmM/7+ R} —{m/7+Rpp}) (35)  Lorentzian broadening due to disorder,

L(aL=9)) < 1 [a(L—S)—2mn]?/273
(S(q,0%)=4 sw?( > e o — 5. (39
2 n==o | [q(L=9)—27n]*|{[q(L—S)—27n]*/27°}*+[ 0"~ 0*(qA+ 27N/ T)]
|
The spectrum is very much broadened, since the width 2p(1-p)
depends on[q(L—S)—2wn]?, as measured in some (S(q,w2)>T={(1—p)2+ ————(7+2cosC)
experiment$? and suggested theoretically beféPeObvi- T
ously, a reasonable case of random phason disorder should 2
be a combination of the two limits, that is, a spectrum with X Sgip(Q, w?) + £(7-+ 2 cosC)
functions centered in the FC lines, without broadening, and a 7
small broadened part due to diffused scattering from the X Syirs(Q 02), (40)

large fluctuations. A good model for this situation should be
obtained by starting with Ed34), wherep should be under- whereS;¢(q,w?) is given by Eq(39). Figure 4 shows only
stood as the density of phasons, and introducing expressiofisis broadened part &(q, »w?), calculated from Eq(39).

like Eq. (37) for the conditioned probabilities multiplying the The reason to show only this part is because the unbroadened
factor p2. The result for this combined effect is part dominates and it would be difficult to illustrate the
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However, for larger there are noticeable differences. The
coherent phason§Fig. 5b)] present satellites associated
with each FC peak. Their oscillator strength is taken from the
main branches, for instance, in the figure it is clear that the
intensity of brancm=0 decreases more rapidly with The
RWP [Fig. 5(c)] can be considered as a special case of CP,
when the satellites coincide with the main branches; as a
result the spectrum presents the same FC peaks, but with
very much modified intensities. The RPig. 5d)] was cal-
culated with Eq.(40) for a density of phasons of 30%.
Observe that in this case, the broadening for highrashes
out all the FC branches. Of all the three cases of phason
disorder, the only one that produces new peaks is the CP,
since one is introducing a further periodicity in the chain.
Strictly speaking none of the peaks are new; because the

FIG. 4. Diffused part of the dynamical structure fac8fr,w®)  spectrum is dense they merely become more apparent with
for a FC with randomization in real space. The phason density hagisorder.
been taken to bp=0.3<ppq,=1/7°. An important conclusion of this work is that broadening is

] ) ] impossible to be produced with coherent phasons. It can be

marked dependence of the broadening vettFor acoustic  gaig that coherent phasons do not produce broadening be-
modes, the response of the=0 branch is similar to the FC, cayse the structure of the FC in the hyperspace is somewhat
with an increasing broadening ap grows. However, the preserved, the changes due to a coherent phason field are
other branches are faint in this region gf because their gy in the relative intensities of the FC lines. The only way
centers of minimal broadening occur at very large values ofy produce broadening is to allow for unbounded fluctua-
g. This result could be used to compare with the spectrgions when there is a Lorentziamn dependent broadening.
obtained from real quasicrystals with phason disorder, sinceyr results agree with physical intuition, since long wave-

this is the only case in which coherency is lost. It is worth-jengths are not sensitive to the microscopical quasicrystalline
while pointing out that the broadening is Lorentzian, despitejisorder.

the fact that the disorder follows a Gaussian distribution. By looking at all our expressions f&(q,w?) we realize

that the quantities 2(n/7)/Ax=Q!, and q(L—S)—2mn
V. DISCUSSION AND CONCLUSIONS =Q* W, are always appearing whege= Q! because of thé
In Fig. 5 we show a comparison for fixes?= 2, between function. These quantities are known to be the components
the FC and the three different types of phasons. The F@f the reciprocal lattice vector for the qpa5|cry§l7all is
branchn=0 crosses the axis three times in the intergal known that the diffraction pattern in quasicrystlpresents

€[0,27]. This feature is preserved in all cases for low peaks whose positions are given @ and their intensities,
or oscillator strengths, depend @t, in agreement with our

4 . . . . . . expressions.
n=0 n=0 (a) In the case of RP disorder, the dispersion corresponding
a5l nﬂj to n=0 is practically the only one that survives, because the

.‘.u""w", { ’N
i,
i Nﬁgﬁ"i’f’:’,{/ﬂ, e

o

n=1 n=0 difference inQ* between thex=0 and then=1 branches is
A A large for ag value between zero andn2 We conclude that
8 * * ! ! the presence of broadening in the experiment, on top of the
(b) usual thermal broadening, is proof of the absence of a coher-
25 . ent phason field in real quasicrystals. On the other hand, the
presence of satellites seems to be a signature of some coher-
, i - LA__|  ency of phason disordé?.
Summarizing, we have found expressions$q, w?) for
(©) a simple dynamical model in which all the restoring forces
15r ] and masses are the same. This allows us to isolate the effect
A of the defects in the structure from other complexities and
also allows us to obtain simple expressions$6q, w?) in a
d) FC and a FC with phason disorder. In the perfect FC,
S(q,w?) consists of a dense set of cosine branches with dif-
o5y 1 ferent phases, modulated byralependent factor. For acous-
tic modes it was predicted that the FC looks similar to a
A ' a4 simple linear chain with an average spacing between sites.
The FC with phasons was produced in three different
ways, either by varying the window acceptance function
FIG. 5. Comparison 08(q,w?) between the FC and chains with [W(m,n)] in the hyperspace construction, with a periodic
the three sorts of phasons at a constant frequerfey2. (a) Perfect ~ function, or with a random variable, or by randomly produc-
FC, (b) FC with CP,(c) FC with RWP,(d) FC with RP. ing exchange of sites in real space. The results show that
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even a random-bounded displacement of a window function ) ,
in the hyperspace produces coherency in real space. |2=4322k eklm™Xm) (1~ 2 cok+ cogk)
The effect of a coherent phason is always reflected in
S(q,w?) by giving well-defined satellites of the FC’s most
prominent branches whe@,, is small. The positions of the =4J? 5 Omm = (Fmm +1+ Smmr—1)
satellites depend on the period of the coherent phason. Even
in the case of randomly varying the acceptance function
(RWP), this coherency is preserved because mistakes are + 7 Bmm szt Smmr—2) |- (Ad)
made only in certain sites of the chain. However, a RP is

distinguishable from the other cases because the response isNow, the moments are given by the statistics of each bond

washed out for large values @' Wo=q(L—S)—2mmn. configuration in the lattice. The zeroth moment only gives
DeSplte the extreme SlmpIICIty of the model, we havethe correct normalization condition,

showed some fundamental features of the dynamics of a QP 0
lattice. Our results agree with physical intuition, although (0™(q))=1. (AS5)

they are not expected to be quantitatively correct when re- The f q d h istical distributi f
garding a real system. However, we still expect our conclu-_ ' N€ first moment depends on the statistical distribution o

sions to be valid when considering lattices of higher dimenhe distance between first neighbors, since

sion and more realistic Hamiltonians. 1
<w2(q)>=2J( -2 (1—cosqu))
m
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APPENDIX A: THE MOMENTS OF S(q,»?) INAFC T T
The moments 08(q, w?) for the FC can be calculated in In the acoustic limit ¢~0), we obtain
two ways: either by a direct application of the analytical 5 5
expression for the dynamical structure facfof. Eq. (13)], 2 .
or by obtaining the statistical distribution of bond configura- {w™(@))=Jq T + 2] (A8)
tions in the FC. In this appendix, we use both methods in .
order to verify the results obtained with E@.3). This value is always higher thar?. As we show below, the

We start with the latter method, which consists of a directyitference between the coefficient qf and \2 arises from
application of the general formula f&(q,w?) [cf. Eq.(4)],  the contribution of all the modes with different from zero
and thus, is valid for any kind of chain. By definition, théh i, £q. (13).

moment is The width of the spectrum is
4 2\2
L ()= (0?)
2n - e|q(xm—xm) e|k(m—m’) A= ) (Ag)
(w (CI)> N m’Em, EI( <w2>

where the second moment is
Xf 0?"6(w?— 0f)dw? 3 1
. (w'())=43% 5 —2(codqLn)) — 5{cosq(L1+L2)) |,
=5 Z’ eiq(xm—x;n)|n' (A1) (A10)
m,m
andL,+L, is the distance between second neighbors. In the

FC,L,+L, is eitherS+L or L+L, with probabilities 2+

where the first integralsig, 1, andl) are and 143, respectively. For acoustic modes,

2

J°q

7_2

2
(L—9)2 (A11)

=2 ek Om X =5 1, (A2) (0*(q))=

Thus, we obtain in the limig—0,

_ K= X0 (1 —
I 2\]2 e (1—cosk) N 23(L—S5)? At
l2+s?’

1
=2 O = 5 (O + 27+ S —1) | (A3) \yhich is ot zero, unlesg. =S,
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Another method to obtain the moments is by taking theearly withA. The phaser can change the average number of
analytical expression fo8(q,w?) [Eq. (13)]. The first mo-  phasons, since for some the maximum of the sine function

ment is calculated with Eq14), resulting in can coincide with the point wherden/7}~1.
q(L-9) For the RWP case, the analysis developed for CP density
(0?%(q))=4 sinz( > ) might be applied. Thus,
N
2J[1—codg\—27n/7)] _1 { L (B5)
. (A13) PEN & L7 )|

===  [q(L—S)+2mn]?
SinceR,, is uniformly distributed, the maximum probabil-
ity for a phason is obtained wheém/ 7} is nearly one, i.e., if
mis of the formz~ rs, wheres is an integer. This condition
) shows that the most probable sites for obtaining phasons are
(A14) separated by periods proportional to Fibonacci numbers.
Then, the distance between flip-flops is given by FC’s of
and summing up oven, the final expression is lower generations.
(L—9)?2 12 In the RP case, despite the fact that the defects are pro-
) =32 —+ =], duced at random, the process in the FC is not uncorrelated,
T 7 as we shall show below. There are sites that do not produce
(A15)  a phason when interchanging sitésr instance, a paitL).
Furthermore, the final configuration depends on the path fol-
owed, because a phason could be healed if a site is chosen
. . . ) . an even number of times. Therefore, a Monte Carlo-like pro-
periodic lattice with a velocity of sound given BI\. How-  coqre is correlated and the density of phasons is not neces-

ever, there is a finite contribution for all the other modesgy i\ hronortional to the number of steps in the randomiza-
with n#0. The sum of all these contributions is exactly ( on, process. To be specific, take the sequence
_Q\2/.3 ’ ! . . .
S (LSLLSLSLLSLLS), and do all the possible flip-flops in a
sequence from left to right. The resulting chain is
APPENDIX B: DENSITY OF PHASONS (SLLSLSLLSLLSL), which is the same as the original

Now we discuss how to define the density of phasgns ( °N€: €xcept for the ends.

in each of the cases that are treated in the paper. It could be !f On€ repeats the same procedure for an infinite chain, the

thought that this quantity is a measure of disorder, but it isreSUIF Is a t_ra_ns_lation of the original one with no changes,
not clear yet howp depends on the way the defects aredesplte the infinite number of steps. Therefore, the number of

: : flips-flops is not necessarily equal to the number of phasons
duced. We b by stud the CP , Wh . ) I X

gtrgteicihat tieer?g;]-fﬁpsiflljog Irc]:%nd(iation (;?sg gvggdgtqé produced. A possible definition for the density is obtained by
[A(m)=0] implies that comparing many times the randomized chain with a FC dis-
parisons, a different number of phasons is obtained. There-
fore, we define the number of phasons of a chain as the

By taking the integer part of the last equation and using tha®{oms in the randomized chain axdare the positions in the
[{z}]=0, the condition for not having a defect is reduced toPerfect chain, then

Using a Taylor expansion for smai|

L-92 S |1 cog2mn/T
+%E __8(—2)

XZ
ar n=1 n2 n

(0%(q))~Jq?

A2+

(0?3(q))=3q°

which agrees with the result obtained before using the firs
equation. We clearly see that the=0 mode contributes as a

m
?+Asin(mea+ ) +AsinmQpa+ «a).

placed one site in each comparison. In each of these com-
m
_{;
(B1) minimum of these numbers. bfiR are the positions of the

m _ - o R
—{+AsinmQua+a)|=0, (B2) p=min u—E_w IXR=xi_ |, (B6)
and analogously, the condition for obtaining a flip-flop at siteyyherei is a site index and is a site translation.
mis An estimation of the number of phasons as a function of
m the number of stepn) can be obtained by calculating the
\ —] +sin(mQpa+a)|=*1, (B3) probability of making a phason on one site aftesteps of
T randomization, and then multiplying it by the number of sites
which givesA(m)=*(L—9). in which a phason could be made. This numbeNis, if we
The density of phasons is defined as the sum over afssume that in each step of randomization the number of
flip-flops, divided by the total number of siteblY, sites in which a phason can be done does not diminish very

much. This is an approximation since in each randomization
{ new configurations o6 SandLL appear in which a phason
cannot be done.
Following this idea, we choose a site to perform a flip-
The flip-flops are produced in regions wheme/7}~1.  flop in the chain. There areNt 72 sites suitable to do this,
Now, since the functiodz} covers the interva[0,1) in a  since the proportion between the total number of bondsSand
dense and uniform way,for long wavelengthg grows lin-  bonds isr*. EachSbond may be exchanged with either of its

m

+AsinmQpa+a)|. (B4)

N
1
=N 2,

T
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two L neighbors. The probability of choosing this site only 0.7
one time for making a phason afteisteps of randomization

is np(1—p)"~1, wherep=7%2N. If we choose the same

site two times, a phason is created the first time and annihi-
lated in the next one. This argument is true for any even
number of times. Now, if a site is chosen three times, a
phason is obtained with probabili@3p3(1—p)"~ 3, where

Ci' denotes the combinations of objects ini sites. The
process is repeated and it is seen that phasons can be created
only if the site is chosen an odd number of times. Then, the
density of phasons is

1 n—1 N3 n—3 60 200 400 600 800 1000
p(n)~;[np(1—p) +C3p°(1—p) number of trials (n)

_ FIG. 6. Calculation of the densityp] of real-space random
+CBpS(L—p)" o+ -] | |
5 phasongRP) as a function of the number of Monte Carlo steps in a
1 2 chain of 100 sites and averaging over an ensemble of 100 chains.
— _( 1— ( 1— T (B7) The upper and lower continuous lines are the results of comparing
T the disordered chain with the original FC and with a FC whose
origin gives the minimum number of defects, respectively. The

A computer simulation of an RP was performed using andashed line is Eq:B7), which lies in between these two results, as

ensemble of 100 randomized chains of 100 sites each. In Fig<Pected.

6 the calculategb(n) is shown, the values gf(n) obtained  ca prediction given by EqB7). Observe that the theoretical
using Eqg. (B6), with the minimization process described prediction works fine only for smalh, because in this case
above, correspond to the lower curve in the figure. Withouheglecting real-space correlations is a good approximation.
the minimization procesg=0 in Eq.(B6)], the density ob-  Notice that there is an asymptotic behavior fer%, a situ-
tained is always higher, which corresponds to the uppeation in which the number of created phasons is equal to the
curve in Fig. 6. These results are compared with the analytinumber of annihilated ones, the density bejng,= 1/7°.

1D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Phys. Revt’A. R. Denton and J. Hafner, Phys. Rev5B, 2469(1997.

Lett. 53, 1951(1984). 183, R. Elliott, Physics of Amorphous Materialtongman Scien-
2D. Levine and P. J. Steinhardt, Phys. Rev. LB&,. 2477(1984. tific & Technical, Essex, 1990p. 86.
3S. E. Burkov, Phys. Rev. Let67, 614 (1991). 19R. A. Barrio, R. J. Elliott, and M. F. Thorpe, J. Phys16, 3425
4J. L. Aragm, D. Romeu, M. Torres, and J. Fayos, J. Non-Cryst. _ (1983.

Solids 1538154, 525 (1993. 20R. J. Elliott, J. A. Krumhansl, and P. L. Leath, Rev. Mod. Phys.
5R. Penrose, Bull. Inst. Math. Appl0, 266 (1974. ,, 46 465 (1974. . . .
SA. L. Mackay, Physica AL14, 609 (1982. E. N. Economou,Green's Functions in Quantum Physics

Springer Series in Solid State Physics Vol(Springer-Verlag,
Berlin, 1990, p. 79.

22D, Levine and P. J. Steinhardt, Phys. Rev348 596 (1986.

\égJ. A. Ashraff and R. B. Stinchcombe, Phys. Rev.3B 2670
(1989.

24|, S. Gradshteiyn and |. M. RyzhikTables of Integrals, Series

De Bruijn, Ned. Akad. Weten. Proc. Ser.48, 39 (198J).

8A. Katz and M. Duneau, J. Phy&rance 47, 181(1986.

%J. E. S. Socolar, T. C. Lubensky, and P. J. Lubensky, Phys. Re
B 34, 3345(1986.

107 C. Lubensky, S. Ramaswamy, and J. Toner, Phys. Re32,B

1" 7444(19_85)' . ) and ProductgAcademic Press, New York, 198(. 973.
P. J. Steinhardt and S. Ostluniihe Physics of Quasicrystals 25p M. Horn. W. Malzfeldt. D. P. DiVincenzo. J. Toner. and R.
b (World Scientific, Singapore, 1987p. 395. _ Gambino, Phys. Rev. Let67, 1444(1986.
T. C Lubensky, J. E. S. Socolar, P. J. Steinhardt, and P. A26D P. DiVincenzo, J. PhyS{PaI’IS, C0||0q47, C3-237(198®
Heiney, Phys. Rev. Let67, 1440(1986. 27C. JanotQuasicrystals2nd ed.(Clarendon Press, Oxford, 1994
185, Lyonnard, G. Codens, Y. Calvayrac, and D. Gratias, Phys. p. 42.
Rev. B53, 3150(1996. 28y, Elser, Acta Crystallogr., Sect. A: Found. Crystallog2, 36
1G. G. Naumis and J. L. Arago Phys. Rev. B4, 15 079(1996. (1985.
15M. Boudard, H. Klein, M. de Boissieu, M. Audier, and H. Vin- 2°F. Frey and K. Hradil, inProceedings of the 5th International
cent, Philos. Mag. A74, 939 (1996. Conference on Quasicrystaledited by C. Janot and R. Mosseri

18F . Frey and K. Hradil, Philos. Mag. &4, 45 (1996. (World Scientific, Singapore, 1995p. 180.



