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A generalized Dirac equation is derived in order to describe charge carriers moving in curved graphene,

which is the case for temperatures above 10 K due to the presence of flexural phonons, or in bent

graphene. Such interaction is taken into account by considering an induced metric, in the same spirit as

the general relativity approach for the description of fermionic particle moving in a curved space-time.

The resulting equation allows to include in a natural way the presence of other phonon branches as

well as an external electromagnetic field. For a monochromatic sinusoidal bending of the graphene, the

problem can be recasted as a Mathieu equation with a complex driven parameter, indicating the

possibility of a resonance pattern.

& 2012 Published by Elsevier B.V.
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1. Introduction

Graphene is a new material that has been attracting a lot of
attention since its experimental discovery [1]. This carbon allo-
trope has unique transport properties [2,3], like a high electronic
mobility [4] and thermal conductivity [5], which are believed to
be important for future applications in nano-devices [6,7]. How-
ever, there are certain discrepancies in the values of the electronic
mobilities depending on whether the samples are suspended or in
a substrate [8,9]. At low temperatures, impurity scattering can be
responsible for this effect, which eventually leads to a metal–
insulator transition since the mobility edge appears near the
Fermi energy [10], as has been confirmed in graphene doped with
H [11]. However, above T410 K such discrepancies are believed
to be a consequence of the crucial role of the graphene’s surface
vibrations (known as flexural phonons [12]) in the electron
scattering, as has been shown very recently by applying tension
to graphene sheets [9]. From a microscopic point of view, the
scattering results from changes in the distances between atoms,
leading to fluctuations of p-orbitals electron wavefunctions over-
laps [13]. Furthermore, since graphene can be curved by applying
strain and stress, it has been proposed to do ‘‘strain engineering’’
in order to tailor the electronic properties [14]. Long-wavelength
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strains in graphene induce a pseudomagnetic gauge field which
can modify electron propagation [15].

On the other hand, the behavior of charge carriers in graphene
can be adequately described by the two-dimensional Dirac
equation, as has been firmly established by Hall effect measure-
ments [4,16,12]. It enables to evaluate the interaction between
charge carriers and phonons via minimal coupling with a pseudo-
potential [12]. However, as long as the description of the
graphene sheet remains strictly two-dimensional, the so-called
flexural modes and strain, resulting from the transversal deforma-
tions, cannot be taken into account in a natural geometrical
manner. This is why we propose to use the known formalism of
covariant calculus in order to adapt the Dirac equation to the
curved surface.

Our argument is as follows:
Since charge carriers in flat graphene are described by mass-

less Dirac fermions [4,16], it is natural to ask if it is possible to
modify the Dirac equation taking into account the flexural mode
interaction. Two paths can be followed in order to answer this
question. One is to start from the usual tight-binding approach
and use Taylor expansion of the overlap integral on the displace-
ment field [12,13,17]. Here we present an alternative point of
view, in which the interaction is included by making the observa-
tion that a graphene membrane can be considered as a curved
space. The effective equation must be covariant due to simple and
general physical arguments. The desired equation can be con-
sidered as the Dirac equation in curved space-time, as in general
97
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relativity. Also, since the planar vibrational modes are described
by a vectorial potential [12,13,17], our approach allows to
describe all phonon branches and the electromagnetic potential
in a single equation. Notice that in fact, the problem of the two-
dimensional Dirac equation including a vectorial potential has
been solved recently [18,19]. As we shall show in the conclusion,
the present approach has certain advantages over the Taylor
expansion of the tight-binding parameters.

To finish this introduction, let us briefly sketch the ideas behind
the present approach. For graphene at low temperatures, its surface
can be considered as flat. The corresponding unperturbed Hamilto-
nian operator used to describe charges evolving on the graphene
sheet can be written as an effective Dirac equation [4,16]:

i_
@

@t
C¼ ĤC with Ĥ ¼�i_vF ½gxrxþgyry�, ð1Þ

where vF is the Fermi velocity, with

gx ¼ sx ¼
0 1

1 0

� �
, gy ¼ sy ¼

0 �i

i 0

� �
: ð2Þ

Note that at this stage there is no difference between covariant and
contravariant indices, because we have

gigjþgjgi ¼ sisjþsjsi ¼ 2gij1, ði,j¼ x,yÞ ð3Þ

with gij ¼ dij, so that obviously the contravariant metric raising the
indices is also gij ¼ dij. But this is no more true when the underlying
two-dimensional space is not flat, but corrugated, with a non-trivially
deformed metric, as the case is for graphene at Tb10 K. This is why
the Dirac equation in two dimensions should be now generalized in
order to incorporate the fact that the metric on the surface of
constraint is no more flat, but curved. Luckily enough, the problem
of covariant formulation of Dirac’s equation in a curved space has
been quite deeply investigated since a long time ago [20,21], so that
we can follow the same steps in this particular case: introduce the
non-Euclidean two-dimensional metric on the graphene sheet, then
adapt the Clifford algebra and find the Christoffel connection, and
finally assemble all these in the covariant version of Dirac’s equation:

~̂HC� ½ ~gx ~rxþ ~gy ~ry�C: ð4Þ

Here not only the contravariant metric is deformed, but also the
g-matrices should be modified in order to satisfy new anti-commu-
tation relations with the induced metric instead of the flat one as
before; finally, ~r j contains not only the electromagnetic and on plane
phonon interaction visualized by the vector potential included in the
usual gauge-invariant way, but also the Christoffel symbols of the
metric ~gij:

~r jC¼ ð@j�eAjÞCþ ~G
m

jk
~gki ~SmiC, ð5Þ

where the Christoffel symbols ~G
m

jk are defined as usual, by means of
the modified metric:

~G
i

jk ¼
1
2
~gim
½@j ~gmkþ@k ~gjm�@m ~gjk� ð6Þ

and ~Smk is the matrix-valued anti-symmetric tensor defined by
means of the modified gamma-matrices:

~Smk ¼
1
8½
~gm
~gk� ~gk

~gm�: ð7Þ

This term is often called ‘‘spinorial connection’’ [20,21]. The result of
the calculations, up to the second-order terms in powers of deforma-
tion @if , is as follows:

~̂H � Ĥ0þszðgrad
��!

f Þ � ðr
!
Þ�ðgrad
��!

f � s!Þðgrad
��!

f � r
!
Þ

þ1
8 s!� grad

��!
½ð@xf Þ2þð@yf Þ2��1

4½s
!
� grad
��!

f �Df : ð8Þ

The full derivation of this equation is given in the Appendix; here we
can start to investigate the solutions describing a charged carrier’s
Please cite this article as: R. Kerner, et al., Physica B (2012), doi:10.
behavior on the deformed graphene sheet, interacting with flexural
phonons.

A similar approach has been proposed in Ref. [22], where a
non-holonomous fielbein was used in order to take into account
the non-Euclidean metric of the deformed graphene sheet. The
problem addressed in their paper is static, and the curved-space
effect is computed in a particular case of a symmetric Gaussian
bump. The use of the non-holonomous local frame leads to extra
terms in the connection coefficients akin to torsion which are
absent in our case because we use holonomous frame based on
local coordinate system. The covariant form of Dirac’s operator we
give is more general because it is valid in any local coordinates
and enables us to describe the curvature effects of time-depen-
dent deformations propagating on the graphene sheet.

Except for this difference, both forms of the covariant general-
ization of Dirac’s equation are based on the same universal
formulae defining the spin connection which can be found in
standard monographs, in particular in Ref. [20].
2. The generalized Dirac equation on corrugated graphene

To show how Eq. (74) is used, we consider that the displace-
ment field can be written using a simple set of basis functions
provided by standing waves [23],

u
!
¼

2ffiffiffiffi
N
p

X
m,q40

e
!

mð q
!
Þ½Q ðcÞ

m, q
! cosð q

!
U R
!
�omð q

!
ÞtÞ

þQ ðsÞ

m, q
! sinð q

!
U R
!
�omð q

!
ÞtÞ�, ð9Þ

where emðqÞ is the polarization vector for a wave-vector q
!

, m is

the phononic branch, omð q
!
Þ the dispersion relationship and

R
!
¼ ðx,yÞ is the position. Notice that the notation q40 indicates

that qx40 and qy40. Q ðcÞ

m, q
! and Q ðsÞ

m, q
! are operators given in

terms of the creation (annihilation) phonon operators [23] a
m, q
!

(ay

m, q
!),

Q ðaÞ

m, q
!¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Momð q

!
Þ

q aðaÞ

m, q
!þaðaÞy

m, q
!

 !
, ð10Þ

where a runs over c and s and M is the carbon atom’s mass.
Thus, for flexural phonons the function f ðx,y,tÞ is given by

f ðx,y,tÞ ¼
2ffiffiffiffi
N
p

X
q40

Q ðcÞ

F, q
! cos fqþQ ðsÞ

F, q
! sin fq

" #
, ð11Þ

where m¼ F means that we are dealing with flexural phonons,

and the phase fq is defined as fq ¼ q
!

U R
!
�omð q

!
Þt. For the

flexural branch, oF ð q
!
Þ¼ aFJ q

!
J2 where aF � 4:6� 10�7 m2=s.

Notice that Q ðcÞ

F, q
! and Q ðsÞ

F, q
! have length units, so f ðx,y,tÞ has the

same units, while @xf and @yf are dimensionless.

The generalized Dirac equation only needs as input the partial
derivatives of f ðx,y,tÞ,

@xf ¼
2ffiffiffiffi
N
p

X
q40

qx Q ðcÞ

F, q
! cos fqþQ ðsÞ

F, q
! sin fq

" #
, ð12Þ

@yf ¼
2ffiffiffiffi
N
p

X
q40

qy Q ðcÞ

F, q
! cos fqþQ ðsÞ

F, q
! sin fq

" #
: ð13Þ
1016/j.physb.2012.01.129
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For example, if we keep only the linear correction in Eq. (74), the
Hamiltonian reads as follows:

~̂
H ¼ vF

0 p̂x�ip̂y

p̂xþ ip̂y 0

 !
þ

2vFffiffiffiffi
N
p

X
q40

Q ðcÞ

F , q
! cos fqþQ ðsÞ

F, q
! sin fq

" #

�
qxp̂xþqyp̂y 0

0 �qxp̂x�qyp̂y

 !
: ð14Þ

Using the fact that the Fermi velocity is much higher than the
flexural modes’ speeds, we can drop the time dependence and
apply perturbation theory to solve the equation. To understand
the nature of the solutions, in the following section we will
consider the case of a pure monochromatic wave which is
equivalent to a sinusoidal bend of the surface.
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3. Approximate solutions

Choosing the deformation function representing simple mono-
chromatic plane wave proportional to

f ðx,yÞ ¼ a cosðq � rÞ

with a representing the amplitude of the flexural wave or
bending, and inserting it in the first order version of the covariant
two-dimensional curved Dirac equation, we get the following
differential system:

ðpx�ipyÞcBþa cos FqðqxpxþqypyÞcA ¼ ði_=vF Þ@tcA,

ðpxþ ipyÞcAþa cos Fqð�qxpx�qypyÞcB ¼ ði_=vF Þ@tcB: ð15Þ

In the particular case of no time dependence in f ðx,y,tÞ, the spatial
and temporal evolution can be separated. The temporal part of
the wave function has the form expð�iotÞ, where o is a
frequency. Then, being left with the spatial part of the deforma-
tion function only, a cosðq � rÞ, and choosing q¼ ½q,0�, we get, after
dividing by �i_:

ð@x�i@yÞcBþa cosðqxÞq@xcA ¼ EcA,

ð@xþ i@yÞcA�a cosðqxÞq@xcB ¼ EcB, ð16Þ

where the parameter E is defined as E� i_o=_vF � iE=ð_vF Þ where
E is the energy, and now cA and cB denote only the spatial part of
the wavefunction. In order to separate the variables, let us
suppose that the stationary solution is of the form

cAðx,yÞ ¼F ðyÞFAðxÞ, cBðx,yÞ ¼F ðyÞFBðxÞ:

Then Eqs. (16) take on the form:

F ðyÞFB
0
ðxÞ�iF 0ðyÞFBðxÞþaqF ðyÞcosðqxÞFA

0
¼ EF ðyÞFA

and similarly for FA,

F ðyÞFA
0
ðxÞþ iF 0ðyÞFAðxÞ�aqF ðyÞcosðqxÞFB

0
¼ EF ðyÞFB:

After dividing by F ðyÞ, we see that the variables will separate
easily if we set

F 0
F ¼ Const:,

which means that F ðyÞ is an exponential function with real or
pure imaginary exponent, depending on the sign of the constant.
We choose the negative sign in order to ensure the bounded
character of the function F ðyÞ and to recover the case of flat
graphene in the appropriate limit; this leads to the following
ansatz:

cAðx,yÞ ¼ eiKyyFAðxÞ, c7
B ¼ e7 iKyyF7

B ðxÞ: ð17Þ

The function c7
B has two signs because in principle, cA and cB are

the components of a spinor, and we need to build two solutions,
Please cite this article as: R. Kerner, et al., Physica B (2012), doi:10.
one with energy E and the other �E. For the case of flat graphene,
it is known that one can pass from one solution to the other by
changing the sign of one component. These two solutions are
necessary to represent electrons and holes. Here we will concen-
trate in electrons, although the solution for holes can be found in
a similar way. For that reason, in what follows we will search the
solution for cþB , dropping the sign for simplicity. Inserting the
ansatz (17) into Eq. (16) we get

½@x�iðiKyÞ�FBðxÞþqa cosðqxÞ@xFAðxÞ ¼ EFAðxÞ,

½@xþ iðiKyÞ�FAðxÞ�qa cosðqxÞ@xFBðxÞ ¼ EFBðxÞ,

which amounts to

½@xþKy�FBðxÞþqa cosðqxÞ@xFAðxÞ ¼ EFAðxÞ,

½@x�Ky�FAðxÞ�qa cosðqxÞ@xFBðxÞ ¼ EFBðxÞ:

This system of equations being linear, we can compose the
general solution summing over partial solutions with given Ky,
i.e. using the Fourier development. In order to have an elementary
insight in solutions’ properties, let us consider first the zero mode
corresponding to an incident current in the x direction, letting
Ky ¼ 0. For other modes (with Kya0) the diagonalization is not
straightforward and can be achieved only by successive approx-
imations. In this paper we only consider the case Ky ¼ 0, which is
the most relevant concerning a typical conductivity experiment.
But with the basic zero mode the diagonalization of the system
(16) is particularly easy, because it takes on the simplified form:

@xFBðxÞþqa cosðqxÞ@xFAðxÞ ¼ EFAðxÞ,

@xFAðxÞ�qa cosðqxÞ@xFBðxÞ ¼ EFBðxÞ: ð18Þ

This system is diagonalized by derivation of one of its parts with
respect to x and subsequent substitution of the first derivative
from the second equation. The resulting ordinary second-order
differential equation is common for both components FA and FB:

ð1þa2q2 cos2ðqxÞÞ
d2FA

dx2
�2a2q3 sinðqxÞcosðqxÞ

dFA

dx

¼ EðE�aq2 sinðqxÞÞFA ð19Þ

or, in a more standard form,

d2FA

dx2
�

a2q3 sinð2qxÞ

ð1þa2q2 cos2ðqxÞÞ

dFA

dx
�

EðE�aq2 sinðqxÞÞ

ð1þa2q2 cos2ðqxÞÞ
FA ¼ 0 ð20Þ

and the same equation for FB, but with þ sign before the second
term. Let us introduce a new parameter

Z¼ aq2,

which will turn out to be useful while considering various
physical energy limits. We can rewrite the two equations now:

d2FA

dx2
�

qaZ sinð2qxÞ

ð1þaZ cos2ðqxÞÞ

dFA

dx
�

EðE�Z sinðqxÞÞ

ð1þaZ cos2ðqxÞÞ
FA ¼ 0, ð21Þ

d2FB

dx2
�

qaZ sinð2qxÞ

ð1þaZ cos2ðqxÞÞ

dFB

dx
�

EðEþZ sinðqxÞÞ

ð1þaZ cos2ðqxÞÞ
FB ¼ 0: ð22Þ

Now we remind that in our notation, the parameter E has become
purely imaginary:

E¼ i
_o
_vF
� i

E
_vF

, ð23Þ

where E is the energy deviation from the Dirac cone energy (ED),
i.e. the total electron energy is ETotal ¼ EDþE. These observations
are important to keep in mind in order to understand the nature
of solutions in what follows.

Eq. (20) is of the standard form

y00 þPðxÞy0 þQ ðxÞy¼ 0: ð24Þ
1016/j.physb.2012.01.129

dx.doi.org/10.1016/j.physb.2012.01.129
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The well-known ansatz

yðxÞ ¼ ZðxÞe�1=2
R

PðxÞ dx

reduces the equation for Z(x) to the even simpler form:

Z00 þCðxÞZ ¼ 0, ð25Þ

where

CðxÞ ¼Q ðxÞ�1
2 P0ðxÞ�1

4P2
ðxÞ: ð26Þ

In order to have an insight concerning the properties of solutions,
let us treat first the case of weak amplitudes, when the bending of
the graphene sheet is small enough so that we can neglect its
powers higher than two; we assume therefore that

aZ51:

Assuming that the energy E is of the same order as aZ (since near
the Dirac cone E51), we get the simplified linearized version of
our equations:

d2FA

dx2
�qaZ sinð2qxÞ

dFA

dx
�EðE�Z sinðqxÞÞFA ¼ 0: ð27Þ

Now we have

PðxÞ ¼�qaZ sinð2qxÞ, Q ðxÞ ¼�EðE�Z sinðqxÞÞ

andZ
PðxÞ dx¼�qaZ

Z
sinð2qxÞ dx¼

aZ
2

cosð2qxÞ ð28Þ

so that

FAðxÞ ¼ ZðxÞe�aZ=4 cosð2qxÞ: ð29Þ

The function Z(x) satisfies the following ordinary linear differen-
tial equation:

Z00 þ EZ sinðqxÞ�E2
�Z2 cosð2qxÞ�

aZ3

4
sinð2qxÞ

� �
Z ¼ 0 ð30Þ

and inserting the expression (23), we get

Z00 þ
E

_vF

� �2

þ
iE
_vF

Z sinðqxÞ�Z2 cosð2qxÞ�
aZ3

4
sinð2qxÞ

" #
Z ¼ 0:

ð31Þ

One easily checks that in the limit of planar geometry, when there
is no deformation, i.e. f¼0 because a¼0 and consequently, the
parameter Z¼ 0 vanishes, too, one gets the harmonic oscillator
equation for Z:

Z00 þ
E

_vF

� �2

Z ¼ 0

and the carrier’s space wave function represents a monochro-
matic wave propagating in the x-direction,

FA ¼ eiðot�ðE=_vF ÞxÞ ¼ eiðot�KxxÞ,

where we have put

Kx ¼
E

_vF
,

which has the right physical dimension, cm�1. We can write now,
neglecting the cubic term containing Z3, the following approx-
imate equation for Z(x):

Z00 þ½K2
xþ iKxZ sinðqxÞ�Z2 cosð2qxÞ�Z ¼ 0: ð32Þ

Two limits that are of particular interest can be treated
separately and lead to well-known equations:
131
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(a)
Pl
When Kx5Z, corresponding to electrons between the Dirac
energy and effective energy aZ (it is worthwhile to remember
ease cite this article as: R. Kerner, et al., Physica B (2012), doi:10.1016
that near the Dirac point, Kx is nearly zero since it measures
the deviation from the momentum KD at each Dirac cone [12],
thus the complete momentum is _ KTotal � _ðKDþKÞ). Then
Eq. (32) reduces to

Z00�Z2 cosð2qxÞZ ¼ 0, ð33Þ

which is unstable by nature, because there is no constant
term looking like fundamental frequency in a Mathieu’s
equation; here the oscillating term changes sign and the
solution for Z cannot be kept bounded. This means that the
electrons whose energy is too low (KxoZ) are unable to
propagate in the graphene sheet. Notice that the inclusion of
the linear term on Z leads basically to the same kind of
unbounded solution.
(b)
 When KxbZ, corresponding to high energies (over the Fermi
energy, KxbKF , the equation for Z becomes

Z00 þK2
x 1þ i

Z
Kx

� �
sinðqxÞ

� �
Z ¼ 0: ð34Þ
This equation has the form of a Mathieu equation with a
complex driven parameter, which appears for example in the
eddy currents problem in an elliptic solenoid [24]. Defining a new
variable ~x such that

qx¼ 2 ~xþðp=2Þ: ð35Þ

Eq. (34) can be rewritten as

Z00 þ½Aþ i2s cosð2 ~xÞ�Z ¼ 0, ð36Þ

where the parameters A and s are

A¼
4K2

x

q2
, s¼

2KxZ
q2

, ð37Þ

i.e. there is a supplementary condition in the Mathieu equation
since AðsÞ ¼ ðq=ZÞ2s2. They are given by the complex Mathieu
functions [24] cerð ~x,�isÞ, ceið ~x,�isÞ and serð ~x,�isÞ, seið ~x,�isÞ. The
solution can be written as a superposition of solutions with
coefficients Cj and Dj,

Zð ~xÞ ¼
X

j

½Cjcejð ~x,�isÞþDjsejð ~x,�isÞ�,

where for example [24],

ce2nð ~x,�isÞ ¼ cer2nð ~x,�isÞþ icei2nð ~x,�isÞ ¼
X1
r ¼ 0

Að2nÞ
2r cosð2r ~x,�isÞ

ð38Þ

and Að2nÞ
2r is a complex coefficient, with a recurrence relation

defined using an auxiliary variable V2r ,

V2r ¼
Að2nÞ

2rþ2

Að2nÞ
2r

ð39Þ

such that

ð4r2�A0ÞV2r�2þsðV2rV2r�2þ1Þ ¼ 0: ð40Þ

The functions ce2nþ1ðxÞ have a similar nature. A second set of
solutions are obtained in the form [24]

se2nð ~x,�isÞ ¼
X1
r ¼ 0

Bð2nÞ
2r sinð2r ~x,�isÞ: ð41Þ

As an example, the function ce2ð ~x,�isÞ for s¼0.16 is given by [24].

ce2ð ~x,�0:16iÞ ¼ 1þ25i cosð2 ~xÞ�0:328 cosð4 ~xÞ�0:00164i cosð6 ~xÞþ � � �

ð42Þ
/j.physb.2012.01.129
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or for s¼4.8, the solution is,

ce2ð ~x,�4:8iÞ ¼ 1�ð1:367�0:588iÞcosð2 ~xÞþð0:013�0:468iÞcosð4 ~xÞ

þð0:065þ0:015iÞcosð6 ~xÞþ � � �

The resulting solutions display the phenomenon of parametric
resonance. The pattern of resonance is the same as in the case of
graphene under electromagnetic radiation [19], which has been
obtained using the Whittaker method with a modification of the
Strang recurrence relations, to take into account that the driven
parameter in the Mathieu equation is complex [19].
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4. Conclusions

We have employed the generalized Dirac equation to describe
the interaction of charge carriers moving in curved graphene with
its flexural phonons, or in bent graphene. To produce the
equation, an appropriate metric was found and the principle of
covariance has been applied. The resulting equation contains a
linear correction plus several non-linear terms. Some of these
non-linear terms correspond to the Taylor expansion of the
overlap integral approach [12], while others, including the linear
correction, are new. Such terms may lead to interesting effects,
like resonances between various phonon modes, or between
flexural phonons and the oscillating external electromagnetic
field. We expect these non-linear terms to become important at
higher temperatures. Also, we obtained a threshold for electron
propagation. For those electrons above this threshold, the corre-
sponding equations are just a set of coupled Mathieu equations,
which indicates the possibility of parametric resonances.
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Appendix A. Covariant Dirac equation in curved space

At any finite temperature, phonons produce a displacement
field ( u

!
). We start in this section by finding the resulting metrics

and its Christoffel connection on corrugated graphene. Let the
surface materialized by the graphene sheet be described by

z¼ f ðx,y,tÞ, ð43Þ

where x,y are the coordinates in the graphene sheet, and z is the
out of plane displacement. Notice that here we only consider the
flexural phonon branch, since the planar phonons can be
described by inclusion in a vectorial potential [12], whose solu-
tion is basically known [18,19].

As now the differential dz becomes a linear combination of dx

and dy, we have

dz¼
@f

@x
dxþ

@f

@y
dy ð44Þ

and the induced metric on the sheet is given by the following
formula:

ds2
¼ gij dxi dxj, ði,j¼ x,y,zÞ, ð45Þ

where gij is the metric tensor. Or, in a more explicit form,

ds2
¼ dx2

þdy2
þdz2

¼ dx2
þdy2

þ
@f

@x
dxþ

@f

@y
dy

� �2

ð46Þ
Please cite this article as: R. Kerner, et al., Physica B (2012), doi:10.
and it is obviously a metric in a two-dimensional (but curved)
space parametrized by two space variables (x,y). After opening the
last expression we get the explicit form of the induced metric,
which is

~gjk ¼

1þð@f
@x Þ

2 @f
@x
@f
@y

@f
@x
@f
@y 1þð@f

@y Þ
2

0
@

1
A: ð47Þ

This can be written as

~gjk ¼ gjkþhjk with j,k¼ x,y, ð48Þ

where gij ¼ diagð1;1Þ is the flat metric in two-dimensional space,
and hij is the perturbation (supposed small as compared with 1)
provoked by the corrugation of the sheet. The matrix (47) is
symmetric and real, therefore it can be diagonalized by an
appropriate linear transformation.

Also the inverse (contravariant) metric can be easily found.
The determinant of the matrix corresponding to the covariant
metric tensor (47) is easily found to be

det
1þð@f

@x Þ
2 @f

@x
@f
@y

@f
@x
@f
@y 1þð@f

@y Þ
2

0
@

1
A¼ ð1þð@xf Þ2þð@yf Þ2Þ ð49Þ

and the inverse matrix, corresponding to the contravariant metric
gjk is

gjk ¼
1

Q

1þð@f
@y Þ

2
�

@f
@x
@f
@y

�
@f
@x
@f
@y 1þð@f

@x Þ
2

0
@

1
A, ð50Þ

where we used the abbreviate notation for the determinant,
Q ¼ 1þð@xf Þ2þð@yf Þ2.

The deformation hjk is entirely composed of quadratic terms
containing products of spatial partial derivatives of the deforma-
tion function f ðx,y,tÞ,

hjkC@jf@kf ð51Þ

and it is easy to check that the corresponding Christoffel symbols
reduce to

~G
i

jk ¼
1
2
~gim
ð@j ~gmkþ@k ~gjm�@m ~gjkÞ ¼ ~gim@mf @2

jkf : ð52Þ

Both quantities disappear when f¼0, and the metric becomes
flat again.

The Dirac equation in two dimensions should be now general-
ized in order to incorporate the fact that the metric on the surface
of constraint is no more flat, but curved. Now we will obtain the
covariant generalization of the Dirac equation.

The equation we want to produce can be written as the new
deformed quantum-mechanical Hamiltonian acting on a two-
component spinor C as follows:

~̂HC� ½ ~gx ~rxþ ~gy ~ry�C: ð53Þ

Here not only the contravariant metric is deformed, but also the
g-matrices should be modified in order to satisfy new anti-
commutation relations with the induced metric instead of the
flat one as before; finally, ~r j contains not only the electromag-
netic and on plane phonon interaction visualized by the vector
potential included in the usual gauge-invariant way, but also the
Christoffel symbols of the metric ~gij:

~r jC¼ ð@j�eAjÞCþ ~G
m

jk
~gki ~SmiC, ð54Þ

where the Christoffel symbols ~G
m

jk are defined as usual, by means
of the modified metric:

~G
i

jk ¼
1
2
~gim
½@j ~gmkþ@k ~gjm�@m ~gjk� ð55Þ
1016/j.physb.2012.01.129

dx.doi.org/10.1016/j.physb.2012.01.129


1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

113

115

119

121

123

125

127

129

131

133

R. Kerner et al. / Physica B ] (]]]]) ]]]–]]]6
and ~Smk is the matrix-valued anti-symmetric tensor defined by
means of the modified gamma-matrices:

~Smk ¼
1
8½
~gm
~gk� ~gk

~gm�: ð56Þ

This term is often called ‘‘spinorial connection’’ [20,21].
We are looking for two ‘‘deformed’’ generators of the Clifford

algebra ~gx and ~gy that would satisfy

~gx
~gx ¼ 1þ

@f

@x

� �2
 !

1, ~gx
~gyþ ~gy

~gx ¼ 2
@f

@x

@f

@y
1,

~gy
~gy ¼ 1þ

@f

@y

� �2
 !

1: ð57Þ

In order to do this, we must introduce the third Pauli matrix,
because the deformation of the sheet pushes it out of the strict
two-dimensional plane (x,y).

The undeformed Clifford algebra satisfying anti-commutation
relations in a three-dimensional flat space is defined as follows:

gjgkþgkgj ¼ 2gjk1 with gjk ¼ diagð1;1,1Þ, j,k¼ 1;2,3, ð58Þ

which can be generated by three Pauli matrices as follows:

g1 ¼ sx, g2 ¼ sy, g3 ¼ sz ð59Þ

with

sx ¼
0 1

1 0

� �
, sy ¼

0 �i

i 0

� �
, sz ¼

1 0

0 �1

� �
ð60Þ

we have indeed

ðgxÞ
2
¼ 1, ðgyÞ

2
¼ 1, ðgzÞ

2
¼ 1

and the three matrices anticommuting with each other.
The ansatz for the two deformed space-like g-matrices is

simple: if we set

~gx ¼ sxþasz, ~gy ¼ syþbsz ð61Þ

then the coefficients a and b should be, as it was easy to check,

a¼
@f

@x
, b¼

@f

@y
ð62Þ

so that

~gx ¼ sxþ
@f

@x
sz, ~gy ¼ syþ

@f

@y
sz: ð63Þ

Now we have to produce their contravariant counterparts that
appear in the Dirac equation [21]. We have

~gx
¼ ~gxx ~gxþ ~g

xy ~gy, ~gy
¼ ~gyx ~gxþ ~g

yy ~gy, ð64Þ

which gives explicitly

~gx
¼

1

Q
ð1þð@yf Þ2Þsxþð@xf Þsz�ð@xf Þð@yf Þsy,
h i

,

~gy
¼

1

Q
ð1þð@xf Þ2Þsyþð@yf Þsz�ð@xf Þð@yf Þsx

h i
: ð65Þ

Recalling that Q ¼ 1þð@xf Þ2þð@yf Þ2, we can add and subtract in the
numerators of the above formula respectively the following terms:
ð@xf Þ2sx in the first one, and ð@yf Þ2sy in the second one; this will
enable us to separate the undeformed matrices sx and sy and the
genuine deformation terms containing spatial derivatives of f. This
gives the following result:

~̂
H � sx ~rxþsy ~ryþ

sz

Q
ðgrad
��!

f � ~r
!
Þ�

1

Q
ðgrad
��!

f � s!Þðgrad
��!

f � ~r
!
Þ,

ð66Þ

where the vectors and their scalar products are two-dimensional, i.e.
we mean
Please cite this article as: R. Kerner, et al., Physica B (2012), doi:10.
grad
��!

f ¼ ½@xf ,@yf �, s!¼ ½sx,sy�, ~r
!
¼ ½ ~rx, ~ry�

so that

ðgrad
��!

f Þ � ðs!Þ¼ @xfsxþ@yfsy,etc:

We see that already in the numerators we have not only linear, but
also quadratic terms, notwithstanding the presence of quadratic
terms in the denominator (contained in the normalizing factor Q). If
we decided to keep linear terms only, then the modified Hamiltonian
would contain only one extra term proportional to the matrix sz:

~̂
H lin � Ĥ0þdĤ ¼ sxrxþsyryþszðgrad

��!
f � r
!
Þ: ð67Þ

Note that also the differential operatorr is taken in its primary form,
because the connection coefficients contain only quadratic expres-
sions in derivatives of f. Observe that this equation is akin to the one
obtained using a Taylor expansion of the overlap integral in a tight-
binding approach.

However, if we choose to keep all terms up to quadratic ones,
then we must take into account also the Christoffel coefficients in
~r . It is easy to check the following explicit form of our Christoffel

symbols; keeping only the second order expressions means that
we can use the simplified formula in which ~gij is replaced by
gij ¼ dij. We have then

Gx
xx ¼ @xf @2

xxf , Gx
xy ¼Gx

yx ¼ @xf@2
xyf , Gx

yy ¼ @xf@2
yyf ,

Gy
xx ¼ @yf@2

xxf , Gy
xy ¼Gy

yx ¼ @yf @2
xyf , Gy

yy ¼ @yf@2
yyf : ð68Þ

In covariant derivatives, these coefficients are contracted with gjk

and the anti-symmetric matrices Skm,

Gi
jkgkmSim:

We are using the undeformed matrices Sjk and not the deformed
ones, ~Sjk, because we shall keep the expressions up to the second
power of derivatives of f, which are already contained in the
Christoffel symbols. This, taking into account that only diagonal
terms in gik do not vanish and are equal to one, leads to the
following result when explicited: for j¼x we have

Gx
xxgxxSxxþGx

xygyySxyþGy
xxgxxSyxþGy

xygyySyy

and for j¼ y we get a similar expression:

Gx
yxgxxSxxþGx

yygyySxyþGy
yxgxxSyxþGy

yygyySyy:

The non-vanishing metric tensor components are equal to one,
whereas the S-matrices are anti-symmetric in their two lower
indices, so what is left is only

Gx
xySxyþGy

xxSyx ¼ ð@xf@2
xyf�@yf @2

xxf ÞSxy,

Gx
yySxyþGy

yxSyx ¼ ð@yf @2
yxf�@xf@2

yyf ÞSyx: ð69Þ

These are the only terms remaining to be included in the
covariant derivatives as follows:

~rx ¼ ð@x�eAxÞþð@xf @2
xyf�@yf @2

xxf ÞSxy,

~ry ¼ ð@y�eAyÞþð@yf @2
yxf�ð@xf@2

yyf ÞSyx:

In the Hamiltonian, they appear multiplied from the left by the
corresponding ~g-matrices, but here, evaluating the terms coming
from the Christoffel connection coefficients, already quadratic in
deformation f, we may keep only their undeformed version, which
our case are just the two Pauli matrices sx and sy, so that the part
of the deformed Hamiltonian keeping track of the Christoffel
connection is

sx ~rxþsy ~ry ¼ sxð@x�eAxÞþsx½ð@xf Þð@2
xyf Þ�ð@yf Þð@2

xxf Þ�Sxy

þsyð@y�eAyÞþsy½ð@yf Þð@2
yxf Þ�ð@xf Þð@2

yyf ÞÞ�Syx: ð70Þ
1016/j.physb.2012.01.129
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Taking into account the fact that

ðsxÞ
2
¼ 1, ðsyÞ

2
¼ 1, sxsy ¼�sysx, and sxSxy ¼

1
4sy

and adding and subtracting terms like ð@yf Þð@2
yyf Þ to the first

expression and ð@xf Þð@2
xxf Þ to the second, we get the following

invariant form of the extra terms induced by the Christoffel
connection:

1
4s

y½ð@xf Þð@2
xyf Þþð@yf Þð@2

yyf Þ�ð@yf Þð@2
yyf Þ�ð@yf Þð@2

xxf Þ�

þ1
4s

x½ð@yf Þð@2
xyf Þþð@xf Þð@2

xxf Þ�ð@xf Þð@2
xxf Þ�ð@xf Þð@2

yyf Þ� ð71Þ

This in turn can be written in a more compact (and elegant !) way
as follows:

1
8 s!� grad

��!
½ð@xf Þ2þð@yf Þ2��1

4½s
!
� grad
��!

f �Df ð72Þ

with

Df ¼ @2
xxf þ@2

yyf :

It is worthwhile to note that the expression (72) vanishes when f

is a pure monochromatic wave, f ¼ A cosðot�Kxx�KyyÞ, but is
different from zero as soon as there is a superposition of such
expressions, e.g. for a standing wave. Now we are able to write
down the full Hamiltonian for an electron on a sheet, taking into
account that sheet’s proper motions described by the deformation
from horizontal plane given by z¼ f ðx,y,tÞ, up to the second order
(quadratic terms in derivatives of f):

~̂H � Ĥ0þ
1

Q
szðgrad
��!

f Þ � ðr
!
Þ�

1

Q
ðgrad
��!

f � s!Þðgrad
��!

f � r
!
Þ

þ
1

8
s!� grad

��!
½ð@xf Þ2þð@yf Þ2��

1

4
½s!� grad

��!
f �Df : ð73Þ

The normalizing factor 1/Q in front of two first contributions can
be set to 1, because it contains the squares of derivatives of f, and
if developed, will create terms of order 3 and 4 when multiplied
by the terms behind.

The quantum-mechanical Hamiltonian is obtained from this
expression by multiplying it by �i_ and vF . Let us define the
operator of generalized momentum,

^p!¼ ^
p
!
�e A
!
¼�i_ grad

��!
�e A
!

,

where A
!

is a vector potential that describes an electromagnetic
field [18,19] or in plane longitudinal and transversal phonons
[17]. Then we can write:

~̂
H ¼ vF

0 p̂x�ip̂y

p̂xþ ip̂y 0

 !

þvF

ð@xf Þp̂xþð@yf Þp̂y 0

0 �ð@xf Þp̂x�ð@yf Þp̂y

 !
Please cite this article as: R. Kerner, et al., Physica B (2012), doi:10.
�vF ðgrad
��!

f � s!Þðgrad
��!

f � p̂Þ

�i_vF
1

8
s!� grad

��!
½ð@xf Þ2þð@yf Þ2

� �
�

1

4
½s!� grad

��!
f �Df �: ð74Þ

This last equation is the generalized Dirac equation. It is inter-
esting to observe that in the Hamiltonian derived here, the first

order correction and the term s!� grad
��!
½ð@xf Þ2þð@yf Þ2�=8� ½s!�

grad
��!

f �Df=4 are akin to the ones obtained from a vectorial
potential approach [12]. However, Eq. (74) contains more terms.
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